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Abstract. In recent years, privacy research has been gaining ground in
vehicular communication technologies. Collecting data from connected
vehicles presents a range of opportunities for industry and government
to perform data analytics. Although many researchers have explored
some privacy solutions for vehicular communications, the conditions to
deploy them are still maturing, especially when it comes to privacy for
sensitive data aggregation analysis. In this work, we propose a hybrid
solution combining the original differential privacy framework with an
instance-based additive noise technique. The results show that for typi-
cal instances we obtain a significant reduction in outliers. As far as we
know, our paper is the first detailed experimental evaluation of differ-
entially private techniques applied to traffic monitoring. The validation
of the proposed solution was performed through extensive simulations in
typical traffic scenarios using real data.

Keywords: Differential privacy - Smooth sensitivity + Hybrid
approach - Intelligent Transportation Systems (ITS)

1 Introduction

Mobility is a major concern in any city, and deploying Intelligent Transportation
Systems (ITS) can make cities more efficient by minimizing traffic problems [1].
The adoption of ITS is widely accepted in many countries today. Because of
its high potential, ITS has become a multidisciplinary field of connective work
and therefore many organizations around the world have developed solutions to
provide ITS applications to meet growing demand [2].
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Data collection in connected vehicles presents numerous opportunities
through aggregated data analysis for companies, industries, and governments.
Among these opportunities, one can highlight investigation of the driver behav-
ior, which helps vehicle manufacturers and insurers to improve and develop new
services. Another interesting application is the monitoring of traffic conditions
which allows transport departments to manage mobility and improve services [5].

Regarding traffic management, it is increasingly important to understand the
behavior of urban mobility. It includes presenting the travel profile of drivers for
future mobility planning and testing in new scenarios. A Traffic Data Center
(TDC) is a vital component in the mobility management. All collected data is
processed and analyzed by a TDC in order to manage traffic in real-time or
simply store it for additional operations [4]. A vehicle periodically sends beacons
collected by sensors to its neighbors, including base stations, which are then
sent directly to a TDC. The vehicle sensors collect data such as identification,
timestamp, position, speed (direction), acceleration, among other about 7700
signals, some of which are treated as sensitive [4,5].

It is undeniable that analyzing this volume of data brings substantial social
benefits, but also concerns about data breaches and leakage. Disclosure of this
data poses a serious threat to the privacy of contributors, and creates a liability
for industry and governments. In Europe, the General Data Protection Regula-
tion (GDPR) imposes stricter rules on the storage and management of personally
identifiable information, with non-compliance resulting in severe penalties [5].

To put it in context, it is worth mentioning that any type of monitoring
can lead to a privacy breach through tracking. The main privacy concerns for
drivers are disclosure, vehicle tracking and commercial use of personal data [5].
The speed, object of study in this paper, is a vector quantity which has a module
(numerical value) and direction. In this way, the speed is considered as confiden-
tial data, as it is possible to deduce the driver’s absolute value on a specific time
and, more importantly, what is the driver’s direction at that time and place.

In recent years, a strong mathematical definition of privacy in the context of
statistical databases became increasingly accepted as a standard privacy notion.
The original differential privacy framework was introduced by Dwork et al. in
2006 [3]. Since then, there was a lot of progress, including the sample and aggre-
gate framework developed by Nissim et al. [9]. Based on this framework, our
main research question is how to preserve the privacy of drivers while providing
accurate aggregated information to a TDC, such as the average speed?

This paper addresses the problem of calculating the average speed in a road
segment under a differentially private solution while maintaining the utility of
aggregated data. Our main contributions are the following:

— We propose a hybrid approach exploring the characteristics of the original
differential privacy [3] and the sample and aggregate frameworks [9)].

— We present a formal proof showing that the proposed approach satisfies the
differential privacy definition.

— We validate the hybrid approach through extensive empirical evaluation in
some typical traffic scenarios, focusing on accuracy of the average speed.
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1.1 Related Work

In recent years, researchers have explored numerous solutions to the problem
of preserving privacy in the context of ITS. Pseudonym change strategies are
the main local privacy-preserving solutions found in the literature, where con-
tributors do not trust service providers. However, due to the precise space-time
information contained in beacons, these strategies are still vulnerable to trac-
ing, even supposedly anonymous [6]. In addition, due to safety applications,
which require availability and accurate information, the design of alternative
local privacy-preserving solutions is very restricted.

Regardless of local privacy-preserving solutions, our purpose is to focus on
centralized solutions for data aggregation analysis, where the database is held
by a trusted party. In this direction, the main contribution is due to Kargl et
al. [4] in 2013, which investigated how differential privacy can be applied to ITS.
Specifically, they propose an architecture that enables differential privacy when
using beacons for some ITS applications and services. This architecture inte-
grates a differentially private module through an extension of the PRECIOSA
PeRA policy enforcement framework. To illustrate the functioning of the pro-
posed module and how it addresses the accuracy and privacy requirements, Kargl
et al. designed a simple algorithm for average speed calculation, based on the
original framework of differential privacy.

A comprehensive survey on introduction of differential privacy in the auto-
motive domain is presented by Nelson and Olovsson [5], where they claim that
one of the main problems to introduce differential privacy in the automotive
domain is maintaining high utility for the analyses. Another important work in
this direction is due to Hassan et al. [7]. They survey differential privacy tech-
niques and their application to cyber-physical systems, including ITS, as basis
for the development of modern differential privacy techniques to address various
problems and data privacy scenarios. Both works claim that the most prominent
study relating differential privacy and vehicular domain is due to Kargl et al. [4].

