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Abstract This chapter describes the various approaches to analyse, quantify and
evaluate uncertainty along the phases of the product life cycle. It is based on the pre-
vious chapters that introduce a consistent classification of uncertainty and a holistic
approach to master the uncertainty of technical systems in mechanical engineering.
Here, the following topics are presented: the identification of uncertainty by mod-
elling technical processes, the detection and handling of data-induced conflicts, the
analysis, quantification and evaluation of model uncertainty as well as the represen-
tation and visualisation of uncertainty. The different approaches are discussed and
demonstrated on exemplary technical systems.

The book at hand is devoted to portraying our holistic approach to master the uncer-
tainty of technical systems in mechanical engineering over all the phases of the prod-
uct life cycle. The conceptual basis of our specific approach, as motivated in Chap.1
and elaborated in Chap.3, as well as the consistent classification and definition of
uncertainty in Chap.2, form the foundation of this approach, see Fig. 1.12.

This chapter deals with the analysis, quantification and evaluation of data and
model uncertainty inmechanical engineering as an essential first step tomaster uncer-
tainty. This will then be extended and completed by the methods and technologies to
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master uncertainty presented in Chap. 5 and the strategies tomaster uncertainty intro-
duced in Chap.6. We provide both a mathematical and an engineering perspective
to the analysis, quantification and evaluation of data and model uncertainty. Exam-
ples of this interdisciplinary approach are among others presented in Sects. 4.3.1 and
4.3.2. Furthermore, the methods are illustrated and their application is demonstrated
using the technical systems presented in Sect. 3.6. The examples given appear in all
phases of the product life cycle: design, production and usage, see Sect. 3.1 and, thus,
offer a broad overview of the activities presented within this book.

We start with the identification of uncertainty by modelling technical processes
in Sect. 4.1 with the aim to gain information on data uncertainty as introduced in
Sect. 2.1; we consider uncertainty in single processes and its propagation in process
chains. An important aspect in this domain is the detection and handling of data-
induced conflicts and thus data uncertainty, which will be covered in Sect. 4.2; here
the main goals are the prevention of critical failures, finding correlations among the
data, and isolating faults.Computermodels basedonphysical or empirical knowledge
of a technical system are useful tools in the design phase. Since reality is commonly
complex and cannot completely or exactly be represented by mathematical models,
one faces the problem that all models are imperfect, i.e. model uncertainty occurs, see
Sects. 1.3 and 2.2. In Sect. 4.3, the analysis, quantification and evaluation of model
uncertainty are being studied; here different methods to identify sources of model
uncertainty and quantify model uncertainty are discussed with the aim to analyse the
accuracy of a model belonging to a technical system. Finally, in the case uncertainty
is detected, it is often unclear how to represent and visualise the information in an
informative way. In Sect. 4.4, a three-layer architecture is presented to solve this
issue.

4.1 Identification of Uncertainty During Modelling
of Technical Processes

Maximilian Schaeffner

Uncertainty occurs if properties in the life cycle process product design, production
and usage, as introduced in Sects. 1.2 and 3.1, cannot be determined completely or
at all. However, these are no measurable characteristics of an individual product.
Uncertainty becomes obvious in, e.g. deviations between the actual and the planned
product geometry as a consequence of incompletely determined production processes
or undesired behaviour during usage processes. This section covers the identifica-
tion of data uncertainty during modelling of technical processes as a step towards
mastering uncertainty.

Besides model uncertainty, which has been introduced in Sect. 2.2 and is covered
in this chapter in Sect. 4.3, possible uncertainty in the modelling of technical systems
has to be considered during the product design as data uncertainty, see Sect. 2.1, of
the model parameters used for design and dimensioning.
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In Sect. 4.1.1 we show how random deviations of the component properties can
be taken into account probabilistically during system design for the example of
passive and active vibration isolation. In Sect. 4.1.2, we present the improvement of
mathematicalmodel predictions for the simulation of systems bymeans of aBayesian
inference based parameter calibration.

Uncertainty propagates in process chains and can ultimately lead to undesirable
behaviour in production or usage processes, see Sect. 3.2. Section4.1.3 proceedswith
the model-based description and analysis of uncertainty in consecutive machining
processes, such as drilling and reaming or drilling and tapping.

4.1.1 Analysis of Data Uncertainty Using the Example
of Passive and Active Vibration Isolation

Roland Platz and Jonathan Lenz

The quantification and evaluation of uncertainty in load-bearing structures is of grow-
ing importance for decision-making in the early product design phase as introduced in
Sect. 1.2. Thismay especially becomenecessary due to the increasing complexity and
scope of structures with multi-functional properties like mechatronic, semi-active or
active systems. For example, active vibration control in mobile applications, such as
an active suspension strut of a car, needs additional energy sources, sensors, actuators
and a controller, see Sect. 3.4. This makes the active systemmore complex compared
to a passive system with tailored, but only fixed inertia, damping and stiffness prop-
erties [155]. In this section investigations to numerically compare the influence of
aleatoric data uncertainty in the model parameters are summarised; according to
Sect. 2.1, this is on predicting the dynamic behaviour from a passive and an active
technology for vibration isolation of a one mass oscillator [128–130]. The variation
and uncertainty of model parameters of the passive system may lead to inadequate
tuning. In addition and due to growing complexity of the active system, new uncer-
tainty in the dynamic behaviour may arise compared to the passive system. Most
importantly, the energetic effort and possible reduced availability of the active sys-
tem may influence the acceptance of the active technology, see Sect. 1.6. Figure4.1a
shows the simple mechanical model of a one mass oscillator with only four model
parameters mass m, damping coefficient b and stiffness k for passive vibration iso-
lation, as well as an additional gain factor g for active vibration isolation [130].

The mass m oscillates in z-direction when excited by the harmonic base point
stroke w(t) = ŵ cos(� t + δ) with the excitation frequency �, excitation ampli-
tude ŵ, time t , and phase shift δ. For simplification, δ = 0 throughout the analysis.
We assume linear characteristics of the internal damping force Fb, stiffness force Fk,
and actuator force Fa in Fig. 4.1b. With 2Dω0 = b/m and ω2

0 = k/m referring to the
damping ratio D and the angular eigenfrequency ω0 as well as with the frequency
relation η = �/ω0 and the factor ζ = �/(m ω2

0), the complex amplification function
(CAF) of mass displacement in z-direction in the frequency domain is
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Fig. 4.1 One mass oscillator
with base excitation a simple
mechanical model and b
internal forces [130]

V (η) = ẑ p
ŵ

= 1 + i 2 D η

(1 − η2) + i (2 D η + g ζ )
(4.1)

with the amplitudes ẑ p and ŵ from the complex particulate integral approach z p(t) =
ẑ p ei� t and w(t) = ŵ ei� t as derived in [128]. The amplitude of (4.1) is

|V (η)| =
√

1 + (2 D η)2

(1 − η2)2 + (2 D η + g ζ )2
(4.2)

and its phase is

ψ(η) = arctan
−2 D η3 − g ζ

1 − η2 + (2 D η)2 + 2 D η g ζ
. (4.3)

Deterministic case studies for different damping

Figure4.2 shows the amplitude (4.2) and phase (4.3) of the CAF (4.1) for different
damping cases (a)–(f) depending on different damping coefficients b1 < b2 < b3 and
feedback gains g1 < g2 < g3.

For the passive system in Fig. 4.2, cases (a)–(c), the mass m and stiffness k
are assumed constant while three different damping coefficients b1−3 are chosen,
with gain g = 0. The higher the damping, the lower the maximum amplitude Vmax

at resonance frequency ω0. However, the amplitudes beyond the isolation fre-
quency � > ωiso remain higher with increased damping, which is well known. In
case of active vibration isolation, cases (d)–(f), different gains g1−3 are chosen with
assumed low passive damping b1. A higher gain leads to a lower maximum ampli-
tude Vmax at resonance frequency ω0 and keeps a low amplitude beyond the isolation
frequency � < ωiso, which is the benefit of the active approach.
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Fig. 4.2 Amplitude |V (�)| and phase ψ(�) responses of the complex amplification function
(CAF) (4.1) according to (4.2) and (4.3) for damping cases a–c with varying damping coeffi-
cients b1 ( ), b2 ( ) and b3 ( ) and without gain g = 0 for passive, and damping cases
d–f with low damping coefficient b1 and varying gains g1 ( ), g2 ( ) and g3 ( ) for active
vibration isolation [128]

Probabilistic case studies for different CAF-points-of-interest

The influenceof aleatoric data uncertainty on thenumerical simulationof thedynamic
behaviour of the passive and active one mass oscillator subject to vibration isola-
tion is investigated with a Monte Carlo Simulation (MCS), see Sect. 3.3. For that,
additional CAF-point-of-interest case studies (i)–(vi) for the damping cases (a)–(f)
are discussed: (i) varying maximum amplitude Vmax, (ii) varying vibration ampli-
tudes |V 0| at the undamped resonance frequency ω0, (iii) varying isolation fre-
quency ωiso = √

2ω0, (iv) varying amplitudes |V 100| at the excitation frequency
beyond the passive system’s fixed isolation frequency,� = 100 1/s > ωiso, (v) vary-
ing excitation frequencyω15 for−15dB isolation attenuation, and (vi) varying decay-
ing time t0.01 until steady state vibration is reached or, respectively, initial transient
vibrations are damped, so only 1% is left, see also [128]. The model parametersm, k,
b1−3, and g1−3 in Table4.1 vary around an assumed nominal mean value, maximum
and minimum values of the variations in % are considered as the ±3σ interval per
model parameter according to experience and literature [120, 128, 142]. The MCS
uses 10, 000 samples that meet the convergence criteria [101, 128].
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Table 4.1 Varying input parameter assumptions for MCS

Property Variable Nominal value Unit Variation (%)

Mass m 1 kg ±3

Stiffness k 1000 N/m ±10

Damping b1 0.095 Ns/m

Coefficient b2 9.487 Ns/m ±30

b3 18.974 Ns/m

Gain g1 16 Ns/m

g2 25 Ns/m ±15

g3 35 Ns/m

Fig. 4.3 Histograms of the relative frequency Mnb(x)/N for constant bin-width delta and varying
amounts nb = 1, . . . Nb of bins per output a x = V100, case study (iv), and b x = ω15, case study
(v), for damping cases c and d for n = 1, . . . , 10, 000 samples [128]

As an example, Fig. 4.3 shows histograms of the relative frequency Mnb(x)/N
for varying number of bins Nb, with nb = 1, . . . , Nb bins and with n = 1, . . . ,
N = 10,000 samples, and constant bin-width 	 per varying output x = V100 and
x = ω15 according to the CAF-point-of-interest case studies (iv) and (v) for damp-
ing cases (c) and (d) [128].

