Skip to main content

Bio-Based Polyvinylchloride (PVC)-Related Blends

  • Chapter
  • First Online:
Polyvinylchloride-based Blends

Abstract

Despite the fact that PVC is one of the most useful materials available to the plastic market, with properties as strong, durable, versatile and lightweight, low cost and chemical resistance, its inadequate disposal has contributed to strong noneconomic issues based on the negative effects of chlorine. The use of biodegradable polymers and their mixtures is an important solution for decreasing the environmental pollution caused by disposal of PVC non-degradable waste. Since sustainable chemistry and engineering require the production of materials and technologies based on degradable polymers, this chapter presents some possibilities of blending PVC with biodegradable additives and/or of natural origin, as well as their production techniques, enhancing the changes in the resulting properties. Blends of PVC with nanofillers, degradable polyesters (polyhydroxyalkanoates and poly(ε-caprolactone)), polysaccharides (cellulose, starch, chitin, chitosan), natural fibers (derived from plants or wood), protein (collagen) and poly(vinyl alcohol) are some examples of PVC bio-related blends discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richardson R, Edwards M (2009) Vinylchloride and organotin stabilizers in water contacting new and aged PVC pipes. Water Research Foundation, 6666 West Quincy Avenue, Denver, US

    Google Scholar 

  2. Muzzy JD (2015) Thermoplastics—properties. Georgia Institute of Technology, Atlanta, GA, USA

    Google Scholar 

  3. Dwivedi P, Narvi SS, Tewari RP (2012) A novel Ag/CS-PVC nanomaterial with high antimicrobial properties: a potential self-sterilizing biomaterial. Int J Sci Res Publ 2:1–5

    CAS  Google Scholar 

  4. Machovsky M, Kuritka I, Bazant P, Vesela D, Saha P (2014) Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites. Mater Sci Eng C 41:70–77

    Article  CAS  Google Scholar 

  5. Taurino R, Sciancalepore C, Collini L, Bondi M, Bondioli F (2018) Functionalization of PVC by chitosan addition: compound stability and tensile properties. Compos B 149:240–247

    Article  CAS  Google Scholar 

  6. Alvarenga RAF, Dewulf JD, Meester S, Wathelet A, Villers J, Thommeret R, Hruska Z (2013) Life cycle assessment of bioethanol-based PVC. Biofuels Bioprod Biorefin 7:386–395

    Article  CAS  Google Scholar 

  7. Bigot S, Louarn G, Kébir N, Burel F (2013) Click grafting of seaweed polysaccharides onto PVC surfaces using anionic liquid as solvent and catalyst. Carbohyd Polym 98:1644–1649

    Article  CAS  Google Scholar 

  8. Markarian J (2005) Wood-plastic composites: current trends in materials and processing. Plast Addit Compd 7:20–26

    Article  Google Scholar 

  9. Klapiszewski L, Pawlak F, Tomaszewska J, Jesionowski T (2015) Preparation and characterization of novel PVC/silica–lignin composites. Polymers 7:1767–1788

    Article  CAS  Google Scholar 

  10. Sheng K, Qian S, Wang H (2014) Influence of potassium permanganate pretreatment on mechanical properties and thermal behavior of moso bamboo particles reinforced PVC composites. Polym Compos 35:1460–1465

    Article  CAS  Google Scholar 

  11. Kamel S (2004) Preparation and properties of composites made from rice straw and poly(vinyl chloride) (PVC). Polym Adv Technol 15:612–616

    Article  CAS  Google Scholar 

  12. Saheb D, Jog JP (1999) Natural fiber polymer composites: a review. Polym Adv Technol 18:351–363

    Article  CAS  Google Scholar 

  13. Dan-asabe B (2018) Thermo-mechanical characterization of banana particulate reinforced PVC composite as piping material. J King Saud Univ Eng Sci 30:296–304

    Google Scholar 

  14. Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: a review. Materials 11:1834–1883

    Article  PubMed Central  CAS  Google Scholar 

  15. Mohamed AT (2016) Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride. Measurement 89:28–33

    Article  Google Scholar 

  16. Kadry G, Abd El-Hakim AEF (2015) Effect of nanocellulose on the biodegradation, morphology and mechanical properties of polyvinylchloride/nanocellulose nanocomposites. Res J Pharm Biol Chem Sci 6:659–666

