Skip to main content

Forces that Shape the Cell

  • Chapter
  • First Online:
Quantitative Elements of General Biology

Abstract

Systems biomechanics of the cell is a new area of study that focuses on system-level mechanical phenomena in the cell, notably involving interaction of the cell boundary with the cytoskeleton that it confines. Mechanical effects are reviewed that are associated with the conformations adopted by constrained microtubule fibers, including interphase asters of microtubules, mitotic cytoskeletons consisting of two coupled asters, and the cytoskeleton in interacting cells. Mechanical origin of stability and instability of symmetry, asymmetry, and structural multistability is highlighted. Dynamical effects of emergent irreversibility, hysteresis, and multiperiodic dissipative oscillations are also analyzed, leading to a discussion of the central place of systems biomechanics of the cell in the organization of living matter.

This chapter is based closely on the author’s prior work, Systems Biomechanics of the Cell (Springer, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen G, Sundvold-Gjerstad V, Habtamu M et al (2018) Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Sci Rep 8:13319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Arkhipov SN, Maly IV (2006a) Contribution of whole-cell optimization via cell body rolling to polarization of T cells. Phys Biol 3:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipov SN, Maly IV (2006b) Quantitative analysis of the role of receptor recycling in T cell polarization. Biophys J 91:4306–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipov SN, Maly IV (2007) A model for the interplay of receptor recycling and receptor-mediated contact in T cells. PLoS One 2:e633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arkhipov SN, Maly IV (2008) Retractile processes in T lymphocyte orientation on a stimulatory substrate: morphology and dynamics. Phys Biol 5:16006

    Article  PubMed Central  CAS  Google Scholar 

  • Ashkin A, Schütze K, Dziedzic JM et al (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348

    Article  CAS  PubMed  Google Scholar 

  • Baratt A, Arkhipov SN, Maly IV (2008) An experimental and computational study of effects of microtubule stabilization on T-cell polarity. PLoS One 3:e3861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergstralh DT, Dawney NS, St Johnston D (2017) Spindle orientation: a question of complex positioning. Development 144:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Bjerknes M (1986) Physical theory of the orientation of astral mitotic spindles. Science 234:1413–1416

    Article  CAS  PubMed  Google Scholar 

  • Brangwynne CP, MacKintosh FC, Kumar S et al (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility. Garland, New York

    Google Scholar 

  • Burakov A, Nadezhdina E, Slepchenko B et al (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykovskaja SN, Rytenko AN, Rauschenbach MO et al (1978) Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells: I. hypertrophy and change of orientation of the Golgi apparatus. Cell Immunol 40:164–174

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury D (2019) Laying tracks for poison delivery to "kiss of death": search for immune synapse by microtubules. Biophys J 116:2057–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combs J, Kim SJ, Tan S et al (2006) Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A 103:14883–14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cytrynbaum EN, Scholey JM, Mogilner A (2003) A force balance model of early spindle pole separation in Drosophila embryos. Biophys J 84:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaunay D, Cortay V, Patti D et al (2014) Mitotic spindle asymmetry: a Wnt/PCP-regulated mechanism generating asymmetrical division in cortical precursors. Cell Rep 6:400–414

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro F, Echard A, Morin X (2016) Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 17:1106–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  CAS  PubMed  Google Scholar 

  • Euteneuer U, Schliwa M (1992) Mechanism of centrosome positioning during the wound response in BSC-1 cells. J Cell Biol 116:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Moskalenko C, Dogterom M (2002) Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. Proc Natl Acad Sci U S A 99:16788–16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gliksman NR, Parsons SF, Salmon ED (1992) Okadaic acid induces interphase to mitotic-like microtubule dynamic instability by inactivating rescue. J Cell Biol 119:1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  CAS  PubMed  Google Scholar 

  • Gomez TS, Billadeau DD (2008) T cell activation and the cytoskeleton: you can’t have one without the other. Adv Immunol 97:1–64

    Article  CAS  PubMed  Google Scholar 

  • Gotlieb AI, May LM, Subrahmanyan L et al (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 91:589–594

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Gönczy P, Stelzer EH et al (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630–633

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys Rev Lett 94:108104

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Mai YW, Ru CQ (2009) Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech 207:195–209

    Article  Google Scholar 

  • Harold FM (2001) The way of the cell. Oxford University Press, New York

    Google Scholar 

  • Holy TE (1997) Physical aspects of the assembly and function of microtubules. Dissertation, Princeton University

    Google Scholar 

  • Holy TE, Dogterom M, Yurke B et al (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci U S A 94:6228–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornak I, Rieger H (2020) Stochastic model of T cell repolarization during target elimination I. Biophys J 118:1733–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard J (1998) Mechanics of motor proteins and the cytoskeleton. Sinauer, Cambridge