Regarding data, most of collected signals by vehicle sensors are numeric and,
specially in traffic monitoring, the aggregation functions sum, count and average
capture many of calculations utilized in ITS applications [4]. These aggregation
functions tend to have high distortion for small databases, mainly, for the sum
and average due to variable global sensitivity that may not be diluted at a
small database [5]. ITS applications typically have defined accuracy standards
for reported values. For example, U.S. standardization determines that the dis-
tortion (error) presented at the reported average speed should be up to 20%,
depending on the application [4]. It represents an upper bound on the noise
introduced by a differentially private mechanism.

Given these surveys, our aim is to explore the peculiarities of the addressed
problem and associate them to the characteristics of differentially private tech-
niques, in order to obtain more accurate results while maintaining the same
level of privacy. Although in most situations the instances are misbehaved, our
hypothesis is that well-behaved instances are produced in some situations. This
is due to the fact that the addressed problem is dynamic. The main difference
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compared to [4] is that while they focus on a differentially private architecture
applied to ITS, this article aims to deepen in this architecture by proposing
a robust and effective differentially private algorithm to calculate the average
speed in a realistic scenario that meets privacy and accuracy requirements.

The remainder of this paper is organized as follows. In Sect. 2, we present the
theoretical foundations related to the differential privacy required to build our
approach. Section 3 describes the proposed solution. After that, the experimental
evaluation is presented in Sect.4. Finally, we conclude and give direction to
future work in Sect. 5.

2 Background

Differential privacy emerged from the problem of performing statistical studies
on a population while maintaining the privacy of its individuals. The definition
models the risk of disclosing data from any individual belonging to a database
by performing statistical analyses on it.

Definition 1. DIFFERENTIAL PRIVACY [3]. A randomized algorithm A taking
inputs from the domain D™ gives (e, 0 )-differential-private analysis if for all data
sets D1, Dy € D™ differing on at most one element, and all U C Range(A),
denoting the set of all possible outputs of A,

(st

(1)

where the probability space is over the coin flips of the mechanism A and & is
defined as 1 for all p € R.

The parameters € and §, known respectively as privacy loss parameter and
relaxation parameter, control the level of privacy and, consequently, the level of
utility in the model. While € determines the level of indistinguishability between
the two databases, § allows negligible leakage of information from individuals
under analysis.

The protection of the individual’s privacy in a database is done by adding
carefully-crafted noise to the individual contribution or the aggregated data.
In this way, it is sufficient to mask the maximum possible contribution (upper
bound) in the database, which is the maximum difference between the analyses
performed over two databases differing only in one element. This difference is
known as global sensitivity, denoted by Ay;.

One of the main models of computation is the centralized model (also known
as output perturbation). In this model, there is a trusted party that has access
to the raw individuals’ data and uses it to release noisy aggregate analyses. The
Laplace and exponential [8,11] mechanisms are two of the main primitives in the
differential privacy framework used to perturb the output analysis. The first, is
the most widely used mechanism and it is based on sampling continuous random
variables from Laplace distribution. In order to sample a random variable, one
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should calibrate the Laplace distribution by centering the location parameter at
either zero or the aggregated value and setting the scale parameter as the ratio
between Ay and e.

On the other hand, the exponential mechanism is used to handle both numer-

ical and categorical analysis [8,16]. This mechanism outputs an element o € O
€q(D,0)

with probability o e( 244/, where O is a set of all possible outputs and A, is
the sensitivity of the quality function.

McSherry and Talwar [16] observed that the Laplace mechanism can be
viewed as a special case of the exponential mechanism, by using the quality

function as ¢(D,0) = —|f(D) — o|, which provides A, = Ay. In this way, we
can use the continuous exponential distribution and it is sufficient to assume
q(D,0) = —[f(D) — o], whereas the output o can be set as zero, which gives

the true value of the analysis. Li et al. [8] proves that if a quality function is
monotonic we can omit the constant two in the exponential mechanism.

Regarding the composability, the composition theorems are essential to
design differentially private solutions. It allows to combine multiple mechanisms
or perform multiple analyses over the same database by controlling the privacy
and relaxation parameters, that is, the privacy budget. The sequential and par-
allel composition theorems are the main ones present in the literature.

In sequential composition, the parameters will be accumulated according to
the number of performed analyses. On the other hand, in parallel composition,
the resulting differentially private analysis will take into account only the max-
imum values of the parameters.

In the original differential privacy framework [3], the noise magnitude
depends on the global sensitivity (A;) but not on the instance D. For many
functions, such as the median, this framework yields high noise compromising
the utility of the analysis. The smooth sensitivity framework [9] allows to add
significantly less noise than calibration with global sensitivity.

The smooth sensitivity is the smallest upper bound on the local sensitivity
(LS), which is a local measure of sensitivity, and takes into account only the
two instances involved in the analysis [9]. Nissim et al. proved that adding noise
proportional to this upper bound is safe.

Definition 2. SMOOTH SENSITIVITY [9]. For 8 > 0, the 3-smooth sensitivity
of f is:

S5 5(D1) = B LSy(Ds) ) . 2
PP = 1 B VS P2 )

The following definition states that if a probability distribution that does
not change too much under translation and dilation it can be used to add noise
proportional to Sj*cy -

Definition 3. ADMISSIBLE NOISE DISTRIBUTION [9]. A probability distribution
h € R is (a,B)-admissible for a(e,d) and B(e,0) if it satisfies the following
inequalities:

Prxn(XeU)—3$

In P’I’XNh(X S U+A)

<e/2 (3)
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PTXN}L(X c U) — g
PTXNh(X S U'e)‘)

In <¢/2 (4)

| S

for all |A|l < a, |A| < 8 and all subsets U C R.
The following lemma arises from Definitions 2 and 3.

Lemma 1. [9]. The Laplace distribution on R with scale parameter b is (o, 3)-

€

admissible with o = b§ and 3 = (179}
Proof. The proof can be found in the Appendix A. O

Claim. [9]. In order to get an (¢, §)-differentially-private algorithm, one can add
noise proportional to M.

Let a database D = {di,...,d,} in non-decreasing order and fpeq
median(D) where d; € R, with d; = 0 for ¢ < 0 and d; = Ay for i > n.
Nissim et al. [9] proved that the -smooth sensitivity of Median function is

* —k
S5 (D) = e b tzor?i);_"_l(dm-&-t — dptt—k—1)] » (5)
where m is the rank of median element and m = "TH for odd n. It can be

computed in time O(n?).

The intuition behind the sample and aggregate framework [9] is to replace an
aggregate function f by f*, a smoothed and efficient version of it. This framework
evaluates f over random partitions of the original database and releases f* over
the results by calibrating the noise magnitude with smooth sensitivity.

In this work, we deal with an unbounded stream of events as a database.
An event may be an interaction between a particular person and an arbitrary
term [10]. In this way, we focus on event-level privacy where the protection is cen-
tered on a single reported beacon. As the data set is dynamic, the attribute will
change for each interaction making an event unique where its ID (identification)
is the combination of timestamp and user ID.

3 Hybrid Approach

In this section, we describe the proposed approach to calculate the average speed
on a road segment satisfying the definition of differential privacy. This approach
combines the original differential privacy framework (ODP) [3] to the sample and
aggregate framework (SAA) [9]. The adoption of the latter was inspired by the
hypothesis that most speed values are close to the average when measured in a
short time interval and road segment yielding some well-behaved instances. The
hybrid approach is justified by the dynamism of the application, which yields
misbehaved instances leading to very high sensitivity in the SAA framework.
The noise magnitude from the original and smooth sensitivity techniques are
not related. While the differences among the instance and its neighbors are taken
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into account to get the noise magnitude in the smooth sensitivity, the original
technique considers only the global sensitivity without examining the instance
itself. The core of our contribution is to propose a formulation relating these
techniques in order to obtain the lowest noise magnitude, which results in more
accurate analyses.

From now on, we will refer to the collected set of beacons as a prefix, a
finite length chain from an unbounded stream of beacons. In our approach, we
calculate the noisy prefix size by using the exponential mechanism, since we are
not interested in negative values. To calculate the average speed, we use the
Laplace mechanism in both ODP and SAA frameworks.

A trivial procedure to calculate the differentially private average function
using the ODP framework is to add a random variable, sampled from the Laplace
distribution, to the true sum function, then divide it by the set size N to obtain
the average. In this case, the scale parameter is set as %. The following algo-
rithmic construction illustrates this procedure.

Algorithm 1: Trivial-ODP (prefiz, N, Ay, €)

1 # Calculate the scale of Laplace distribution
Ar

b —
# Calculate sum from prefix
sum «— 0
for e € prefixz do
‘ SUmM <— SuUmM + €speed
end
# Sample random variable from Laplace distribution
Y, < Laplace(b)
# Calculate noisy sum
SUMnoisy < Sum + Y
# Calculate the noisy average speed

SUMpoisy
AUGnoisy <

© 0N o Uk WwN

e
U W N = O

return avgnoisy, b

On the other hand, using the SAA framework, we can divide the prefix into
random partitions and evaluate the average function over each partition. After
this process, we must sort the resulting data set where we will select the central
element (median) as the average speed. The main idea is to reduce the impact
of anomalies present in the prefix when calculating the aggregation. It allow us
to introduce less but significant noise to protect the maximum element in well-
behaved instances. This procedure is presented in more details in Algorithm 2.

The Hybrid approach is based in the following lemma and theorem.

Lemma 2. Let a prefict P = {x1,22,...,xn—1,2Zn} be a set of points over R,
such that z; € [0, Ay] for all i. Sampling a random variable from the Laplace
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Algorithm 2: SAA (prefiz, N, M, Ay, €, §)

1 # Partition prefix into M random samples of size N/M

2 count — 0

3 averagespeeds < 0

4 while count < M do

5 # Extract the partition using a uniformly random sample
6 partition — RandomSample(prefix, N/M)

7 # Calculate average speed from partition adding to a list
8

9

Sum(partition)

avg «— N7
averagespeeds <— Append(avg)

10 count «— count + 1

11 end

12 # Sort average speeds set in non-decreasing order
13 sortedgverage — Sort(averagespeeds)

14 # Calculate the scale of Laplace distribution
A
15 b =L

€

16 # Calculate alpha and beta parameters
17 o+ bg; B+

speeds

18 # Calculate smooth sensitivity of median function by Eq. (5)
19 smoothsensitivity,,ogian S;mcdian,B(sortedavemgespeeds7Ma Ayf)
20 # Get random variable from Laplace distribution

SmOOthSensitiuity,nedia" )
«

21 Y,, < Laplace (
22 # Calculate noisy average speed

23 aVGnoisy — Median(sortedaverage,peeqs) + Ym
24

smoothsensitivity,, ogian

25 return avgnoisy, P

distribution with scale parameter set as AfE/N and add it to the true average
function is equivalent to Algorithm 1, both performed over P.

Proof. Consider the cumulative distribution function of the Laplace distribution
with mean (pu = 0) [17]. Suppose S is the sum of P and r5 = X - S represents a
proportion of S. The probability of sampling any value greater than r, is given
by

1 ;
ps(X >rg) = 567*’7 (6)

where b, = 4
Now, suppose A is the average of P and r, = A - A represents a proportion
of A. The probability of sampling any value greater than r, is given by
1 _ra
pa(X > 1) = ¢ ba (7)
In order to conclude the proof, we need to determine b,. So, it is a fact
that S = A - N. Thus, we have rs = A+ A - N, which results in r;, = r, - N.
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By substituting it in Eq. (6) and equaling to Eq. (7), i.e., ps = p,, we obtain
by = 2N 0

Based on Lemma 2, the following algorithmic construction is an alternative
to Algorithm 1.