    CAS  Google Scholar 

  17. Chazeau L, Cavaillé JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808

    Article  CAS  Google Scholar 

  18. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN (2018) Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: an innovative plant biomaterial dataset. Data Brief 17:1245–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H (2018) New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci 439:1163–1179

    Article  CAS  Google Scholar 

  20. Yu BY, Lee AR, Kwak S-Y (2012) Gelation/fusion behavior of PVC plastisol with a cyclodextrin derivative and an anti-migration plasticizer in flexible PVC. Eur Polymer J 48:885–895

    Article  CAS  Google Scholar 

  21. Raeisi A, Faghihi K, Shabanian M (2017) Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC. Carbohyd Polym 174:858–868

    Article  CAS  Google Scholar 

  22. Kann Y, Padwa A (2014) PVC modification with biobased poly(hydroxyalkanoates). J Vinyl Add Tech 21:1–13

    Google Scholar 

  23. Choe S, Cha Y-J, Lee H-S, Yoon JS, Choi HJ (1995) Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(vinyl chloride) blends. Polymer 36:4977–4982

    Article  CAS  Google Scholar 

  24. Sin MC, Tan IKP, Annuar MSM, Gan SN (2012) Thermal behaviour and thermodegradation kinetics of poly(vinyl chloride) plasticized with polymeric and oligomeric medium-chain-length poly(3-hydroxyalkanoates). Polym Degrad Stab 97:2118–2127

    Article  CAS  Google Scholar 

  25. Eastmond GC (2000) Poly (ε-caprolactone) blends. Adv Polym Sci 149:59–223

    Article  Google Scholar 

  26. Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly-ε-caprolactone by means on compatible polymer mixtures. J Polym Sci Part A-2 Polym Phys 7:795–807

    Article  CAS  Google Scholar 

  27. Rusu M, Ursu M, Rusu D (2006) Poly(vinyl chloride) and poly(e-caprolactone) blends for medical use. J Thermoplast Compos Mater 19:173–190

    Article  CAS  Google Scholar 

  28. Ong CJ, Prich FP (1978) Blends of poly(ϵ-caprolactone) with poly(vinyl chloride). II. Crystallization kinetics. J Polym Sci Polym Symp 63:59–75

    Article  CAS  Google Scholar 

  29. Sundben N, Berman G, Shur YJ (1978) Antiplasticization and transition to marked nonlinear viscoelasticity in poly(vinyl chloride) (PVC)/poly-ε-caprolactone (PCL) blends. J Appl Polym Sci 22:1255–1265

    Article  Google Scholar 

  30. Deanin RD, Zheng-Bai Z (1984) Polycaprolactone as a permanent plasticizer for poly(vinyl chloride). J Vinyl Add Tech 6:18–21

    Article  CAS  Google Scholar 

  31. Westhoff RP, Otey FH, Mehltretter CL, Russell CR (1974) Starch-filled polyvinyl chloride plastics-preparation and evaluation. Ind Eng Chem Prod Res Dev 13:123–125

    CAS  Google Scholar 

  32. Rosa DS, Rios AR, Viana HM, Tavares MIB (2015) Characterization of poly(vinyl chloride) compounds containing different levels of starch. J Vinyl Add Tech 22:396–404

    Article  CAS  Google Scholar 

  33. Nakamura Y, Usa T, Kamaguchi A, Iida T (2002) Effect of phase structure on the mechanical properties of PVC/starch blend. In: Proceedings of 51st society of polymer science Japan, symposium on macromolecules, p 944

    Google Scholar 

  34. Viňa SZ, Mugridge A, Garcia MA, Ferreyra RM, Martino MN, Chaves AR, Zaritzky NE (2007) Effects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts. Food Chem 103:701–709

    Article  CAS  Google Scholar 

  35. Sobahi TR, Makki MSI, Abdelaal MY (2013) Carrier-mediated blends of Chitosan with polyvinyl chloride for different applications. J Saudi Chem Soc 17:245–250

    Article  CAS  Google Scholar 

  36. Heiden PA (2005) Novel coupling agents for PVC/wood-flour composites. J Vinyl Add Tech 11:160–165

    Article  CAS  Google Scholar 

  37. Feldman D, Banu D (1997) Contribution to the study of rigid PVC polyblends with different Lignins. J Appl Polym Sci 66:1731–1744

    Article  CAS  Google Scholar 

  38. Ping QW, Xiao J, Zhao J (2011) The preparation and property of organic solvent lignin and PVC composite materials. Adv Mater Res 236–238:1195–1198