    Google Scholar 

  • Howard J (2006) Elastic and damping forces generated by confined arrays of dynamic microtubules. Phys Biol 3:54–66

    Article  CAS  PubMed  Google Scholar 

  • Hyman AA, White JG (1987) Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim M (2018) Mechanism of MDCK II cell polarization during the cell division: a computational study. Appl Math Comput 317:1–11

    Google Scholar 

  • Kim M (2019) A numerical mechanical model integrating actin treadmilling and receptor recycling to explain selective disengagement of immune cells. Math Biosci 316:108244

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Maly IV (2009) Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets. PLoS Comput Biol 5:e1000260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MJ, Rejniak KA (2014) Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J 107:1236–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonce MP, Tikhonenko I (2018) Centrosome positioning in Dictyostelium: moving beyond microtubule tip dynamics. Cell 7:29

    Article  CAS  Google Scholar 

  • Koonce MP, Köhler J, Neujahr R et al (1999) Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J 18:6786–6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlowski C, Srayko M, Nedelec F (2007) Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129:499–510

    Article  CAS  PubMed  Google Scholar 

  • Kuhn JR, Poenie M (2002) Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16:111–121

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Singer SJ (1989) Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu Rev Immunol 7:309–337

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A 79:2603–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupfer H, Monks CKF, Kupfer A (1994) Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med 179:1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Letort G, Nedelec F, Blanchoin L et al (2016) Centrosome centering and decentering by microtubule network rearrangement. Mol Biol Cell 27:2833–2843

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy JR, Holzbaur ELF (2008) Dynein drives nuclear rotation during forward progression of motile fibroblasts. J Cell Sci 121:3187–3195

    Article  CAS  PubMed  Google Scholar 

  • Lillie F (1901) The organization of the egg of Unio, based on a study of its maturation, fertilization, and cleavage. J Morphol 17:227–292

    Article  Google Scholar 

  • Lowin-Kropf B, Smith Shapiro V, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maly IV (2011) Systems biomechanics of centrosome positioning: a conserved complexity. Commun Integr Biol 4:230–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Maly IV (2012) Equilibria of idealized confined astral microtubules and coupled spindle poles. PLoS One 7:e38921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maly IV (2013) Systems biomechanics of the cell. Springer, Boston

    Book  Google Scholar 

  • Maly VI, Maly IV (2010) Symmetry, stability, and reversibility properties of idealized confined microtubule cytoskeletons. Biophys J 99:2831–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy EK, Goldstein B (2006) Asymmetric spindle positioning. Curr Opin Cell Biol 18:79–85

    Article  CAS  PubMed  Google Scholar 

  • Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130:909–917

    Article  CAS  PubMed  Google Scholar 

  • Nedelec F (2002) Computer simulations reveal motor properties generating stable anti-parallel microtubule interactions. J Cell Biol 158:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5:481–492

    Article  CAS  PubMed  Google Scholar 

  • Piel M, Meyer P, Khodjakov A et al (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinot M, Chesnel F, Kubiak JZ et al (2009) Effects of confinement on the self-organization of microtubules and motors. Curr Biol 19:954–960

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein B, Larripa K, Sommi P et al (2009) The elasticity of motor-microtubule bundles and shape of the mitotic spindle. Phys Biol 6:016005

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Rieger H, Paul R (2019) Search and capture efficiency of dynamic microtubules for centrosome relocation during IS formation. Biophys J 116:2079–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    Article  CAS  PubMed  Google Scholar 

  • Serrador JM, Nieto M, Sánchez-Madrid F (1999) Cytoskeletal rearrangement during migration and activation of T lymphocytes. Trends Cell Biol 9:228–233

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Yelon D, Berg LJ et al (1995) Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A 92:5027–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunchu B, Cabernard C (2020) Principles and mechanisms of asymmetric cell division. Development 147:dev167650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symes K, Weisblat DA (1992) An investigation of the specification of unequal cleavages in leech embryos. Dev Biol 150:203–218

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Marshall WF (2012) Centrosome positioning in vertebrate development. J Cell Sci 125:4951–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry M, Racine V, Pépin A et al (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Gräf R, MacWilliams HK et al (1997) Centrosome positioning and directionality of cell movements. Proc Natl Acad Sci U S A 94:9674–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Greaney J, Loh WN et al (2020) Nampt-mediated spindle sizing secures a post-anaphase increase in spindle speed required for extreme asymmetry. Nat Commun 11:3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yvon AMC, Walker JW, Danowski B et al (2002) Centrosome reorientation in wound-edge cells is cell type specific. Mol Biol Cell 13:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maly, I. (2021). Forces that Shape the Cell. In: Quantitative Elements of General Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-79146-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79146-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79145-2

  • Online ISBN: 978-3-030-79146-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics