Skip to main content

Genotypic and Clinical Analysis of a Thalassemia Major Cohort: An Observational Study

  • Conference paper
  • First Online:
GeNeDis 2020

Abstract

Thalassemia major (TM) is a hereditary disease caused by defective globin synthesis. Because of the significant increase in life expectancy, these patients are suffering from various health conditions, including endocrinopathies and low bone mineral density. The aim of the present study was to investigate the correlation between clinical and biochemical parameters as well as to identify possible relations in a genotype to phenotype pattern. Sixty-four patients with TM (32 men and 32 women) participated in a cross-sectional study design. The patients were recruited from “Aghia Sofia” Children’s Hospital. Clinical and biochemical parameters were evaluated as well as specific mutations were identified. We have found significant correlations between biochemical parameters and iron chelation, hormone replacement treatment as well as TM genotype and hematocrit and T-score. To conclude, the current study showed that clinical parameters of TM patients correlate significantly with both biochemical factors and genotypical patient parameters. Our present study showed that there is a connection between genotype and phenotype as, for example, the identified relation between hematocrit and T-scores and TM-specific mutations. This connection indicates that there is still much more to learn about the role of mutations not only in the disease itself but also in the underlying comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://globin.cse.psu.edu/hbvar/menu.html

  2. 2.

    http://globin.cse.psu.edu/hbvar/menu.html

References

  1. Cousens NE et al (2010) Carrier screening for beta-thalassaemia: a review of international practice. Eur J Hum Genet 18(10):1077–1083. https://doi.org/10.1038/ejhg.2010.90

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee YK et al (2019) Recent progress in laboratory diagnosis of thalassemia and hemoglobinopathy: a study by the Korean Red Blood Cell Disorder Working Party of the Korean Society of Hematology. Blood Res 54(1):17–22. https://doi.org/10.5045/br.2019.54.1.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goh SH et al (2005) A newly discovered human alpha-globin gene. Blood 106(4):1466–1472. https://doi.org/10.1182/blood-2005-03-0948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karponi G, Zogas N (2019) Gene therapy for beta-thalassemia: updated perspectives. Appl Clin Genet 12:167–180. https://doi.org/10.2147/tacg.s178546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weatherall DJ, Clegg JB (1999) Genetic disorders of hemoglobin. Semin Hematol 36(4 Suppl 7):24–37

    CAS  PubMed  Google Scholar 

  6. Weatherall DJ (1994) The thalassemias. In: Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H (eds) The molecular basis of blood diseases. WB Saunders, Philadelphia, p 815

    Google Scholar 

  7. Otrock ZK et al (2006) Intravenous zoledronic acid treatment in thalassemia-induced osteoporosis: results of a phase II clinical trial. Ann Hematol 85(9):605–609. https://doi.org/10.1007/s00277-006-0136-y

    Article  CAS  PubMed  Google Scholar 

  8. Dresner Pollack R et al (2000) Bone mineral metabolism in adults with beta-thalassaemia major and intermedia. Br J Haematol 111(3):902–907

    CAS  PubMed  Google Scholar 

  9. Molyvda-Athanasopoulou E et al (1999) Bone mineral density of patients with thalassemia major: four-year follow-up. Calcif Tissue Int 64(6):481–484

    Article  CAS  Google Scholar 

  10. Voskaridou E et al (2006) Osteoporosis and osteosclerosis in sickle cell/beta-thalassemia: the role of the RANKL/osteoprotegerin axis. Haematologica 91(6):813–816

    CAS  PubMed  Google Scholar 

  11. Tsartsalis AN et al (2018) The role of biphosphonates in the management of thalassemia-induced osteoporosis: a systematic review and meta-analysis. Hormones (Athens) 17(2):153–166. https://doi.org/10.1007/s42000-018-0019-3

    Article  Google Scholar 

  12. Tsartsalis AN et al (2019) Bone metabolism markers in thalassemia major-induced osteoporosis: results from a cross-sectional observational study. Curr Mol Med 19(5):335–341. https://doi.org/10.2174/1566524019666190314114447

    Article  CAS  PubMed  Google Scholar 

  13. Spatz JM et al (2015) The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290(27):16744–16758. https://doi.org/10.1074/jbc.M114.628313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McClung MR et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370(5):412–420. https://doi.org/10.1056/NEJMoa1305224

    Article  CAS  PubMed  Google Scholar 

  15. van Dinther M et al (2013) Anti-Sclerostin antibody inhibits internalization of Sclerostin and Sclerostin-mediated antagonism of Wnt/LRP6 signaling. PLoS One 8(4):e62295. https://doi.org/10.1371/journal.pone.0062295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cosman F et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds AW et al (2018) Comparison of osteoporosis pharmacotherapy fracture rates: analysis of a MarketScan((R)) claims database cohort. Int J Endocrinol Metab 16(3):e12104. https://doi.org/10.5812/ijem.12104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bordbar M et al (2019) Effect of different iron chelation regimens on bone mass in transfusion-dependent thalassemia patients. Expert Rev Hematol 12(11):997–1003. https://doi.org/10.1080/17474086.2019.1662721

    Article  CAS  PubMed  Google Scholar 

  19. Eghbali A et al (2019) A 1-year randomized trial of deferasirox alone versus deferasirox and deferoxamine combination for the treatment of iron overload in thalassemia major. Transfus Apher Sci 58(4):429–433. https://doi.org/10.1016/j.transci.2019.03.021

    Article  PubMed  Google Scholar 

  20. Tanner MA et al (2007) A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation 115(14):1876–1884. https://doi.org/10.1161/circulationaha.106.648790

    Article  CAS  PubMed  Google Scholar 

  21. Soliman A et al (2014) Growth hormone – insulin-like growth factor-I axis and bone mineral density in adults with thalassemia major. Indian J Endocrinol Metab 18(1):32–38. https://doi.org/10.4103/2230-8210.126525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhardwaj A et al (2016) Treatment for osteoporosis in people with β-thalassaemia. Cochrane Database Syste Rev 3:CD010429. https://doi.org/10.1002/14651858.CD010429.pub2

    Article  Google Scholar 

  23. Vogiatzi MG et al (2006) Prevalence of fractures among the Thalassemia syndromes in North America. Bone 38(4):571–575. https://doi.org/10.1016/j.bone.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Chen YG et al (2018) Risk of fracture in transfusion-naive thalassemia population: a nationwide population-based retrospective cohort study. Bone 106:121–125. https://doi.org/10.1016/j.bone.2017.10.016

    Article  PubMed  Google Scholar 

  25. Stefanis L et al (1994) Hematologic phenotype of the mutations IVS1-n6 (T→C), IVS1-n110 (G→A), and CD39 (C→T) in carriers of beta-thalassemia in Greece. Pediatr Hematol Oncol 11(5):509–517. https://doi.org/10.3109/08880019409141689

    Article  CAS  PubMed  Google Scholar 

  26. Allon R et al (2018) How to best predict fragility fractures: an update and systematic review. Isr Med Assoc J 20(12):773–779

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

A, T. et al. (2021). Genotypic and Clinical Analysis of a Thalassemia Major Cohort: An Observational Study. In: Vlamos, P. (eds) GeNeDis 2020. Advances in Experimental Medicine and Biology, vol 1339. Springer, Cham. https://doi.org/10.1007/978-3-030-78787-5_10

Download citation

Publish with us

Policies and ethics