Algorithm 3: ODP (prefiz, N, Ay, €)

1 # Calculate the scale of Laplace distribution

3 # Calculate sum from prefix

4 sum 0

5 for e € prefir do

6 ‘ SUM «— SUM + €speed

7 end

8 # Calculate true average

9 avg «— ™

10 # Sample random variable from Laplace distribution
11 Y; < Laplace(b)

12 # Calculate the noisy average speed

[y
w

AVGnoisy +— avg + Y

= e
[S. "N

return avgnoisy, b

Theorem 1. Let a prefic P = {x1,22,...,Tn_1,Tn} be a set of points over R,
such that x; € [0, Ay| for alli. Then, Algorithm 2 provides more accurate results

than Algorithm 3, if S} 5(D) < a- As/N

€

, both performed over P.

Proof. Let bsaa and bopp be the scale parameter of the Laplace distribution
in Algorithms 2 and 3, respectively. Then, we obtain

S: (D)

bSAA — fmcd]znﬁ (8)
Ar /N

bopp = i/ (9)

Rearranging Eq. (8) and setting bopp as an upper bound on bgaa, we get
S;Zmediamﬁ(D) < a - bopp, which results in

Ay/N

S;medialnﬁ(D) <a- c (10)

In order to prove this theorem, assume for the sake of contradiction that
Algorithm 3 provides more accurate results than Algorithm 2, both performed
over P. Then, bopp is less than bgaa. By Eq. (10), it is a contradiction.

Therefore, if Eq. (10) holds, then Algorithm 2 provides more accurate results
than Algorithm 3. O



242 R. V. M. Rocha et al.

From Theorem 1 and Lemma 2, the noise magnitude of the Hybrid approach is
formulated as follows:

bsaa, ST (D) <a-2N
bHybrid = S flnCd.lanyﬁ( ) < (11)
bopp, otherwise.

The algorithmic construction of the Hybrid approach is presented in Algo-
rithm 4. This algorithm calculates the average speed in a differentially private
way using all beacons reported in a short time interval in a specific road segment.
It gets as input a privacy budget € related to each received event in the base
station, the prefix size N to calculate the average speed, the number of partitions
for SAA framework, the global sensitivity of the average function (speed limit in
the road segment), the privacy loss parameters for count and average functions,
and the relaxation parameter for average function (non-zero).

The algorithm starts by checking the privacy budget of the privacy loss and
relaxation parameters. After that, it initializes an empty list called beacons used
to store all beacons received through the base station. Next, the base station
starts collecting data (beacons/events) adding each of them to the list. The col-
lection control is made by a differentially private Count function which uses the
exponential mechanism, Algorithm 5. The event collection is performed by the
Receive Beacon function. Each beacon includes the vehicle speed (m/s) between
0 and Ay. It is worth mentioning that, in a realistic scenario, some values can
be above the speed limit Ay but these values are intentionally not protected in
proportion to their magnitude, since in our scenario they are reckless drivers.
After collecting enough data to compose the prefix, the algorithm selects the
most recent beacons to calculate the average speed. The next step is to calculate
the noisy average speed through the two frameworks, ODP and SAA. Then,
we choose the average noisy speed calculated with the lowest noise magnitude.
Finally, the privacy loss and relaxation parameters are deducted from the privacy
budget for each event in the prefix.

3.1 Security Analysis

A Threat Model. Differential privacy was designed considering a very strong
adversary, with an infinite computational power, who has the knowledge of the
entire data set, except a single element. It is considered that the adversary can-
not glean any additional information about this element beyond what it known
before interacting with the privacy mechanism. This assumption is not unreal-
istic since differential privacy is supposed to provide privacy given adversaries
with arbitrary background knowledge. Then, the adversary tries to obtain addi-
tional information about this element using the knowledge of the entire data set
except it and the auxiliary information about it before the data set analysis.
In our scenario, for simplicity, consider that there are two service providers
(carriers A and B) that provide aggregate information to customers (drivers),
such as average speed on a road segment. Also, we consider that all drivers on a
road segment are customers of both carriers except by a single customer e who is
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a customer of only one of them, B, for example. As we are dealing with a strong
adversary, it is supposed that they have knowledge about all others customers
except by e. That is, the speed of all drivers which are customers of carrier A.
Then, from the entire data set (the selected prefix by carrier A) which has length
N, the adversary can obtain the sum of all speeds and calculate the difference
between this sum and the result of the product between the average speed from
B, which includes the driver es speed, multiplied by N + 1. This procedure gives
the correct contribution of e.

Algorithm 4: Hybrid (¢, 6, N, M, Ay, €, €4, da)
if €. + €4 <€ and §, < 6 then

1

2 # Initialize beacon list

3 beacons «—

4 # Receive first event and add it to the beacon list

5 e < ReceiveBeacon()

6 beacons — Append|(e)

7 # Receive the remaining events and add them to the beacon list
8 while Count(beacons,e.) < N do

9 e < ReceiveBeacon()

10 beacons «— Append(e)

11 end

12 # Select the N more recent events

13 prefix «— SelectLatest Beacons(beacons, N)

14 # Calculate the noisy average speed through ODP and SAA
15 avgopp,bopp «— ODP(prefiz, N, Ay, €q)
16 avgsaa,bsaa — SAA(prefiz, N, M, A¢, €q,0a)

17 # Choosing the lowest noise magnitude

18 if bsaa < bopp then

19 ‘ AVGnoisy < QUGSAA

20 end

21 else

22 | avgnoisy < avgopp

23 end

24 # Deduce count and average privacy loss parameter from each event
privacy budget in prefix

25 for e € prefix do

26 €+ €— € —€q

27 0+ 30—0ba

28 end

29

30 return avgnoisy

31 end

32 else

33 ‘ write “Privacy budget exceeded!”

