Skip to main content

Signaling and Control

  • Chapter
  • First Online:
Quantitative Elements of General Biology

Abstract

Control processes are responsible for maintenance of the organism’s internal environment (homeostasis) and, therefore, inextricable from the very definition of living matter. Optimal homeostasis involves adaptation and relies on processing of signals from the environment. Signaling and control processes are considered that exhibit nonlinear effects such as an all-of-nothing response, switches, modulation of oscillations, and hysteresis. Examples are drawn from intracellular molecular systems, as well as multicellular and inter-organ control networks: protein kinase cascades with feedback, dynamics of the transmembrane electrochemical potential, regulation of gene expression by metabolism, and control of breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkun Y, Yasemi M (2018) Dynamics and control of the ERK signaling pathway: sensitivity, bistability, and oscillations. PLoS One 13:e0195513

    Article  Google Scholar 

  • Cheng S, Zaikin A (2020) Quantitative physiology. Springer, Singapore

    Book  Google Scholar 

  • Das J, Ho M, Zikherman J et al (2009) Digital signaling and hysteresis characterize Ras activation in lymphoid cells. Cell 136:337–351

    Article  CAS  Google Scholar 

  • Dibrov BF, Zhabotinsky AM, Kholodenko BN (1982) Dynamic stability of steady states and static stabilization in unbranched metabolic pathways. J Math Biol 15:51–63

    Article  CAS  Google Scholar 

  • Fall CP, Marland ES, Wagner JM et al (eds) (2002) Computational cell biology. Springer, New York

    Google Scholar 

  • George S, Foster JM, Richardson G (2015) Modelling in vivo action potential propagation along a giant axon. J Math Biol 70:237–263

    Article  Google Scholar 

  • Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A 78:6840–6844

    Article  CAS  Google Scholar 

  • Haberichter T, Marhl M, Heinrich R (2001) Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. Biophys Chem 90:17–30

    Article  CAS  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993) Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys Lett 23:367–372

    Article  CAS  Google Scholar 

  • Hess B, Boiteux A (1971) Oscillatory phenomena in biochemistry. Annu Rev Biochem 40:237–258

    Article  CAS  Google Scholar 

  • Hiratsuka T, Fujita Y, Naoki H et al (2015) Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. elife 4:e05178

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  Google Scholar 

  • Huang CYF, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 93:10078–10083

    Article  CAS  Google Scholar 

  • Jacob F, Perrin D, Sanchez C et al (1960) Operon: a group of genes with the expression coordinated by an operator. C R Hebd Seances Acad Sci 250:1727–1729

    CAS  PubMed  Google Scholar 

  • Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583–1588

    Article  CAS  Google Scholar 

  • Maly IV, Hofmann WA (2016) Calcium-regulated import of myosin IC into the nucleus. Cytoskeleton 73:341–350

    Article  CAS  Google Scholar 

  • Maly IV, Hofmann WA (2018) Calcium and nuclear signaling in prostate cancer. Int J Mol Sci 19:1237

    Article  Google Scholar 

  • Maly IV, Hofmann WA (2020) Myosins in the nucleus. In: Coluccio L (ed) Myosins, Advances in experimental medicine and biology, vol 1239. Springer, Cham, pp 199–231

    Chapter  Google Scholar 

  • Maly IV, Lee RT, Lauffenburger DA (2004a) A model for mechanotransduction in cardiac muscle: effects of extracellular matrix deformation on autocrine signaling. Ann Biomed Eng 32:1319–1335

    Article  Google Scholar 

  • Maly IV, Wiley HS, Lauffenburger DA (2004b) Self-organization of polarized cell signaling via autocrine circuits: computational model analysis. Biophys J 86:10–22

    Article  CAS  Google Scholar 

  • Molkov YI, Shevtsova NA, Park C et al (2014) A closed-loop model of the respiratory system: focus on hypercapnia and active expiration. PLoS One 9:e109894

    Article  Google Scholar 

  • Molkov YI, Rubin JE, Rybak IA et al (2017) Computational models of the neural control of breathing. Wiley Interdiscip Rev Syst Biol Med 9:e1371

    Article  Google Scholar 

  • Muller L, Chavane F, Reynolds J et al (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19:255–268

    Article  CAS  Google Scholar 

  • Nakayama K, Satoh T, Igari A et al (2008) FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol 18:R332–R334

    Article  CAS  Google Scholar 

  • Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106:1153–1168

    Article  CAS  Google Scholar 

  • Russell DF (1986) Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J Comp Physiol A 158:91–102

    Article  CAS  Google Scholar 

  • Santillán M, Mackey MC (2008) Quantitative approaches to the study of bistability in the lac operon of Escherichia coli. J R Soc Interface 5:S29–S39

    Article  Google Scholar 

  • Santillán M, Mackey MC, Zeron ES (2007) Origin of bistability in the lac operon. Biophys J 92:3830–3842

    Article  Google Scholar 

  • Shin SY, Rath O, Choo SM et al (2009) Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci 122:425–435

    Article  CAS  Google Scholar 

  • Tschumperlin DJ, Dai G, Maly IV et al (2004) Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429:83–86

    Article  CAS  Google Scholar 

  • Yildirim N, Santillán M, Horike D et al (2004) Dynamics and bistability in a reduced model of the lac operon. Chaos 14:279–292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maly, I. (2021). Signaling and Control. In: Quantitative Elements of General Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-79146-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79146-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79145-2

  • Online ISBN: 978-3-030-79146-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics