Skip to main content

A Protein-Centric Perspective of Autophagy and Apoptosis Signaling and Crosstalk in Health and Disease

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

Abstract

Autophagy and apoptosis are pivotal pro-survival mechanisms of multicellular organisms activated in response to a variety of external and internal cues. Specifically, autophagy entails the degradation of excessive or aberrant cellular components to restore cellular homeostasis and ensure cell survival, whereas apoptosis initiates programmed cell death that sacrifices a subgroup of cells to preserve the viability of the whole organism. While seemingly opposing forces, these two distinct yet interconnected mechanisms serve to constrain stress-induced damage, eliminate potential triggers of pathogenesis, and recycle biological building blocks to support new biosynthesis in a living cell or organism. Accordingly, autophagy and apoptosis are tuned by delicate and complex signaling cascades, and inappropriate activation or disruption of these pathways have been associated with disease phenotypes. This book chapter focuses on delineating critical promoters of these two distinct biological processes as well as their interdependent molecular crosstalk from a protein-centric perspective. To better appreciate their clinical relevance, we also highlight the role of autophagy, apoptosis, and their crosstalk in diseases spanning four distinct organ types: heart, liver, central nervous system, and skeletal muscle. While the biological impact and signaling pathways of autophagy and apoptosis have been well-established, present studies have only touched the tip of the iceberg regarding the complex interplay between these two processes. Therefore, further exploration of the autophagy-apoptosis crosstalk opens the door to fully understanding the precise molecular mechanisms in many diseases and developing more effective therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kung G, Dai P, Deng L et al (2014) A novel role for the apoptosis inhibitor ARC in suppressing TNFalpha-induced regulated necrosis. Cell Death Differ 21(4):634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shirakabe A, Zhai P, Ikeda Y et al (2016) Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133(13):1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kubli DA, Cortez MQ, Moyzis AG, et al. (2015) PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PloS one 10(6):e0130707.

    Google Scholar 

  5. Codogno P, Mehrpour M, Proikas-Cezanne T (2012) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13(1):7–12

    Article  CAS  Google Scholar 

  6. Kundu M, Thompson CB (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12(Suppl 2):1484–1489

    Article  CAS  PubMed  Google Scholar 

  7. Jia G, Sowers JR (1852) (2015) Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta 2:219–224

    Google Scholar 

  8. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136

    Article  CAS  PubMed  Google Scholar 

  9. Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carling D, Thornton C, Woods A et al (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445(1):11–27

    Article  CAS  PubMed  Google Scholar 

  11. Sinha S, Levine B (2008) The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27(Suppl 1):S137–S148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24(1):42–57

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi L, Pietrocola F, Levine B et al (2014) Metabolic control of autophagy. Cell 159(6):1263–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogov V, Dotsch V, Johansen T et al (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53(2):167–178

    Article  CAS  PubMed  Google Scholar 

  15. Rusten TE, Stenmark H (2010) p62, an autophagy hero or culprit? Nat Cell Biol 12(3):207–209

    Article  CAS  PubMed  Google Scholar 

  16. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116(8):1477–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lavandero S, Troncoso R, Rothermel BA et al (2013) Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy 9(10):1455–1466

    Article  CAS  PubMed  Google Scholar 

  18. Reggiori F, Tooze SA (2012) Autophagy regulation through Atg9 traffic. J Cell Biol 198(2):151–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang DW, Peng ZJ, Ren GF et al (2015) The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 6(35):37098–37116

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marino G, Niso-Santano M, Baehrecke EH et al (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li M, Gao P, Zhang J (2016) Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci 17(3):332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metab Control Cell Death Sci 345(6203):1250256

    Google Scholar 

  23. Fritzen AM, Frosig C, Jeppesen J et al (2016) Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cell Signal 28(6):663–674

    Article  CAS  PubMed  Google Scholar 

  24. Madamba SM, Damri KN, Dejean LM et al (2015) Mitochondrial Ion channels in cancer transformation. Front Oncol 5:120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karch J, Kwong JQ, Burr AR et al (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772

    Google Scholar 

  26. Gouspillou G, Sgarioto N, Kapchinsky S et al (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J: Off Publ Fed Am Soc Exp Biol 28(4):1621–1633

    Article  CAS  Google Scholar 

  27. Zhou M, Li Y, Hu Q et al (2015) Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev 29(22):2349–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo W, Zhang Y, Ling Z et al (2015) Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis 6:e1919

    Google Scholar 

  29. Jacob SF, Wurstle ML, Delgado ME et al (2016) An analysis of the truncated Bid- and ROS-dependent spatial propagation of mitochondrial permeabilization waves during apoptosis. J Biol Chem 291(9):4603–4613

    Article  CAS  PubMed  Google Scholar 

  30. Dorn GW 2nd, Kitsis RN (2015) The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res 116(1):167–182

    Article  CAS  PubMed  Google Scholar 

  31. Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72(24):4721–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li M, Tan J, Miao Y et al (2015) The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis. Apoptosis 20(6):769–777