34 end
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Algorithm 5: Count (beacons, €)

1 # Calculate the scale of Exponential distribution
2 A—¢

3 # Calculate count from beacon list
4 count <0

5 for e € prefix do
6 count < count + 1

7 end

8 # Get random variable from exponential distribution
9 Y. «— Exponential(\)

10 # Calculate noisy count

11 countnoisy < count — Ye

12

13 return countnoisy

Privacy Analysis. The security of the Hybrid approach is supported by the
following lemmas and theorem. In Lemma 3, we prove that the randomized
Count function, presented in Algorithm 5, is differentially private. After that,
Lemma 4 shows that Algorithm 3 satisfies differential privacy. Next, we prove
through Lemma 5 by parallel composition that Algorithm 2 is differentially pri-
vate. Finally, in Theorem 2, we prove that the Hybrid approach presented in
Algorithm 4 satisfies differential privacy by sequential composition.

Lemma 3. From the beacon list, let B = {1, 23, ..., Tn_1, T, } be a set of points
over R such that x; € [0, Af] for all i and |B| be the length of the beacon list.
Then, Algorithm 5 satisfies (¢, 0)-differential privacy.

Proof. Assume that, without loss of generality, A represents Algorithm 5. Let
By and By be two neighboring beacon lists differing at most one event, i.e.,
[|B1] — |B2|| = 1. From Eq. (1) in the differential privacy definition, we must
evaluate two cases: when the ratio is greater than 1 and less or equal to 1. Since
the quality of the Count function is monotonic [11], we get:

— When % > 1, we have

e—(€a) _g—(eb)

b

761d
PrAB)) eU] _ €, e “dx = . 1)
PrlA(Bs) € U] ¢ [Pe-elott)gy el —e ()]

€

— When % < 1, we have by symmetry that the ratio is > e™°.

O

Lemma 4. Let P be a prefic from a beacon list B = {x1,...,xn} such that
N = |P| < |B| and z; € [0,Ay] for all i. Then, Algorithm 3 satisfies (¢,0)-
differential privacy.
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Proof. Assume now, without loss of generality, that A represents Algorithm 3.
Let P, and P be two neighboring prefixes differing at most one event, |A(P;) —
A(Py)| = Ay /N. From the definition of differential privacy, we obtain

~ When ZrlAPEY] > 1, we have

Pr[A(Pz)€eU]
e N J*g‘ _esNlz|
PriA(P) eU)  SxJue Prdr fle S de (13)
P A P. U esN\z+Af/N\ - _es sNlz+As/N| .
rlA(P) € ] Q,Af fU dzx ffe Ar dx

We will solve this ratio in two parts. First, considering numerator of Eq. (16),
evaluating the cases when z > 0 and = < 0, we obtain respectively

(14)

b €sa €s
/ e AT N)/Afz\; TN 2r]
a €s

Now, considering denominator of Eq. (16), evaluating the cases when = >
—Af/N and z < —A;/N, we obtain respectively

b csN(z+As/N) —es N F(esaN)/Afy _ F(esbN)/Af
/ .y Agle € ] (15)
o esIN
By replacing Eq. (14) and Eq. (15) in Eq. (16), we obtain

:l:Af[e:F(ESO'N)/Af];e:F(‘SbN)/Af}

efesNAf[eﬂeSaNS)/Af_cyesbN)/Af] < efs, (16)
* es N
— When % < 1, we have by symmetry that the ratio is > e~ .

O

Lemma 5. Let P be a prefiz from a beacon list B = {x1,...,x,} such that
= |P| < |B| and z; € [0, Ay] for all i. Then, Algorithm 2 is e-differentially
private with probability 1 — 6.

Proof. Our construction is based on uniformly distributed samples from the
prefix P. These random samples are extracted without replacement, producing
M partitions of size N/M. The M partitions form a set from which we can
calculate the average speed. In order to do it, we first need to sort this set of
partitions in a non-decreasing order and then calculate the smooth sensitivity
of Median function from Eq. (5). Thus, Algorithm 2 follows the sample and
aggregate framework.

The proof of this lemma follows directly by combination of Definition 3,
Lemma 1 and parallel composition theorem [8]. O

Theorem 2. Let P be a prefiz from a beacon list B = {x1,...,x,} such that
N = |P| < |B| and z; € [0,Ay] for all i. Then, Algorithm 4 satisfies (e,0)-
differential privacy.
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Proof. From Lemma 3, Lemma 4 and Lemma 5 we have that Algorithm 5, 3
and 2 are differentially private. By the sequential composition theorem [8], the
combination of Algorithm 5, 3 or 2 occurs when €. + ¢, < € and d, < 0 in
Algorithm 4. Therefore, Algorithm 4 satisfies (¢, ¢)-differential privacy. O

4 Empirical Evaluation

In this section, we present and discuss the results obtained from the evaluation
of the Hybrid approach for differentially private computation of average speed.
Since the evaluation focuses on the accuracy of the proposed solution, the two
fundamental parameters were fixed and calibrated as suggested in the litera-
ture [11]. In this evaluation, we set the privacy loss parameter as in(2) —0.15 for
average function and 0.15 for count function. Since we have defined the prefix
size in this evaluation as 55, it is sufficient to calibrate the relaxation parameter
with 0.01, which allows negligible leakage information in the size of the prefix,
o(1/N). For the SAA approach, we partition the prefix into 11 random partitions
with 5 elements each.