    Article  CAS  Google Scholar 

  39. Khan RA, Sharmin N, Khan MA, Das AK, Dey K, Saha S, Islam T, Islam R, Nigar F, Sarker B, Debnath KK, Saha M (2011) Comparative studies of mechanical and interfacial properties between jute fiber/PVC and E-glass fiber/PVC composites. Polym Plast Technol Eng 50:153–159

    Article  CAS  Google Scholar 

  40. Kokta BV, Maldas D, Daneault C, Beland P (1990) Composites of polyvinyl chloride–wood fibers. III: effect of silane as coupling agent. J Vinyl Add Technol 12:146–153

    Article  CAS  Google Scholar 

  41. Kokta BV, Maldas D, Daneault C, Beland P (1990) Composites of poly(vinyl chloride) and wood fibers. Part II: effect of chemical treatment. Polym Compos 11:84–89

    Article  CAS  Google Scholar 

  42. Shah BL, Matuana LM, Heiden PA (2005) Novel coupling agents for PVC/wood-flour composites. J Vinyl Add Tech 11:160–165

    Article  CAS  Google Scholar 

  43. Matuana LM, Woodhams RT, Balatinecz JJ, Park CB (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19:446–455

    Article  CAS  Google Scholar 

  44. Ogunniyi DS (1998) A novel system for crosslinking fluoroelastomers. Rubber Chem Technol 61:735–746

    Article  Google Scholar 

  45. Ratnam CT, Fazlina RS, Shamsuddin S (2010) Mechanical properties of rubber-wood fiber filled PVC/ENR blend. Malays Polym J 5:17–25

    Google Scholar 

  46. Masudur Rahman ANM, Khan RA (2018) Influence of UV radiation on mechanical properties of PVC composites reinforced with pineapple fiber. J Text Sci Eng 8:1–5

    Google Scholar 

  47. Raju G, Ratnam CT, Ibrahim NA, Ab Rahman MZ, Wan Yunus WMZ (2008) Enhancement of PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit bunch fiber. J Appl Polym Sci 110:368–375

    Article  CAS  Google Scholar 

  48. Madera-Santana TJ, Torres AC, Lucero AM (1998) Extrusion and mechanical characterization of PVC-leather fiber composites. Polym Compos 19:431–439

    Article  CAS  Google Scholar 

  49. Majida RA, Ismail H, Taib RM (2016) Benzoyl chloride treatment of Kenaf core powder: the effects on mechanical and morphological properties of PVC/ENR/kenaf core powder composites. Proc Chem 19:803–809

    Article  CAS  Google Scholar 

  50. Lungu M, Moldovan L, Craciunescu O, Doicin C (2010) Biocompatible blends based on polyvinyl chloride and natural polymers for medical device fabrication. Mater Plast 47:278–281

    CAS  Google Scholar 

  51. Lungu M, Pascu M, Bumbu GG, Darie H, Vasile C, Moldovan L (2004) Bioartificial polymer materials based on PVC/natural polymer blends: binary PVC/hydrolyzed collagen blends. Int J Polym Mater 2010:525–540

    Article  CAS  Google Scholar 

  52. Agafiţei GE, Pascu M, Cazacu G, Vasile C (2008) Degradation of polyvinyl chloride (PVC)/hydrolyzed collagen (HC) blends active sludge test. Rev Med Chir Soc Med Nat Iasi 112:530–537

    PubMed  Google Scholar 

  53. Pascu M, Agafiţei GE, Profire L, Vasile C (2009) Degradation of PVC/HC blends. II. Terrestrial plant growth test. Rev Med Chir Soc Med Nat Iaşi 113(2009):257–263

    PubMed  Google Scholar 

  54. de Campos A, Marconato JC, Martins-Franchetti SM (2011) Biodegradation of blend films PVA/PVC, PVA/PCL in soil. Braz Arch Biol Technol 54:1367–1378

    Article  CAS  Google Scholar 

  55. Nakamura Y, Takeuchi K, Kamaguchi A, Nabeta M, Iida T (2007) Morphology and mechanical properties of PVC/PVA blend. J Adhes Soc Jpn 43:43–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darie-Nita, R.N., Râpă, M., Visakh, P.M. (2022). Bio-Based Polyvinylchloride (PVC)-Related Blends. In: P. M., V., Darie-Nita, R.N. (eds) Polyvinylchloride-based Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-78455-3_10

Download citation

Publish with us

Policies and ethics