In summary, Fig. 4.3a shows that for case (iv), the relative frequencyMnb(V100)/N
of the amplitude V100 becomes relatively less narrow around the empirical mean
V 100,(c) = −12.66 dB with a relatively small standard deviation sV 100,(c) = 0.45 dB
due to high damping b3 for the passive approach, damping case (c). However, for
the active approach, damping case (d), the standard deviation sV 100,(d) = 0.33 dB
and empirical mean V 100,(d) = −19.23 dB are smaller although the lowest gain g1
is used. For case (v) in Fig. 4.3b, the relative frequency Mnb(ω15)/N of the angu-
lar frequency ω15 at −15 dB vibration attenuation becomes relatively less narrow
around the empirical mean ω15,(c) = 122.82 1/s with relatively small standard devi-
ation sω15,(c) = 5.45 1/s at higher passive damping b3, damping case (c). Again, for
damping case (d), the empirical mean ω15,(c) = 80.48 1/s and the standard deviation
sω15,(d) = 1.41 1/s are smaller than for the passive approach of damping case (c).
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Conclusion

The observations described in this contribution show that if aleatoric data uncertainty
occurs, high active damping results in less scatter at angular frequencies beyond the
isolation point compared to the passive approach, see also [128]. Furthermore, the
scatter of the amplitude attenuation beyond the angular isolation frequency is smaller
with the active approach. Investigations are under way to validate the numerical com-
parison of uncertainty in passive and active vibration isolation with an experimental
example.

4.1.2 Bayesian Inference Based Parameter Calibration
for a Mathematical Model of a Load-Bearing Structure

Christopher M. Gehb, Tobias Melz, and Roland Platz

Load-bearing structures with kinematic functions such as the suspension of a vehicle
and an aircraft landing gear enable and disable degrees of freedom and are part of
many mechanical engineering applications. For an adequate numerical prediction
of their load path, being e.g. necessary to develop a controller during the design
phase, see Sect. 3.1, we need an adequate mathematical model with calibrated model
parameters. Therefore, in this section, the adequacy of an exemplary load-bearing
structure’s mathematical model is evaluated with its predictability being increased
by model parameter uncertainty quantification and reduction, compare Sect. 2.1.
Conventionally, optimisation algorithms are used to calibrate the model parameters
deterministically, as e.g. investigated in [51, 104, 161]. In contrast and as presented
here, the model parameter calibration is formulated to achieve a statistically consis-
tent model prediction with the data gained from experiments [87, 118, 144]. The
most influential parameters being of interest for the model prediction, i.e. the load
path through the load-bearing structure represented by the support reaction forces,
are identified for calibration by a sensitivity analysis. Subsequently, themathematical
model is adjusted to the actual operating conditions of the experimental load-bearing
structure via the model parameters by applying a Bayesian inference based calibra-
tion procedure. Uncertainty represented by originally large model parameter ranges
is reduced and quantified to increase the model prediction accuracy.

Load-bearing structure

The investigated load-bearing structure in Fig. 4.4 is derived from the more complex
load-bearing system MAFDS intended to provide the possibility of intentionally
introducing uncertainty in an exemplary technical system, see Sect. 3.6.1.

The load-bearing structure consists of a translational moving massmA connected
to a rigid beam with mass mB and mass moment of inertia 
B via a spring-damper
with stiffness kS, a damping coefficient bS, as well as two semi-active guidance
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Fig. 4.4 Exemplary load-bearing structure with semi-active guidance elements for load redistribu-
tion, see Sect. 5.4.8, according to [52]

elements. The two semi-active guidance elements provide an approach to redistribute
loads, e.g. in case of weakened or damaged structural components, see Sect. 5.4.8.
Two supports at the ends of the beam are equipped with an adjustable stiffness
to simulate weakened or damaged structural components. A weakened or damaged
structural component is representedbya reduced support stiffness depicting a reduced
load-bearing capacity [53–55].

Mechanical and mathematical model

Having in mind to achieve load redistribution, according to [52] the mathematical
model of the load-bearing structure in Fig. 4.4 comprises parts to describe the gen-
eral system dynamic, the friction and the electromagnetic actuator. The model part
describing the general dynamic is chosen for model parameter calibration in this
section. The friction model calibration is described in detail in [52, 56].

Figure4.5 depicts the mechanical model and the free body diagram of the load-
bearing structure. The mechanical model consists of a movable mass mA, a rigid
beam with mass mB, length lB and mass moment of inertia 
B in the x-z-plane,
see Fig. 4.4. The associated independent degrees of freedom (DOF) are the vertical
displacements zA, zB and rotation ϕ [55]. The linear equation of motion system of
the load-bearing structure becomes

Mr̈ + Dṙ + K r = F (4.4)

with the [3 × 3] mass M, damping D and stiffness K matrices, and the [3 ×
1] acceleration r̈ = [z̈A, z̈B, ϕ̈]T, velocity ṙ = [żA, żB, ϕ̇]T and displacement r =
[zA, zB, ϕ]T vectors. The [3 × 1] force vector F contains the excitation force Fex,
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Fig. 4.5 Load-bearing structure, amechanical model and b free body diagram with vertical forces,
horizontal forces are neglected [52]

the friction induced force Fμ and the forces Fge,L and Fge,R for load redistribution
provided by the semi-active guidance elements, see Sect. 5.4.8. A more detailed
derivation of (4.4) is presented in [52, 55].

The mathematical model of the load-bearing structure is derived to capture the
load path through the structure and to predict and evaluate the load redistribution
capability in case of the semi-active structure in [52, 55, 56]. The derived math-
ematical model underlies model simplifications such as the assumption of lumped
masses and rigid bodies. Furthermore, the spring-damper and the guidance elements
are assumed to be free of mass, the model is assumed to be planar and undesired
friction is summarised in a single dissipative force Fμ [52, 57]. Although these
model simplifications can be attributed to model uncertainty, they may contribute to
data uncertainty, as introduced in Sects. 2.1 and 2.2, and can be—at least partly—
considered via parameter calibration in the following.

Sensitivity analysis

The sensitivity of the mathematical model predictions on parameter variations is
assessed by calculating the statistical significance of parameter variations on the
model prediction variation. Thus, the influence of the model parameters with respect
to a model prediction of interest is identified. We assess the statistical significance
by an analysis of variance (ANOVA) using the coefficient of determination R2 [9,
136]. The coefficient of determination of model parameters θ

R2
θ =

(

1 − SSEθ

SST

)

· 100% (4.5)
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calculates the proportion of the model output variability that can be ascribed to each
calibration candidate parameter variation. The sum of squares total (SST) is the
total model variability and the sum of squares error (SSE) is the unexplained model
variability of the model parameters θ . More details regarding SST and SSE can be
found in [9, 36, 52, 136]. The threemodel parameters θ = [mA, bS, Fμ] turned out to
be the most influential ones in the scope of the presented example and, therefore, are
selected to be calibrated. Model parameters which are not selected for calibration are
assumed to be deterministic. Their values are chosen, e.g. based on measurements or
manufacturer information. The detailed sensitivity analysis is presented in [52, 57].

Bayesian inference for model parameter calibration

Bayesian inference is used as a statistical calibration approach to calibrate the uncer-
tainmodel parameters identified asmost influential on themodel prediction of interest
in the previous paragraph. The aim is to statistically correlate the model predictions
with the measurements by solving an inverse problem [118]. The relation between
measurements and simulations according to [75, 87, 144] is given by

Y E
n (t) = YM

n (t, θ) + εn(t), n = 1, . . . , N (4.6)

where Y E
n (t) represents the experimental results and N is the number of measure-

ments. The model prediction of interest YM
n (t, θ) is supplemented by the measure-

ment error εn(t) ∼ N(0, σ 2), that is assumed to be independent and identically
distributed as well as normally distributed with zero mean and standard deviation
σ [144]. Through the Bayesian inference approach, we can update current knowl-
edge of the system and its model parameters with new information obtained from
experimental tests. Thus, the parameter uncertainty is quantified and reduced by
systematic inference of the posterior distribution [87, 144]. Using the Bayes’ The-
orem [13, 144], the posterior parameter distribution given the experimental results
can be stated as

P(θ ,YM|Y E) = L(Y E|θ,YM) × P(θ)

P(Y E)
∝ L(Y E|θ ,YM) × P(θ) (4.7)

with the likelihood function L(Y E|θ ,YM) representing the probability of experimen-
tal results Y E given a set of parameters θ for the model prediction of interest YM [52,
144]. The total probability P(Y E) is typically not computable with reasonable effort
and is only normalising the result anyway [65]. It is more practical to sample from
a proportional relationship of the posterior parameter distribution.

The parameter space is explored using the Marcov Chain Monte Carlo (MCMC)
sampling to approximate the posterior parameter distributions P(θ ,YM|Y E) by draw-
ing multiple samples from these posterior parameter distributions. That is, the his-
tograms of the model parameters θ of all random samples produce the approxi-
mated posterior parameter distributions P(θ ,YM|Y E) in (4.7) [117, 144]. Figure4.6
depicts the model parameter calibration results obtained from 25,000 MCMC
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Fig. 4.6 Posterior distribution with 95% inter-percentile intervals ( ) for the viscous damp-
ing bS, the massmA and the friction induced force Fµ according to [52]; x-axis limits represent the
prior parameter ranges

runs. The parameter distributions are depicted as histograms representing approx-
imations of the posterior parameter distributions for the three model parameters
θ = [mA, bS, Fμ] [57]. Furthermore, the narrow histograms graphically depict the
knowledge gain and the uncertainty reduction in the model parameter ranges. The
model parameter ranges covering the 95% inter-percentile can be reduced by approx-
imately 89% for the mass mA, by approximately 82% for the viscous damping bS
and by approximately 84% for the dissipative force Fμ compared to the prior bounds
represented by the limits of the x-axis in Fig. 4.6.

Comparison of the non-calibrated and calibrated model predictions

The effect of the statistical calibration procedure on the model prediction accuracy is
exemplarily shown in Fig. 4.7 for a step load excitation Fex = 25N. The envelopes of
each of the 300 Monte Carlo (MC) simulation runs for non-calibrated and calibrated
model parameter ranges are conducted and compared to the related support reaction
forcemeasurements FL and FR averaged for 10measurement repetitions. The support
reaction forcemeasurements FL and FR are quite similar as the load-bearing structure
is undamaged. The non-calibrated model parameter ranges are equally distributed
between the lower and upper prior bounds. The calibrated model parameter ranges
are distributed according to the histograms in Fig. 4.6.

The simulations using calibrated model parameters tend to be closer to the
measurement with smaller envelopes. Even though calibrated and non-calibrated
envelopes widely encompass the measurements, the envelope area of the calibrated
MC simulations is reduced significantly by 75% compared to the envelope area of
the non-calibrated MC simulations [57], qualifying the Baysian inference as suitable
calibration method for the presented example.
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Fig. 4.7 Measured support
reaction forces FL (—) and
FR (—) versus time t and
non-calibrated ( ) and
calibrated ( ) model
predictions for a step load
excitation Fex = 25N [52],
cf. Fig. 5.65 in Sect. 5.4.8 for
semi-active load
redistribution results

4.1.3 Model-Based Analysis of Uncertainty in Chained
Machining Processes

Felix Geßner, Christian Bölling, Eberhard Abele, and Matthias Weigold

In the production of components for technical systems, as described in Sect. 3.6,
several processing steps are used. To generate the final product geometry, the pro-
cesses are linked to a process chain, see Sect. 3.2. A widely used process chain in
machining is roughing and finishing. A process with a high material removal rate
is linked to one or more processes capable of generating the required machining
quality. The production of high-quality bore holes is often realised by the process
chain drilling—reaming, as shown Fig. 4.8. The reaming process slightly enlarges
the diameter of a bore hole in order to improve the surface quality and the circularity.
Another frequently applied process chain is drilling – tapping. The desired thread
geometry is created by removing material from the pre-drilled bore wall.

Fig. 4.8 Process chains drilling—reaming and drilling—tapping
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Fig. 4.9 Geometrical uncertainty in drilling-reaming and drilling-tapping process chains caused
by a the pilot process, b the process chain or c the final process

Machining processes are generally affected by data uncertainty in form of incer-
titude, see Sect. 2.1.3. For this reason, functional parts of a component are always
provided with interval-based tolerances, which ensure functionality in the overall
system. Forms of geometrical uncertainty, which occur in drilling process chains,
are shown in Fig. 4.9. The occurring uncertainty can be categorised according to
their origin. One source of uncertainty are geometric deviations of the pilot hole,
e.g. variations in diameter, straightness or cylindrical shape. Those deviations can be
caused e.g. by hardness deviations in the workpiece material. Another source is the
process chain in which positioning variation between the pilot hole and the following
process step occur. Since uncertainty is accumulated, deviations can also neutralise
each other. The uncertainty must therefore be evaluated in the overall context. Axes
misalignment of up to 0.03mm occur due to limited accuracy of the machine tool
and re-clamping operations. In industrial applications, e.g. reaming of valve guides
in a cylinder head of a combustion engine, misalignments of up to 0.1mm occur,
which are caused by the joining process of the blanks [72]. A radial deviation of the
pre-drilled bores is induced due to oblique and uneven surfaces, incorrectly placed
centring, cavities, transverse bores, blowholes and inclusions. The resulting radial
forces lead to elastic bending of the pilot drill and thus to a slope bore [125].

Additionally, uncertainty is caused by the final processes without being influenced
by pre-processing.A runout describes the radial displacement of the tool in the chuck.
In industrial applications, a radial runout during reaming can be limited to 0.003mm
by adjustable adapters [72]. Earlier investigations on tapping indicate a radial runout
of 0.03mm [37]. During tapping, a synchronisation deviation between the translatory
and the rotational axes often occurs. This is generated by a deviation between the
axis movements when reversing the direction of rotation.

Different approaches are used to model machining processes in order to predict
process variables or raise process understanding. Zabel [166] differentiates models
with regard to whether they are based on the finite element method (FEM) or not. In
the simulation of machining processes, which are characterised bymaterial deforma-
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Fig. 4.10 Basic structure of the process model

tion as well as occurring dissolution of the material bond, considerable computing
time is required using FEM-based models.

Non-FEM-based modelling requires more detailed knowledge of the particular
process but is less demanding with regard to computational effort. This allows for the
simulation of the effects of uncertainty in less time. Basically, these approaches are
divided into analytical and geometrical models. Analytical models use closed math-
ematical expressions to describe the considered phenomena [166]. Thus, models of
chip formation, shear planes, temperature and process forces can be established. The
geometric approaches determine the geometric quantities of machining processes,
which are often used as input for analytical models. Mechanistic modelling repre-
sents a combination of geometric and analytical models. It is fundamentally based
on the assumption that process forces, occurring during the machining process, are
proportional to the chip cross-section [85].

Examples of mechanistic models within the context of reaming operations and
the disturbance variables occurring can be found in [21, 72]. For tapping, the first
mechanistic model aiming towards the analysis of the process and the influence of
uncertainty are developed by Dogra [37].

The basic structure of the mechanistic process model based on [85] is shown in
Fig. 4.10. The main input of the model is the original workpiece contour. We use
a chip cross-section model, as shown in [1], to determine the chip sizes, resulting
from the tool geometry and position. The model is based on the intersection of
2D elements. The process forces are determined based on these chip sizes in an
empirical force model. Summation of the forces caused by each of the tool’s cutting
edges enables calculating the resulting force that leads to a radial deflection of the
tool. In the model, the deflection of the tool is e.g. calculated by a combination of
dynamic and static modelling approaches [21]. When selecting suitable approaches,
we consider the rotational speed of the tool and the prevailing geometric constraints.
Due to the low rotational speeds in tapping, dynamic considerations can be largely
neglected. However, the complex geometric boundary conditions must be mapped.
Based on the tool’s radial deflection and its path, the tool position is determined.
This information is used to specify the geometric intersection in the next calculation
step.
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Fig. 4.11 Mapping a positioning errors and b runout errors in the tapping model

In linked machining processes, individual process steps are linked via the gener-
ated geometry of the feature created in the previous step, e.g. the pilot hole geometry.
This serves as the starting point for the subsequent machining process. For simul-
taneous processes, however, successful model linkage requires further connection
points, as each step’s stability may affect the others. For the combined machining of
e.g. valve guide and valve seat, the process forces of each tool step are taken into
account in an overall system. Here a Jeffcott rotor with several masses is loaded with
the resulting forces of each individual tool step, so that the mutual influences can be
mapped [21].

In the discussed mechanistic model approaches, we represent the geometry of the
pilot hole by individual plane elements arranged in a star shape around the rotational
axis of the model, see Fig. 4.11. Therefore, each point on each of the planes has
the same angle ϕ when viewed in cylindrical coordinates. In order to implement
for example geometric deviations, such as slope pre-drill bore and axial offset, we
modify the individual plane elements. For this purpose, we vary the radius of the
pilot hole as a function of the angle ϕ and the cutting depth z, as shown in Fig. 4.11a.
A similar procedure can be used for the tool, since it is also mapped using plane
elements. By shifting the radius of these elements depending on the angle, we can
also map runout errors, see Fig. 4.11b.

For mapping deviations in the synchronisation, or more general deviations in the
tool path, we alter the displacement of the tool after each calculation step. In addition,
we can model tooth chipping by altering the geometry or by completely removing
a plane element of the tooth. Further disturbance variables can be implemented
externally to the geometric intersection model. For example, hardness gradients in
the component can be considered by manipulating the used force model.