In order to evaluate the approach, we adopted the open source traffic mobil-
ity (SUMO) [13] and the discrete event-based (OMNeT++) [15] simulators. In
addition, as a interface of the two simulators, we use the open source framework
for running vehicular network simulations (Veins) [14]. The evaluation was per-
formed on a realistic mobility scenario provided by Codeca et al. in [12], using
the SUMO simulator. The realistic mobility scenario is able to meet all basic
requirements in size, realism and duration of a real-world city (Luxembourg)
with a typical topology in mid-size European cities. From now on, we will refer
to the realistic mobility scenario as the Luxembourg scenario. This scenario is
available to industrial and scientific communities working on vehicular traffic
congestion, intelligent transportation systems and mobility patterns.

As a utility metric, we adopt the absolute deviation and create filters on the
reported original average speed. The values to calibrate the filters are in line
with US standardization (in Subsect. 1.1). The scenario of evaluation and the
numerical and graphical results are presented in following sections.

4.1 Luxembourg Scenario

As mentioned before, the realistic mobility scenario is based on the city of Lux-
embourg and contains residential or arterial roads and highways, see Fig. la.
The Luxembourg scenario has an area of 156 km?, 930 km of roads, 4, 500 inter-
sections, 200 traffic lights, and 290, 000 cars. This scenario works on two types
of mobility traces, which have duration of about 88,000s (24h), and peaks of
traffic in about 8AM, 13PM and 6PM, as it can be seen in Fig. 1b.

DUA-T (Dynamic User Assigned Traces) is one of the mobility traces, which
provides the optimal path for each origin-destination pair in terms of time and
length. It is not very realistic because it does not take other vehicles and con-
gestion into account. DUE-T (Dynamic User Equilibrium Traces) is the other
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Fig.1l. Luxembourg scenario and traffic demand. Source: (a) https://www.
vehicularlab.uni.lu/lust-scenario/  (b) https://github.com/lcodeca/LuSTScenario/
tree/master (Color figure online)

mobility trace that provides the approximated equilibrium for the scenario’s
traffic demand [12]. The latter can be combined with static or actuated traffic
light systems. The static case isolates the impact of routing, while the actuated
case would imply two independent optimization problems, the traffic light tim-
ing and the vehicular rerouting [12]. The combination of DUE-T and actuated
traffic lights seems more realistic. However, we opt by combination of DUA-T
and static traffic lights because this setting cause more traffic congestion and it
fits well with our problem.

We evaluate the Hybrid approach in four strategic points of the Luxembourg
scenario (green points in Fig. 1) in a rush period, between about 6AM and 10AM,
as it can be seen in Fig. 1b. The Road Side Units (RSU’s) or base stations were
positioned using the Geodetic (Longitude/Latitude) coordinate system. The first
and third points are located on a highway with low vehicle density. The first
point has an RSU with a range of 250 m monitoring traffic on the road with no
congestion. At the third point, we have a substantial traffic jam caused by a
maintenance on the road, which has an RSU with a range of 150 m. The second
and fourth points are located at the center of the city containing high vehicle
density and traffic lights. RSU’s are monitoring arterial roads with a respective
range of 75 and 42.5m, all congested in different levels. The second point has a
regular traffic flow, with very little jam caused by traffic lights and the last point
has a lot of congestion because it is the main avenue in the city center where
several streets lead to it. The next subsection summarizes our numerical results.

4.2 Experimental Results

The filters were created with deviation tolerances (tol) of 5,10 and 20% over the
reported original average speed (avgoriginai). The reported noisy average speed
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(aVgnoisy) 1s expected to remain within the respective range and any measure-
ment reported outside this range is considered an outlier. Thus, the reported
average noisy speed can be represented as

AVGnoisy = AVYoriginal * (1 + tOl) (17)

where tol is divided by 100.

As numerical result, we calculate the number of outliers obtained in the
simulation time window for each approach: ODP, SAA (all deviation tolerances)
and Hybrid (deviation tolerance of 10%). In addition, we calculate the number
of misbehaved (bad) instances, those that produce SAA scale parameters larger
than the expected SAA scale parameter, and also the number of SAA scale
parameters that are lower than the ODP scale parameter. The expected SAA
scale parameter is calculated based on Pr(—avgoriginal - tol < X < avgoriginal -
tol) = 0.95, where the random variable X is the noise to be added to the original
average speed. Furthermore, in order to enrich our discussion, we present the
following graphic results: the behavior of the real average speed, the quality of
the instances by presenting the scale parameter for each instance and the relative
deviation between the results of the hybrid approach and the original average
speed. Table 1 summarizes the numerical results.

Table 1. Results of the Luxembourg scenario evaluation. The coordinates and speed
limits (m/s) of the points correspond respectively to (49.579464, 6.100917), limit
of 36.11; (49.617679, 6.132573), 13.89; (49.575654, 6.131255), 36.11; and (49.611492,
6.126152), 13.89.