    Article  CAS  PubMed  Google Scholar 

  33. Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21(1):86–102

    Article  CAS  PubMed  Google Scholar 

  34. Young MM, Takahashi Y, Khan O et al (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287(15):12455–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaganathan S, Malek E, Vallabhapurapu S et al (2014) Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget 5(23):12358–12370

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shamas-Din A, Brahmbhatt H, Leber B et al (1813) (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 4:508–520

    Google Scholar 

  37. Hanna RA, Quinsay MN, Orogo AM et al (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287(23):19094–19104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  CAS  PubMed  Google Scholar 

  39. Mei Y, Thompson MD, Cohen RA et al (2015) Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta 2:243–251

    Article  CAS  Google Scholar 

  40. Decker RS, Poole AR, Crie JS et al (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. Am J Pathol 98(2):445–56

    Google Scholar 

  41. Maejima Y, Isobe M, Sadoshima J (2015) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schneider JL, Cuervo AM (2014) Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 11(3):187–200

    Article  PubMed  Google Scholar 

  43. Madrigal-Matute J, Cuervo AM (2016) Regulation of liver metabolism by autophagy. Gastroenterology 150(2):328–339

    Article  CAS  PubMed  Google Scholar 

  44. Nishida K, Otsu K (2015) Autophagy during cardiac remodeling. J Mol Cell Cardiol 95:11–18

    Article  PubMed  CAS  Google Scholar 

  45. Takagi A, Kume S, Kondo M et al (2016) Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci Rep 6:18944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lipinski MM, Zheng B, Lu T et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107(32):14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vidal RL, Matus S, Bargsted L et al (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35(11):583–591

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Coleman M, Zhang L et al (2013) Autophagy in axonal and dendritic degeneration. Trends Neurosci 36(7):418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barlow AD, Thomas DC (2015) Autophagy in diabetes: beta-cell dysfunction, insulin resistance, and complications. DNA Cell Biol 34(4):252–260

    Google Scholar 

  50. Wellnitz K, Taegtmeyer H (2010) Mechanical unloading of the failing heart exposes the dynamic nature of autophagy. Autophagy 6(1):155–156

    Article  PubMed  Google Scholar 

  51. Wang ZV, Rothermel BA, Hill JA (2010) Autophagy in hypertensive heart disease. J Biol Chem 285(12):8509–8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dash S, Chava S, Chandra PK et al (2016) Autophagy in hepatocellular carcinomas: from pathophysiology to therapeutic response. Hepat Med 8:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Palma C, Perrotta C, Pellegrino P et al (2014) Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 6:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104(3):304–317

    Article  CAS  PubMed  Google Scholar 

  55. Sikorska B, Liberski PP, Giraud P et al (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573

    Article  CAS  PubMed  Google Scholar 

  56. Raval KK, Tao R, White BE et al (2015) Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121–3136

    Article  CAS  PubMed  Google Scholar 

  57. Gottlieb RA, Burleson KO, Kloner RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jose Corbalan J, Vatner DE, Vatner SF (2016) Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 111(3):31

    Article  CAS  PubMed  Google Scholar 

  59. Wang K (2014) Molecular mechanisms of liver injury: apoptosis or necrosis. Exp Toxicol Pathol 66(8):351–356

    Article  CAS  PubMed  Google Scholar 

  60. Jazvinscak Jembrek M, Hof PR, Simic G (2015) Ceramides in Alzheimer's disease: key mediators of neuronal apoptosis induced by oxidative stress and Abeta accumulation. Oxid Med Cell Longev 2015:346783

    Google Scholar 

  61. Calvani R, Joseph AM, Adhihetty PJ et al (2013) Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 394(3):393–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marzetti E, Leeuwenburgh C (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41(12):1234–1238

    Article  CAS  PubMed  Google Scholar 

  63. Kimura-Ohba S, Yang Y (2016) Oxidative DNA damage mediated by intranuclear MMP activity is associated with neuronal apoptosis in ischemic stroke. Oxid Med Cell Longev 2016:6927328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189

    Article  CAS  PubMed  Google Scholar 

  65. Williams JA, Manley S, Ding WX (2014) New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 20(36):12908–12933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wencker D, Chandra M, Nguyen K et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paradies G, Paradies V, Ruggiero FM et al (2014) Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 20(39):14205–14218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sawa A, Wiegand GW, Cooper J et al (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5(10):1194–1198

    Article  CAS  PubMed  Google Scholar 

  69. Travers JG, Kamal FA, Robbins J et al (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Macchi B, Marino-Merlo F, Nocentini U et al (2015) Role of inflammation and apoptosis in multiple sclerosis: comparative analysis between the periphery and the central nervous system. J Neuroimmunol 287:80–87

    Article  CAS  PubMed  Google Scholar 

  71. Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27(2):245–250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Lee, J., Polson, J.S., Liem, D.A., Ping, P. (2022). A Protein-Centric Perspective of Autophagy and Apoptosis Signaling and Crosstalk in Health and Disease. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_1

Download citation

Publish with us

Policies and ethics