Our model approaches for tapping and reaming show that the axial offset between
the pilot hole and the subsequent process step is the disturbance variable of greatest
influence [72]. Due to the lack of radial guidance during tool immersion, radial forces
can lead to tool misalignment and subsequently to tool inclination. As a result of the
radial guidance of the tool after the immersion, its inclination over the drilling depth
remains almost constant [2].



128 M. Schaeffner et al.

Uncertainty is caused by several reasons and is an unavoidable part of anymachin-
ing process. Modelling approaches can describe and evaluate occurring uncertainty
in chained machining processes. One approach is the mechanistic model approach,
which is suitable to analyse the uncertainty in process chains like drilling—reaming
and drilling—tapping.With the help of these models, we can raise the process under-
standing and investigate an accumulation of uncertainty. Thus, wemay derive recom-
mendations for the design of the process chain and the individual processes contained
therein. This finally facilitates the mastering of uncertainty in chained machining
processes.

4.2 Data-Induced Conflicts

Florian Hoppe

Active systems, as presented in Sects. 3.4 and 5.4, have proven their effectiveness
in mastering uncertainty. But in turn, they rely completely on the veracity of data.
In many applications, the fusion of redundant data has therefore become common
practice. However, if the confidence intervals of data from two or more sources do
not overlap, this leads to so-called data-induced conflicts, which cannot be resolved
with classical fusion techniques. Such data-induced conflicts reveal ignored model
or data uncertainty, see Sect. 2.2. In the case of real-time controls, they require an
instantaneous decision on which source to trust. Data-induced conflicts aid in uncer-
tainty identification and are therefore a valuable tool in mastering uncertainty, see
Sect. 3.3.

In the past, unresolved and ignored data-induced conflicts led to several severe
incidents. According to the European SpaceAgency (ESA), the crash of the ExoMars
Schiaparelli probe on 14 March 2017 began when calculating the altitude from a
saturated inertial measurement unit (IMU) signal, which resulted in a large negative
altitude. A conflict with the radar Doppler altimeter unit was detected. Since no other
verification methods had been implemented at that time, the true value could not be
determined. Even though the conflicting IMU had been detected at that moment,
this information was not passed to other subsystems and thus caused a chain of fatal
decisions during the decent resulting in a crash at 150m/s [152]. In the following
two years the Boeing 737 MAX repeatedly encountered problems with the angle
of attack (AoA) sensor. One of the malfunctions manifested in an ignored conflict
between left and right sensor of 20◦ [151]. Hence, the control system anticipated a
stall and automatically pushed the nose down, which caused the fully manned plane
to crash.

These incidents show that a general framework for verifying data as well as
identifying and isolating a cause is required. Often a multitude of metadata, which
include models, parameters and sensors, are involved in the generation of data. We
refer to the general set of metadata as a data source. A data source consisting of
a model and a sensor is also called a soft sensor, see Sect. 1.4. To master data-
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induced conflicts, the metadata involved and their uncertainty have to be taken into
account. For example, statistical dependency between the metadata of different data
sources invalidates majority decisions used by voting algorithms. However, the use
of systematic redundancy allows the identification of the cause of conflicts.

In Sect. 4.2.1 we present and evaluate a method to establish systematic analytical
redundancy and make it available for monitoring. Linking the metadata with the
actual data allows us to link occurring conflicts with their cause. Two examples
outline how to make use of physical models to infer specific causes in Sect. 4.2.2 and
how to scale the method to systems where a multitude of conflicts might originate
from a single fault Sect. 4.2.3.

4.2.1 Dealing with Data-Induced Conflicts in Technical
Systems

Georg Staudter and Jakob Hartig

In the product life cycle phases of production and usage ofmodern technical systems,
see Sect. 3.1, data is increasingly being generated redundantly. Redundancy is not
necessarily physical redundancy of the sensor, but can also be established in the form
of analytical redundancy, where measured values of the system are converted into
the desired values via models. As introduced in Sect. 1.4, the combination of a sensor
with a model to estimate target quantities using easily accessible auxiliary variables
is called a soft sensor [48, 81]. An overview of the use of soft sensors can be found
in a monograph by Fortuna et al. [48].

Redundancy increases the availability of information butmay lead to contradictory
statements and conflicts. These conflicts can be used to identify the uncertainty in
the information about the system and, therefore, contribute to mastering uncertainty,
see Sect. 3.3.

This section introduces the concept of data-induced conflicts, discusses the advan-
tages and challenges, and presents a method for dealing with data-induced conflicts
in technical systems. The method is a slightly extended version of [70].

Data-induced conflicts

Contradicting values of different redundant data sources are in conflict when their
confidence intervals do not overlap. These so called data-induced conflicts can there-
fore be attributed to the model, see Sect. 2.2, to the parameters of the model, see
Sect. 2.1 and to sensor errors; also they are a symptom for lack of knowledge, see
Sect. 1.4. If uncertainty is not sufficiently taken into account or if too few or uncertain
data sources are considered, these conflicts remain unnoticed and thus unresolved.
Figure4.12 illustrates three redundant data sources for a target quantity with their
respective uncertainty characterised by the confidence intervals and a data-induced
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Fig. 4.12 Data-induced
conflict between the sources
A and B/C

conflict between source A and the consensus of sources B and C. If two sources are
in consensus, their confidence intervals overlap.

Different methods have been developed to deal with conflicting data sources. On
the one hand, conflicts between data sources can be seen as part of erroneous system
behaviour. Thus, different methods use conflicting data for fault detection and fault
isolation [76, 80]. On the other hand, conflicts can also be seen as part of the system’s
normal behaviour. In that case, data from multiple sources can be used to reduce
uncertainty and to improve the overall level of data quality. Simple methods for
data reconciliation of conflicting sensor data are voters [46]. More elaborate fusion
methods are the Bayes method [27, 97], the Dempster–Shafer method [89, 165],
and heuristic methods [94, 149]. In the process industry, reconciliation methods
are implemented for the estimation of process state data. The goal is to fuse the
conflicting data, i.e. reconcile the state of the system with the conservation laws of
mass and energy. For this, the conservation laws and the measured values have to
be an over-determined equation system. With a quadratic minimisation method, the
system states are changed until the values satisfy the conservation laws [76].

Method for dealing with data-induced conflicts

The methods mentioned above for dealing with conflicting data sources fail to differ-
entiate between sensor and model or do not take uncertainty into account. Therefore,
we propose a methodology to support interpretation- and decision making processes
in case of data-induced conflicts using the approach of redundancy via soft sensors.
Through consideration of the relationships between sensor, models and information
about the system, the cause of the data-induced conflicts can be isolated. For the
proposed method, the following two points have to be addressed:



4 Analysis, Quantification and Evaluation of Uncertainty 131

1. Conflicts emerge when the confidence intervals of redundant data sources do not
overlap. Hence, the uncertainty in an interconnected system has to be propagated,
see Sect. 3.2. How can this be done efficiently in an environment with many
sensors and models?

2. The different data sources, i.e. soft sensors. How can the dependencies between
different sensors and models be used in decision making processes?

The proposed approach provides a methodology to identify lack of knowledge in the
interpretation of conflicting sensor data by differentiating data sources into models
and sensors and spanning the investigation from the redundant observation of a single
value to the interconnection between models and sensors throughout the system,
see Fig. 4.13. Analytical redundancy via soft sensors is enforced by linking already
existing, spatially distributed sensors with models to increase the availability of
information about the desired values.

Each redundant data source Qi , cf. Sect. 1.4, is associated with a given level of
uncertainty due to precision and accuracy of the sensor, as well as model uncertainty,
see Sect. 2.2, which needs to be identified and propagated in the target quantity.
The first step (i) is to examine that each data source Qi is within certain boundary
conditions to ensure physical plausibility. Those limits need to be determined and
individually based on the respective metadata, such as calibration data and known
characteristics.

On this basis, the redundant sources are compared among themselves to detect
any possible conflicts in step (ii). In case of data-induced conflicts, a method for the
compact visualisation of dependencies (iii) is provided to restrict whether the conflict
is caused by a sensor or due to model uncertainty. In conclusion, the provided infor-
mation supports the process of interpretation of sensor data (iv) and gives evidence
in which sources to trust. In the following, each step of the systematic approach is
presented in detail.

(i) Plausibility. For checking the plausibility of data sources, sufficient metadata
about the limit values derived from sensor characteristics, physical properties
and technological limits are needed. With regard to the limits, there is a trade-
off between sensitivity to erroneous behaviour and normal fluctuations [80].
In the case of a data source exceeding the prescribed boundary condition,
the respective sensor or model can be excluded for further considerations in
advance, and cross-checks with other redundant sources become unnecessary.

(ii) Detection of Conflicts. Data-induced conflicts can be attributed to sensor errors
(technical failure or application errors) or to model uncertainty. Model errors
can be caused by either insufficient simplifications or changes of the underlying
physical system, e.g. due to the wear, deformations, failure of components, see
Sects. 2.2 and 4.2.2. For the detection of data-induced conflicts, the uncertainty
of sensors has to be considered. Especially soft sensors may have several sensor
inputs to calculate the target quantity. Therefore, the sensor uncertainty has to be
propagated by themodel. For the propagation of uncertainty, standardmethods,
e.g. [83] can be used. The technical implementation of error propagation and
the necessary calculation of derivatives is done with automatic differentiation
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Fig. 4.13 Method for dealing with data-induced conflicts (Adapted by permission from Springer
Nature Customer Service Centre GmbH: Springer, Hartig J. et al. (2020) Identification of Lack
of Knowledge Using Analytical Redundancy Applied to Structural Dynamic Systems. In: Mao Z.
(eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the
Society for Experimental Mechanics Series ©The Society for Experimental Mechanics, Inc. 2020)

(AD). In comparison to numerical methods AD has the benefit of calculating
the exact derivative. In addition, data-driven models in the form of software
code can be assigned a derivative with the help of AD [12, 109, 159].