Point|Number of |Bad Lower Outliers (%)
events instances |bgaa (%)
(%)

ODP SAA Hybrid

5% 10% |20% |5% 10% |20% |5% 10% |20%
1st 3,648 65.25 41.31 25.54| 9.46| 4.52|25.94| 9.51| 4.54| 9.33| 1.05| 0.00
2nd |2,046 77.74 25.34 32.08|15.59| 7.37|33.52|15.98| 7.50|13.36| 3.42| 0.68
3rd |4,210 99.34 34.17 77.17/57.98|36.89|80.23/65.96|47.68|45.77|30.19|15.29
4th  |5,068 99.70 62.23 96.01|87.24|84.78|90.53|77.13|75.13|87.89|72.37|70.35

We initiate our discussion by pointing out that the number of outliers is
decreasing when it varies among the deviation tolerances from 5% to 20% in all
points of evaluation. It is an expected behavior since we expand the tolerance
range. Although we are getting an improvement in the number of outliers in
all cases when moving among deviation tolerances, the rate of variation when
switching among the evaluation points are decreasing. For example, this rate
varies from about 8.88 in the 1st point (cell Hybrid 5% divided by cell Hybrid
10% in Table1) until about 1.21 in the 4th point of evaluation (cell Hybrid
5% divided by cell Hybrid 10% in Table1). This shows that the greater the
congestion, the lower the rate of variation among the deviation tolerances.
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Fig. 2. Average and limit speed behavior during the simulation time window.

At the first and second point of evaluation, which are respectively located in
a highway and an arterial road, we can see that ODP and SAA provide virtually
the same result (number of outliers) for all deviation tolerance. For instance, it is
about 9.5% and 16% in the 1st point and 2nd point, respectively, for a deviation
tolerance of 10%. The good result at these points is due to the ideal flow both
on the highway and on the arterial road, so that the ODP has the same behavior
as the SAA. Observe in Fig. 2a and 2b that the behavior of the average speed is
very close to the speed road limit. The results of the 2nd point are worse than
the 1st due to the traffic lights present in the second point yielding a small traffic
jam. Note that in the Fig. 2b there are measurements far below the speed limit.

Still in the 1st and 2nd evaluation points, the results related to the Hybrid
approach show that we obtain a significant reduction in outliers. At the 1st point,
in Table 1, the number of outliers is reduced from about 9.5% (ODP and SAA)
to about 1% (Hybrid) for a deviation tolerance of 10%, a reduction rate of more
than nine times. When we move to the deviation tolerance of 20% the number
of outliers is reset to zero (Hybrid) from about 4.5% (ODP and SAA). Figure 3a
shows the behavior of the relative deviation for all measurements and from it
we can see that all deviation are below 20%. Note, in Fig.4a, that even with
more than 65% of badly behaved instances, we get about 41% of the SAA scale
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parameters (yellow dots) below the ODP scale parameter (solid red line), these
smaller obtained scale parameters is sufficient to obtain a significant reduction in
the outliers. Observe further that in Fig. 4a, the expected SAA scale parameter
(dashed green line) is slightly below the ODP scale parameter (solid red line)
and most of the 41% of the SAA scale parameters (yellow dots) below the ODP
scale parameter (solid red line) are also below the expected SAA scale parameter
(dashed green line).

In Table 1, at the 2nd point, the reduction rate related to the Hybrid approach
compared to ODP and SAA for the deviation tolerance of 10% is a bit lower than
at the 1st point, around 4.5 (15.59 ODP or 15.98 SAA divided by 3.42 Hybrid),
half of the 1st point but still a great result, especially when we consider the
results for the deviation tolerance of 20% which reaches a reduction rate of more
than 11 times. See in Fig.3b that most deviation are below 15% which shows
a good performance of the Hybrid approach. Although 78% of instances are
misbehaved, more than 25% of all instances have SAA scale parameters (yellow
dots) smaller than the ODP scale parameter (solid red line), see Fig. 4b, these
smaller scale parameters are crucial to get this improvement.

The reason the Hybrid approach provides great results is because most out-
liers do not overlap between the ODP and SAA approaches.

Now, considering the 3rd evaluation point located in a highway, we can see
that the results of all approaches suffered a huge negative impact caused by a
substantial traffic jam. The number of outliers reached about 80% (ODP and
SAA) and almost half of it with the Hybrid approach for deviation tolerance of
5%. When moving to deviation tolerance of 20% the result of Hybrid approach is
less than a half of the ODP and SAA results. Figure 2c shows the behavior of the
average speed in this point. Observe that all the measurements are too far from
the speed limit (36.11). There are two declines in the average speed behavior,
one at the beginning of the simulation reaching about 6 m/s and another after
30000s that reaches about 2 m/s. This is due to the high traffic demand at
around 8AM where vehicles will abruptly reduce their speed when they are very
close to road maintenance in order to avoid collisions, contributing to congestion.

Still in the 3rd evaluation point, the SAA result has a considerable worsening
in relation to the ODP result, about 8% points in the deviation tolerance of 10%
reaching until about 11% in the deviation tolerance of 20%. This is explained by
the traffic jam yielding misbehaved instances which directly impacts the good
performance of the SAA approach. From Table 1 we obtain about 99% of badly
behaved instances, this lead to very little measurements below the expected scale
parameter (dashed green line), see Fig. 4c. Even so, we get about 34% of the SAA
scale parameters (yellow dots) below the ODP scale parameter (solid red line),
sufficient to obtain a reduction rate of about 2 times in the number of outliers
for the deviation tolerance of 5% and 10% with Hybrid approach compared to
ODP and SAA, and reaching more than 3 times for the deviation tolerance of
20%.

Finally, in the 4th evaluation point, the growth in the number of outliers is
even more evident when compared to the 3rd evaluation point, reaching about
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Fig. 3. Relative deviation between the hybrid approach and the original average speed
for each instance during the simulation time window.

2.3 times more in the ODP approach and about 4.6 times in Hybrid approach
for the deviation tolerance of 20%. This worsening occurs because most of SAA
scale parameters when applied over an average speed very close to zero leads to
an outlier. See, in Fig.2d, that most measurements are close to zero. We can
also see in Fig. 3d that the relative deviation is very high in most measurements
in the simulation time window.