(iii) Visualisation. Especially in the case of data-induced conflicts, knowledge about
possible dependencies between data sources is important. Erroneous sensors
or models and the consequences of the errors for other values have to be found.
For downstream interpretation, it is important to depict the relationship between
the soft sensors and their inputs in a human- andmachine readable form. There-
fore, a method for the visualisation of conflict scenarios has been developed
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in order to clearly depict inter-dependencies between soft sensors (sensors and
models) throughout the technical system, see Sect. 4.2.3.

(iv) Interpretation. The interpretation of the visualised dependencies is done by
reasoning. If a particular data source is only involved in other observations
revealing no inconsistencies, the confidence in the respective sensor/model
increases. If, on the other hand, a particular input is involved in one or many
conflicting source values, it is suspected to be the cause of the conflict. For
automation of the reasoning process, various classification methods can be
used, e.g. pattern recognition, reasoning methods or neural networks [80]. Data
sources deemed to be trustworthy can then be used in a fusion process with
methods mentioned above. Data sources being suspected to cause the conflict
are excluded.

Our methodology (i)–(iv) reinforces redundancy and, therefore, data-induced con-
flicts. Through the consideration of physical metadata and sensor data with their
respective uncertainty, conflicts can be identified and the data quality increases. Fur-
thermore, our method provides information about the relationships between sensors,
models and the physical system to identify the cause of the conflict for human and
machine interpretation. Section4.2.3 shows the application of the outlinedmethodol-
ogy on an experiment series conducted at theModularActive Spring-Damper System
introduced in Sect. 3.6 revealing data-induced conflicts.

4.2.2 Data-Induced Conflicts for Wear Detection
in Hydraulic Systems

Jakob Hartig, Ingo Dietrich, and Peter F. Pelz

Due to propagation and chain reactions of contamination [99], hydraulic systems
are particularly sensitive to wear and contamination. Therefore, it is of interest to
detect wear in early stages during the operation of a system in order to consequently
avoid high cost due to unplannedmaintenance. In the context of Sect. 4.2, this chapter
serves to demonstrate the identification of ignorance, as introduced in Sect. 1.3, in the
form of undetected wear bymeans of data-induced conflicts. As shown in Sect. 4.2.1,
analytical redundancy can be used to learn about sensor or model errors by observing
data-induced conflicts.

Wear itself is not directly measurable during the operation but manifests itself
in the changed system characteristics. Different methods exist to detect and isolate
the changing system characteristics [76, 80]. In this section, we demonstrate the use
of soft sensors to determine wear via data-induced conflicts between redundantly
calculated flow rates as shown in [141]. For predictive maintenance, this approach is
promising in terms of cost-efficiency, since existing sensors andmodels are used. The
approach of this example is rather simple with only two data sources (soft sensors for
pump and fluid system) for one calculated quantity (flow rate). A more complicated
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Fig. 4.14 Fluid system with measured quantities (pressures p, temperatures T , rotational pump
speed n) and soft sensors (Figure adapted from [71])

system can be found in Sect. 4.2.3. In the following, first the two data sources are
presented. Then wear detection via data-induced conflicts is discussed.

Analytical redundancy by means of soft sensors

To demonstrate analytical redundancy, the generic fluid system in Fig. 4.14, consist-
ing of a positive displacement pump and a valve, is considered. The system acts
as an abstraction for real fluid systems since the hydraulic resistance of a generic
system is reduced to the hydraulic resistance of a valve. As indicated in Fig. 4.14,
both components have an assigned soft sensor to determine the flow-rate that flows
through the respective component. The purpose of both soft sensors for the pump and
the valve, is to generate redundant data of the volume flow rate to make conclusions
about the wear condition of the system.

For the pump, an internal leakage model is used. The ideal flow rate Qp, deter-
mined by the displacement volume V and the rotational speed n, is diminished by
the internal leakage QL

Qp = nV − QL (4.8)

where the gap losses QL are modelled with a semi-empirical dimensionless
approach [140].

For the valve soft sensor, the definition of the Kv value for valves is used as a
model. The valves flow-rate Qv is given by

Qv(α) = Kv(α)

√

	pv�0

	p0�
(4.9)
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Fig. 4.15 Characteristic curves for pump and valve with and without wear; the light grey area indi-
cates possible operating states for worn components; the arrow indicates the data-induced conflict
between the two models

where 	p0 := 1 bar and �0 := 1000 kg/m3. 	pv is the pressure difference over the
valve and � is the fluid density. The Kv-value is calibrated in dependence on the
valve opening degree α. The uncertainty for both soft sensors is determined with
error propagation. Both soft sensors depict an unworn state of the system.

Identification of wear

The fluid system in Fig. 4.14 consisting of a positive displacement pump and a
valve, can be described by the flow-rate-pressure characteristics in Fig. 4.15. For
the valve, the flow rate accelerates with increasing pressure, for the pump the flow
rate decreases. The intersection of both curves is the operating point of the hydraulic
system. Both pressure and flow rate have to be the same. When all components are
new, both soft sensors are assumed to depict the relevant reality and therefore show
the same flow-rate.

Now imagine a worn valve. With wear, the cross-sectional area through which
the flow passes, increases. At the same pressure level more fluid can pass the valve
and consequently the operating point of the system changes. Since the soft sensors
depict the unworn state, they do not recognise this change and consequently deliver
contradictory flow rate measurements. For a worn pump similar considerations hold.

The contradictory measurements are in conflict, if their uncertainty intervals do
not overlap, see Sect. 4.2.1. The conflict can arise due to sensor break down or
model error. In both cases, the data-induced conflict represents ignorance. A sensor
breakdown can normally be excluded with limit checking, as presented in Sect. 4.2.1.
We therefore concentrate on model error or, in this case, component characteristic
change.

In order to review the presented soft sensor approach, the following two questions
must be answered:
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Fig. 4.16 Test-rig principle for simulating wear experimentally via bypass flows

1. Is the influence of wear greater than the soft sensor uncertainty?
2. Are two components sufficient to identify if wear occurs and where?

To answer the first question, we carried out an experimental investigation of a worn
valve [127]. The study revealed that the resulting flow rate changes fromwear exceed
the soft sensor uncertainty. This is a data-induced conflict indicating that wear occurs.

With regard to the second question, we carried out measurements with a test
rig [69, 71]. Wear changes the cross sectional area of the valve, and a worn positive
displacement pump has larger gaps where fluid can flow back. Consequently, we
were able to simulate wear on the test rig by installing bypass flows for the pump
and the valve. This offers the benefit of easily changing wear conditions without
actually destroying the components. The principle of the test rig used can be found
in Fig. 4.16. The studies show that identification of wear is possible via data-induced
conflicts when the flow rate outputs of the two soft sensors differ by about 6%.

From the studies, it can be concluded that the localisation of wear is not possible
with only two soft sensors. According to Fig. 4.15, the possible operating range of
the hydraulic system for various wear conditions is always below the characteristic
curveswith components in a newcondition (light grey area). Therefore, the calculated
volume flow rate of the valve soft sensor Qv is always lower or equal to the calculated
volume flow of the pump Qp. This is independent from the wear condition of both
components. For this reason, it is not possible to deduce the component subject to
wear from these two calculated volume flows alone, the measuring system is under-
determined. However, the history of the measurement data, additional information
in the two soft sensors or additional soft sensors would make it possible to deduce
the worn component.

All in all, data-induced conflicts help in detecting ignored wear in hydraulic
systems and can provide a measure for predictive maintenance. The localisation
of the worn component is not possible with only two soft sensors. Additional system
information in the form of additional soft sensors is needed for this purpose, see
Sect. 4.2.3.
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4.2.3 Fault Detection in a Structural System

Tuğrul Öztürk, Daniel Martin, and Florian Hoppe

Structural systems use mechanical elements to transfer forces along a path. The
force transmission can be represented by mathematical models used to optimise
the design, see Sect. 6.1.1. A combination of such models with sensors allows to
determine quantities, such as forces in spatially distant elements, and can therefore
be used to estimate states that are infeasible to measure.

Applications lie in the field of structural health monitoring of aeroplane to
detect defects in fuselage panels [78], wing panels [167], and their connecting ele-
ments [114]. The basis for those technologies are data obtained from integrated
sensors and implemented models, which are assumed to be reliable. However, unre-
liable data due to data uncertainty have led to numerous incidents in the past [79],
as mentioned in Sect. 4.2.

Today’s methods of online data validation are often based on themere comparison
of a few data sources. Information about the sensors and models involved as well as
the results of these comparisons are not centrally fed back and forwarded to other
subsystems. In the case of the ExoMars incident, faulty gyroscope data were detected
in one subsystem but nevertheless reused at a later point in time [152].

Besides the mentioned applications, soft sensors also allow to generate redundant
data throughout the system and to set up a sensor network. As a result, data sources
can be continuously checked for being in conflict with each other. But when it comes
to linking larger numbers of sensors and models, a single fault may cause numerous
conflicts. To distinguish between possible faults, conflicts and their corresponding
links in the network have to be visualised and analysed.

Both, sensor data and models, forming the soft sensor, are afflicted with uncer-
tainty. The uncertainty of sensor data expresses itself by an unknown distribution,
which is considered by means of confidence intervals. Furthermore, the models used
to describe the behaviour of mechanical components often contain many assump-
tions and simplifications. Therefore, the uncertainty of a soft sensor can be classified
as incertitude as described in Chap. 2.

In the following, the method presented in Sect. 4.2.1 is applied to a complex
technical system, which is introduced briefly as a sensor network. We describe the
subsequent steps of our method from conflict detection to visualisation regarding a
real sensor fault case. As introduced in Sect. 3.1, uncertainty occurs over different
phases of the product life cycle. The presented and evaluated method is applicable in
the system’s design phase to establish analytical redundancy aswell as in the system’s
usage phase by the visualisation of data-induced conflicts to master uncertainty.

Scaling analytical redundancy to sensor networks

The method presented in Sect. 4.2.1 allows us to analyse a large number of compara-
tive quantities from analytically redundant data sources. These data sources consist of
sensors only or of sensors linked with models, thus, soft sensors. Thereby, it is taken



138 M. Schaeffner et al.

into account that the involved data sources can be afflictedwith data andmodel uncer-
tainty, see Sects. 2.1 and 2.2. The method for dealing with data-induced conflicts is
applied to the Modular Active Spring-Damper System (German acronym: MAFDS)
presented in Sect. 3.6.1, which represents a multiple sensor-integrated structural sys-
tem. The MAFDS consists of one upper and one lower truss structure, which are
connected to each other via guidance elements and a spring-damper. The two truss
structures in turn consist of individual beams, which are assembled to form tetra-
hedral elements shown in Fig. 4.17. Further, the MAFDS is equipped with several
sensors, such as force transducers FS j and FP j as well as strain gauges in the upper,
εUj , and lower, ε

L
j , truss structure. More details related to the integrated sensors in the

MAFDS are given in Sect. 3.6.1. To establish analytical redundancy, the measured
sensor data are converted by means of models to the desired redundant quantity,
denoted here as comparative quantity. As mentioned above, a linkage of measured
data obtained by an arbitrary sensor with an analytical model to gain an another
arbitrary quantity represents a soft sensor. In case of the MAFDS, an example for
such a soft sensor is the linkage of the beam strain gauge εU15 in Fig. 4.18a with a
mechanical modelm for the conversion of the measured beam strains to beam forces;
here we assume a linear-elastic beam behaviour using Hooke’s law in Fig. 4.18b. The
uncertainty of parameters involved as well as themeasurement uncertainty have been
taken into account to estimate the confidence interval.

Based on the calculated beam forces, analytical redundancy can be established at
the fixed support points, e.g. fixed support point 1 (FSP1) in Fig. 4.17. The forces
measured by FP1 at FSP1 must be in equilibrium with the beam forces F1, F11,
and F15, which are calculated via the beam strain gauges εU1 , εU11 and εU15 of the
corresponding beams B1, B11 and B15, labelled in Fig. 4.17. It should be noted
that the beam forces are converted into the components of the global coordinate
system, which corresponds to the coordinate system of the piezoelectric based force
transducers FPi at the three fixed support points.

Interpretation of data-induced conflicts in sensor networks

To investigate the method presented in Sect. 4.2.1, an erroneous data set of a drop
test at the MAFDS is used. In this case, the triaxial force transducer FP1 at FSP1 was
connected incorrectly so that the measuring channels for the y- and z-component of
the measured forces were switched, thus, resulting in conflicts among multiple data
sources Qi . In the first step, as shown in the proposed method according to Fig. 4.13,
the plausibility of the sensor/transducer signals is verified by checking whether the
measured data are within a reasonable range respecting the specific properties of
the sensor, such as measuring ranges etc., as well as the structural system. After
a successful plausibility check, the conflict detection for the data sources Qi is
continued.

Assuming the observed quantities to show a Gaussian normal distribution, the
measured values are within a confidence interval around the mean value of all mea-
surements with a certain probability. The uncertainty of sensors and, in this case,
mechanical models is propagated throughout each data source Qi with Gaussian



4 Analysis, Quantification and Evaluation of Uncertainty 139

Fig. 4.17 Sensors used in the MAFDS to gain analytical redundancy and labelled beams B1, B11
and B15 for force equilibrium at fixed support point 1 with force transducer FP1

error propagation, which is implemented by using automatic differentiation, see
Sect. 4.2.1. The level of confidence is set to 95%. To determine data-induced con-
flicts, the overlap of the confidence intervals of the data sources is regarded. It is
defined in terms of the set [μ − kσ,μ + kσ ] and the point where μ is the expected
value and σ the standard deviation, while the coverage factor k determines the con-
sidered amount of the probability space. If the confidence intervalsmatch completely,
there is no data-induced conflict and, in turn, an absolute data-induced conflict exists
if the confidence intervals do not overlap. As a measure of the severity of a data-
induced conflict between two data sources Qi and Q j , a discrepancy di j is defined
in the Eq. (4.10)
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Fig. 4.18 a Example of a soft sensor used in the MAFDS, b mechanical model afflicted with
uncertainty δ(·) for the conversion of beam strain ε to beam forces F , where E represents the
modulus of elasticity and A the cross-sectional area of the beam

di j (tn) = μi (tn) − μ j (tn)

σi + σ j
, with μi (tn) > μ j (tn). (4.10)

The discrepancy di j is calculated for every sample of the two data sources Qi and
Q j at the equidistant discrete-time intervals tn = n

fs
, where fs is the sample rate of

data acquisition. The redundant sources for the force equilibrium FE1 of FSP1 are
represented by Fig. 4.19a–c, in which the force components in each direction are
plotted over time.

The plots in Fig. 4.19d–f show the discrepancy between the two data sources
over time for each force component. To define whether there is a conflict or not,
we introduced a measure, denoted as degree of conflict (DOC), cij = dij(t), which
is the time-averaged discrepancy over a time interval of interest [t0, t1], which has
to be defined individually for each scenario. If the calculated DOC is greater than
a predefined threshold value cthresh, a data-induced conflict is detected. In this case,
cthresh has been set to 1.96, which is equal to the coverage factor k = 1.96 of a 95%
confidence interval. That means that the time-averaged confidence intervals of the
two data sources are exactly adjoining (μi − kσi = μ j + kσ j ).

For FE1, a data-induced conflict emerges for the y- and z-direction. The result
of the experiment shown in Fig. 4.19 is illustrated graphically by the conflict matrix
shown in Fig. 4.20. The displayed vertical bars symbolise the different data sources
Q(m)

i for themth comparative quantity based on different sensors and models, which
are listed on the left side. Two or more data sources are used to determine one com-
parative quantity, displayed on the bottom of Fig. 4.20. As described, these redundant
values are examined for conflicts. Here, conflicts were detected in two of the evalu-
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Fig. 4.19 Conflict detection for faulty force signal: a–c Triaxial comparison of force sensors with
truss strain gauges taking the propagated measurement and data uncertainty into account, which is
symbolised by the grey-shaded area, d–f resulting discrepancy between both data sources indicating
a conflict

ated comparative quantities: ‘support force 1’, which is based on the equilibrium of
forces FE1, as described above, and ‘force symmetry’, which includes the condition
that, in the case of a vertical impact, the forces in the support points 1–3 must act
point-symmetrically around the centre axis due to geometric considerations. For the
sake of simplicity, only sensors are shown in Fig. 4.20, but the described procedure
can be extended analogously with the models contained in the applied soft sensors.

For ‘support force 1’, the DOC cij of the three data sources are illustrated in the
conflict sub-matrix C (III) above. Comparisons in this sub-matrix that exhibit a data-
induced conflict are marked in black as the well as the bars that represent sources
involved in a conflict and the comparative quantities estimated by this sources. Other
comparative quantities, which contain the same sensors, are highlighted in grey. An
important benefit of the shown representation is the marking of sensors that are
involved in a conflict as potentially faulty, so that this information can be considered
elsewhere, which in the case of ExoMars, as mentioned above, could have supported
the identification of a faulty data source.
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Fig. 4.20 Conflict matrix and resulting conflict rates due to sensor fault for multiple comparative
quantities

Sensor FP1 is the common component of both conflicting scenarios, thus it is
obviously recommendable to check this sensor for a variety of sensor errors. To
quantify this suspicion, a conflict rate RC,n is introduced, which gives the operator of
the system a hint on which sensor to check first. The RC,n of sensor n is the number
of conflicts in which the sensor is involved in relation to all comparisons of sensor n
with other data sources. To illustrate that, it is shown exemplary for εU1 . This sensor is
contained in one source for comparative quantity ‘contraction’, where it is compared
with two other sources without a conflict and in one source for the comparative
quantity ‘support force 1’ facing one other conflicting data source, so its conflict rate
is 33%. If the measuring channels for the y- and z-component of the force transducer
at support 1, as switched in the described case, were connected correctly, there would
no longer be any conflict in the comparative quantities considered.
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Conclusion

Misinterpretations can occur during the processing of sensor data due to uncertainty,
especially ignorance. Data-induced conflicts occur when physical quantities used for
monitoring are recorded redundantly and contradict each other. These conflicts can
be used specifically to detect faults. For this purpose, we developed a method which
is based on differentiating data sources into models and sensors, linking them in such
a way that relevant variables are consciously recorded redundantly.