The SAA result improves considerably compared to the ODP result at the 4th
valuation point, about 10% below in the deviation tolerance of 10%. Although
almost all (99.7%) instances are misbehaved, close to 63% of the SAA scale
parameters (yellow dots) are below the ODP scale parameter (solid red line) as
it can be seen in Fig. 4d, which explains this improvement. However, it was not
sufficient to help the Hybrid approach provide good results (significant reduction
in outliers), this is due to the huge number of average speed very close to zero.
We can conclude that all approaches are very sensitive to an average speed close
to zero.
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5 Conclusion

We proposed in this paper a hybrid privacy-preserving data aggregation solution
for traffic monitoring focusing on event-level privacy. This solution was designed
to calculate the average speed on a road segment combining the original differ-
ential privacy to the sample and aggregation frameworks.

Experimental results have shown that the Hybrid approach is superior to the
singular use of ODP and SAA approaches in situations that present none or at
most some congestion, following the hypothesis that vehicles will travel in the
same speed in a short period of time and space. The results of the first and second
points of evaluation confirm this statement. However, at points where there is a
lot of traffic jam, the performance of the Hybrid approach is negatively affected
by the misbehaved produced instances. This shows how dependent the Hybrid
approach is on the SAA approach.

As future work, we intend to propose a concurrent solution to this proposal by
looking for improvements on the smooth sensitivity framework or alternatives to
this one, or by using other techniques to get the median of a set with little noise,
such as combining the sample and aggregate framework with exponential mech-
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anism. Furthermore, we plan to evaluate the performance and security results of
proposed approaches against a solution in a local model of computation.

A Proof Lemma 1

The Laplace distribution on R with scale parameter b , is ( a, )-admissible
with a=b5 and 3 = W.

Proof. From Definition 3, we can obtain parameters a and (3. Since the Laplace
distribution is not a heavy tail distribution, then § > 0.

— Considering Eq. 3, we have

e When % > 1, we have

Iz

Pry (X eU)—-4$ e e b dr—3

Prxn(X eU+4) Join %e*%dx (18)
_ ifd _mdx— fcde—‘%‘dx—%
= \z+A|

\w+A\
b

zbf dm f e

Considering numerator of Eq. (18), we have to evaluate interval [c,d] in
two cases,
x when x > 0:

d
/ e Tdr = b(e” /b — /Y, (19)
c

x and when x < 0:
d x
/ ebdr = —b(e/? — /"), (20)

Now, considering denominator of Eq. (18), we have
* when z > —A:

d
/ ei:r-f;A 7A/bb(e—c/b _ e*d/b)7 (21)
% and when v < —A:
d
/ e dr = —eA/bp(ec/b — /YY), (22)
c

By substituting Eq. (19) and Eq. (21) in Eq. (18) we obtain
b(e—c/b _ e_d/b) _9d
e—A/bp(e—c/b — ¢—d/b)
_apbe = =5 (23)
ble—</b — e-d/b) =
b(e_c/b _ e_d/b)

b(efc/b _ efd/b) _ %'

<:>6A/b é 66/2
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When § tends to zero in Eq. (23), the ratio tends to 1. Thus, assuming a
negligible ¢, we get
b(efc/b _ efd/b)
ble—c/b — e—d/b) — & (24)
~ b(e/2).

A<b(e/2) +In

Similarly, by replacing Eq. (20) and Eq. (22) in Eq. (18) we get the same
result, A < b(e/2).

Prxn(XeU)-2
o When Zrx~n(XeU)—;

m < 1, we have by Symmetry that

)
PTXNh(XEU)—§ >676/2
PTXNh(X S U+A) -

25
~ efA/b > 675/2 ( )

~ A< be/2).

Therefore, it is sufficient to admit oo = b(e/2), so that the translation property
is satisfied with probability 1 — g.
— Considering Eq. (4), we have

o When Drxen(XeU)—3

Prxor (XeT-%) > 1, we have

Prx.n(X eU)— g B fU %e_%d:r — g
Prxn(X €U-e) Joor %e‘%dw

(26)

Numerator of Eq. (26) is given by Eq. (19) and (20). On the other hand,
denominator of Eq. (26) is given by evaluating interval [¢, d] in two cases,
* when x > 0:

d
/ e dy = e”‘b[e*(ekc)/b - e’(ekd)/b], (27)
* and when z < 0O:
d A A
/ e T dr = —e#‘b[e(e /b _ gle d)/b]. (28)
By replacing Eq. (19) and Eq. (27) in Eq. (26) we obtain

€/2

b(efc/b o efd/b) 9
2 < e
ef)\b[ef(e*c)/b _ ef(e)‘d)/b] -
—(*e)/b _ o—=(e*d)/b
6)\ < 66/2 b[e € ]
b(efc/b _ efd/b) _ %

(29)
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From an analysis of Eq. (29), we can conclude that, regardless of values
of b, c and d, where d > ¢, the ratio tends to zero when we get high values
of A. This is because the value of § is negligible. When we get A tending
to zero, the ratio tends to 1. Thus, an acceptable upper bound for A, so
that Eq. (29) is satisfied with high probability, is €/(2{n(1/4)). This value
tends to zero when we get a very small value for 6.

Similarly, by replacing Eq. (20) and Eq. (28) in Eq. (26) we obtain the
same result, A < e/(2In(1/4)).

° When PTXNh,(XGU)*%

m < 1, we have by Symmetry that

ki
§ > e 2 (30)

which results in —A\ > —e/(2In(1/4)).
Therefore, to satisfy the dilation property with probability 1 — g, it is enough
to assume = €/(2In(1/9)).
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