The proposed approach was applied to the MAFDS, the structural system pre-
sented in Sect. 3.6.1. An information model was built that contains all relevant meta-
data of the underlying sensor system, such as quantified uncertainty, as well as the
used physical models. Automatic differentiation was implemented to propagate and
determine the resulting uncertainty for conflict checking.

While state-of-the-art fault-detection methods only take some redundant data into
account, they lack the view on the whole system. A single fault may result in a
multitude of conflicts, especially in time-variant processes. To assist an operator or
developer in finding the fault, the amount of data from the conflict checks must be
reduced and visualised in away thatmakes it easier for humans to recognise a pattern.
We presented a conflict interpretation method that furthermore takes the metadata
into account. Hence, the method is scalable in both, the number of soft sensors and
the model depth, for example to identify faulty model parameters.

4.3 Analysis, Quantification and Evaluation of Model
Uncertainty

Christopher M. Gehb, Marc E. Pfetsch, and Stefan Ulbrich

Trying to predict the future is deeply rooted in mankind. In almost every field of
science and engineering, more or less sophisticated models are used to predict pro-
cesses or properties and finally make decisions or draw conclusions [144]. Along
these lines, models can be mathematical formulations, e.g. physical axioms and
constitutive equations, or physical simplifications of reality, e.g. scaled prototypes.
However, every prediction made by models comprises uncertainty, see Sect. 1.3. The
uncertainty in model predictions arises essentially from the sources data uncertainty
and model uncertainty, cf. Chap.2, supplemented by numerical errors in case of
mathematical models [87]. This section focuses on the analysis, quantification and
evaluation of model uncertainty.

Reality is complex and cannot be completely represented by models, neither in
mathematical formulations nor in prototype realisations, cf. Figure1.5. Simplifica-
tions, assumptions, conceptualisations, abstractions and approximations all result in
model uncertainty [144]. No matter if underlying physics is only poorly understood
or linearisations need to be used to reduce computational burdens: “Essentially, all
models are wrong, but some are useful.” [23].
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With this in mind, model uncertainty needs to be taken into account for any
kind of decision making and for the evaluation of model predictions in general. The
ongoing trend towards digitalisation and the related substitution of real experiments
by virtual testing or the combination toHardware-in-the-Loop (HiL) tests emphasises
the necessity of a detailed analysis of model uncertainty to get reliable predictions.

This section is less understood as a textbook, but rather includes the consider-
ation of model uncertainty for manifold examples and applications of mechanical
load-bearing structures from both an engineering and a mathematical perspective.
The section shows the importance of evaluating the model uncertainty in order to
improve themodels themselves and their predictions, andfinally the conclusions to be
drawn from the predictions. Additionally, mathematical approaches and algorithms
are presented to analyse and quantify model uncertainty in theory and in practical
examples of mechanical load-bearing structures.

4.3.1 Detection of Model Uncertainty via Parameter
Estimation and Optimum Experimental Design

Alexander Matei, Marc E. Pfetsch, and Stefan Ulbrich

In this subsection we develop an algorithm to detect model uncertainty using tools
from parameter estimation, optimum experimental design and statistical hypothesis
testing. The mathematical models which are investigated consist of functional rela-
tions between input and output quantities, such as model parameters, state variables
and boundary conditions, cf. Sect. 2.2. Within a probabilistic frequentist framework,
it is assumed that the true values of the model parameters can be estimated by
repeated calibration and validation processes with new observational data. The latter
are subject to noise, and as a consequence, uncertainty propagates to those parameter
estimates. In an optimally designed experiment we then find the best choice among
experimental setups, so that the extent of data uncertainty upon themodel parameters
which we quantify by confidence regions is minimised. If the mathematical model
is correct then repeated model calibration and validation with different data sets
obtained from optimal experimental setups should entail almost the same parameter
values within a confidence region. We interpret inconsistencies in the parameter esti-
mates obtained from different measurements as an indicator for model uncertainty,
i.e. the mathematical model is incapable to explain all the data with the same set of
model parameters. An important feature of our algorithm is that we neither assume
any prior distribution nor a specific algebraic form of the model discrepancy term
in the mathematical equations. Thus, we identify the source of model uncertainty as
ignorance, see Sect. 2.2. We first proposed our approach in [50].
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Mathematical setting

Let u j ∈ Uad, j = 1, . . . , nu be the inputs, such as boundary or initial conditions,
p ∈ Pad ⊂ Rnp be the model parameters, such as material constants, and y j ∈ Y be
the corresponding state variables. The first part of the mathematical model is given
by an operator e : Y ×Uad × Pad → Y that defines the state equation

e(y j , u j , p) = 0.

We require that for every p ∈ Pad and every u j ∈ Uad there exists a unique solution
y j (u j , p) of the state equation. Furthermore, the solution operators

S j : Uad × Pad 	 (u j , p) 
→ y j (u j , p) ∈ Y (4.11)

are demanded to be twice continuously differentiable in both arguments.
In order to compare the state y j (u j , p) to experimental data it is necessary to map

certain components to quantities that are actually measured. This mapping forms
the second part of the mathematical model. Therefore, let us define an observation
operator by

h : Y × Pad 	 (y j , p) 
→ h(y j , p) ∈ Rns ,

where ns is the number of data collecting sensors. The experimental setup is charac-
terised by these predefined sensor types or locations and the inputs u j . We assume
h to be twice continuously differentiable in both arguments as well.

It is commonly observed that the acquisition of measurements z ∈ RnM×nu×ns is
subject to uncertainty, where nM is the number of repeated measurement series. To
this end, we assume a Gaussian noise profile that is added to the true but in general
unknown value z� of the quantity of interest:

zi j = z�
i j + ε, ε ∼ N(

0, σ 2
)

, (4.12)

for all i = 1, . . . , nM and j = 1, . . . , nu where σ 2 ∈ Rns×ns is the diagonal variance
matrix of the employed sensors. Thus, we assume that the noise profile is indepen-
dently distributed for each sensor. If the model is correct then it is a valid explanation
of the data, i.e.

zi j = h
(S j (u j , p

�), p�
) + ε, (4.13)

holds for all i = 1, . . . , nM and all j = 1, . . . , nu with the true but in general unknown
parameter values p�. Now, the following questions arise:

1. How can we estimate p� from z and quantify the uncertainty in the estimation?
2. What are useful criteria to determine whether the Eq. (4.13) is incorrect?
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The first question is extensively explored in the literature [10, 14, 92, 150] and we
briefly introduce our method of choice below. The second question is strongly related
to the detection and quantification of model uncertainty, cf. Sect. 2.2. This is still an
active field of research. In the following we present our approach to detect model
uncertainty as described in [50].

Parameter estimation

For given measurements z the following nonlinear least-square problem with state
equation constraints [19] is solved to obtain an estimate of the true values of the
model parameters:

min
p,y1,...,ynu

ns
∑

k=1

nu
∑

j=1

nM
∑

i=1

ωk

2σ 2
kk

[

zi jk − hk(y j , p)
]2

s.t.
p,y1,...,ynu

p ∈ Pad, e(y j , u j , p) = 0, for j = 1, . . . , nu,

(4.14)

where σ 2
kk are the variances of the sensors introduced above and ωk ∈ {0, 1} are their

weights, i.e. ωk = 1 if, and only if, sensor k is used. We allow sensors to remain
unused to save operational costs. Since the parameter estimate depends on the data z
as well as on the weightsω, which both remain fixed, we associate a solution operator
(z, ω) 
→ p(z, ω) with Problem (4.14).

We choose nz = nsnunM as the new dimension to rewrite problem (4.14) in vec-
tor form and further insert the solution operators S j of the state equation (4.11).
Let z̃ ∈ Rnz be the data vector obtained from rearranging z and let h̃ consist of
h(S j (u j , p), p) for all j = 1, . . . , nu in a row and copied nM times. We define
S(u, p) := S j (u j , p) j=1,...,nu for brevity. Then

r(z, p,S(u, p)) := z̃ − h̃(S(u, p), p) ∈ Rnz (4.15)

are the residuals in vector form. The diagonal weight matrix � ∈ Rnz×nz consists of
copies of ω ∈ Rns and the diagonal variance matrix � ∈ Rnz×nz contains copies of
σ 2. Then problem (4.14) can be rewritten into

min
p∈Pad

1

2
r(z, p,S(u, p))� ��−1r(z, p,S(u, p)) . (4.16)

Each locally optimal solution of (4.16) is a randomvariable. In general, its probability
distribution differs from the one of the measurements z. This is due to the fact that
the mapping (z, ω) 
→ p(z, ω) is nonlinear. The computation of confidence regions
would lead to non-ellipsoidal sets which are difficult to handle. We therefore choose
for a given confidence level 1 − α, where α ∈ (0, 1), a linear approximation of the
confidence region K in the parameter space around E [p(z, ω)] = p�, see [92]. In
fact, we approximate the distribution of p(z, ω) to be Gaussian with expected value
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p� and covariancematrixC . Then the set K is annp-dimensional ellipsoid determined
by the covariance matrix C :

K (p�,C, α) :=
{

p ∈ Rnp :(p − p�
)�

C−1
(

p − p�
) ≤ χ2

np(1 − α)
}

,

where χ2
np is the quantile function of the χ2 probability distribution with np degrees

of freedom. We consider the following approximations for the covariance matrix C
coming from a Gauss–Newton approach [19, 38] and a sensitivity analysis [10, 38],
respectively:

CGN =(

J���−1 J
)−1

, CS = H−1 J���−1 J H−�,

where J is the total derivative of the residual vector r with respect to the model
parameters p and

H := J���−1 J +
nz

∑

i=1

ri�i i�
−1
i i

d2ri
dp2

. (4.17)

Our choice is determined depending on the application and the computational effort
for the Hessian H , which requires the calculation of second order derivatives of the
solution operator, compare Eq. (4.17) with Eq. (4.15).

Optimal design of experiments

In general, the goal in optimum experimental design is to minimise the confidence
region of the parameter estimates by changing the experimental setup, namely, sensor
locations and types represented by the variable ω, boundary and initial conditions
described by the inputs u j , etc. Since we employ a linear approximation of the
confidence region the aim is to minimise the “size” of the covariance matrix C .
There exists extensive research on different design criteria� that measure the “size”
of a matrix in the context of optimum experimental design [49, 143, 158]. We list a
few prominent options:

�A(C) = trace (C), �D(C) = det (C), �E (C) = λmax (C).

Depending on the application, the computational effort, and the adaptability of the
experimental setup, we formulate slightly different optimisation problems. If the cal-
culation of the Hessian H is fast, the number of sensors is small and the experimental
setup is limited to adapting sensor positions only, we consider the matrix CS from
above in the optimisation model:

min
ω

�
[

CS(ω, p(z, ω),S(u, p(z, ω)))
]

s.t. ω ∈ {0, 1}ns , G(ω) ≤ 0.
(4.18)
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Note that in an iterative solver scheme a new parameter value p(z, ω) and new
solutions S j (u j , p(z, ω)) to the state equation have to be computed after each step
for all j = 1, . . . , nu. The inputs u j remain fixed here as the experimenter can only
adjust sensor positions. Moreover, CS depends on the measurements, and this would
require new data, if any input values are changed. The constraints G(ω) describe
user-specific restrictions on sensor combinations and on the minimal number of used
sensors, see [50, 92] for more details. Problem (4.18) is a non-convex mixed-integer
nonlinear program. Since we assume the number of sensors to be small, we employ
heuristic methods to solve it.

If the computational effort for the Hessian H is large, the number of available
sensors is high, and the experimental setup can be adapted in sensor positions and
inputs, we use the covariance matrix arising from the Gauss–Newton approach in
the following optimisation problem:

min
ω,u

�
[

CGN(ω, p,S(u, p))
] + β1R(u) + β2Pε(ω)

s.t.
ω,u

ω ∈ [0, 1]ns , u ∈ Uad,
(4.19)

where β1, β2 are positive constants. Note that the experimenter is now given the
possibility to optimise both sensor weights ω and input variables u =(

u j
)

j=1,...,nu
.

Besides, CGN is independent of experimental data, and the parameter values p stay
fixed in this setting. However, this approximation of the true covariance matrix may
be less accurate than CS where the parameter values are continually updated within
the optimisation scheme. The function R(·) serves as a regulariser for the inputs to
guarantee smoothness. For a fixed ε ∈ (0, 1] the penalty term Pε(·) is chosen to be
a smooth approximation of the �0 “norm”. We refer to [3] for a detailed mathemat-
ical description. This penalty is intended to yield sparse and {0, 1}-valued optimal
sensor weights. To achieve this, we proceed in the following way. Problem (4.19)
is first solved with ε1 = 1 and we obtain optimal weights ωε1 and optimal inputs
u =(

u j
)

j=1,...,nu
. Then we choose another ε such that 0 < ε < ε1 and solve the fol-

lowing optimisation problem with ωε1 as starting point and fixed inputs u:

min
ω

�
[

CGN(ω, p,S(u, p))
] + β1R(u) + β2Pε(ω)

s.t. ω ∈ [0, 1]ns .
(4.20)

By successively solving (4.20) with diminishing εi such that 0 < εi < εi−1 and with
ωεi−1 as starting point, the optimal sensor weights tend to become sparse and {0, 1}-
valued after a few iterations i = 1, 2, . . ., see [4].

Model uncertainty

We now employ the two previously introduced methods, parameter estimation and
optimum experimental design, to identify model uncertainty. Hereby, it is assumed
that themodelM is valid in all sensor locations specified byω, for all inputs u j ∈ Uad
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Fig. 4.21 Algorithm for the detection of model uncertainty (adapted from [50])

and for the same true model parameters p�. Since p� are in general unknownwe state
the hypothesis that a particular solution of (4.16) serves as a good approximation.
Then repeated solutions of (4.16) for measurement series taken at different sensor
locations with possibly differing inputs should lie in the confidence region of previ-
ously estimated parameter values. But, if certain data sets lead to estimates that lie
outside the confidence region of previous tests then the model is unable to predict
the results of all experiments, i.e. the underlying model is inadequate.

Figure4.21 summarises our algorithm to detect whether a modelM is inadequate.
In line 02 initial (or artificial) data are introduced because they appear in the covari-
ance matrix CS in Problem (4.18). In the alternative way (line 07), it is necessary to
compute an initial parameter estimate from this data before solving Problem (4.19).

The acquisition of experimental data sets z in line 05 happens at the optimal
sensor locations ω for those inputs u j that entered the optimisation problem (4.18).
Thus, the size of the predicted confidence region for the model parameters is at its
minimum provided that the measurement error has the previously stated variance
σ 2, see Eq. (4.12). In line 08, experimental data is acquired at the optimal sensor
locations but with inputs in the vicinity of the computed optimum u. By continuity
of the objective function in Problem (4.19) with respect to the inputs, the size of the
confidence region for the model parameters stays close to the minimal one.
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A fundamental assumption of our methodology is that the measurement errors
are Gaussian. To check whether the measurement errors are normally distributed
(line 10) we refer to conventional techniques as described in [30], for example.
We do not consider experiments that yield data with non-Gaussian noise since this
violates our fundamental assumption in Eq. (4.12).

The choice of the calibration and the validation set in line 11 is crucial. Themodel
M may or may not pass the test depending on that choice. It is possible to divide
the data set randomly as in a Monte Carlo cross-validation [39]. However, there
are applications where an expert judgement is necessary to perform a meaningful
division.Additional help to target theworst-case split can improve the performance of
our algorithm. An example for this is given in Sect. 4.3.2 where we detect uncertainty
in mathematical models of the 3D Servo Press.

From lines 13 onward, a classical hypothesis test with Bonferroni correction [40]
is performed. The null hypothesis and the alternative hypothesis are

HYP0 : p� = pcal are the true parameter values for all u j ∈ Uad,

HYP1 : p� = pcal.

Let TOL = TOL/ntests be the corrected test level. The null hypothesis HYP0 is
rejected if pval /∈ K (pcal,Ccal,TOL). Recall

K (pcal,Ccal,TOL) =
{

p ∈ Rnp :(p − pcal)
� C−1

cal (p − pcal) ≤ χ2
np

(

1 − TOL
)

}

.

Since we are usually performing more than one hypothesis test on similar data sets,
we need to account for the problem of multiple testing. The Bonferroni correction
of the test level, TOL = TOL/ntests, is a very conservative method to control the
family-wise error rate (FWER), i.e. the probability of rejecting at least one true null
hypothesis. It is reasonable to choose a small threshold for the FWER, e.g. 5% since
it represents the error of the first kind which we want to be small when rejecting a
model. The αmin (line 13) is the p-value of the statistical test, which is the smallest
test level under which the null hypothesis can only just be rejected.

The greater the number of test scenarios ntests the easier it becomes for a null
hypothesis to pass a particular test. Since we are interested in the overall null hypoth-
esis that the true values p� of the parameters stay within the computed confidence
regions, we interpret any rejected null hypothesis as significant, i.e. then the math-
ematical model itself is subject to uncertainty. In practice, it may occur that an
inadequate model passes quite a lot of tests. This behaviour can be explained by the
fact that even an inaccurate model may provide satisfactory results on a particular
range of inputs. However, provided that enough data are available one can identify
ranges of inputs for which an inadequate model fails the hypothesis test.

In summary, we proposed a new algorithm to detect model uncertainty and to
quantify the quality of our decision when rejecting a mathematical model via error
probabilities. We combined methods from parameter estimation, optimum experi-
mental design and hypothesis testing to achieve this. Furthermore, our approach is
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suited to identify particular ranges of inputs for which the model fails to explain
the data. This is especially helpful when reconsidering the system design phase in
product development, see Sect. 3.1, to improve the models that have been used so
far.

4.3.2 Detection of Model Uncertainty in Mathematical
Models of the 3D Servo Press

Alexander Matei and Florian Hoppe

The method proposed in Sect. 4.3.1 is demonstrated here using a component of the
3D Servo Press, a multi-technology forming machine that combines spindles with
multiple eccentric servo drives, see Sect. 3.6.3. Forming machines have the task
of performing accurate motions of the tool centre point (TCP) under high process
forces. Besides control actions, this requires the acquisition of the TCP position,
see Sect. 5.4.1. Since direct measurements of the TCP are technically infeasible,
elastic models shall provide the basis for the state estimation of the TCP [66]. To
calibrate and validate the elasticmodels, measurementswere taken on the small-scale
prototype of the press. Furthermore, the costs for obtaining these measurements are
reduced in view of future experiments on the full-scale 160t press. In this subsection,
we briefly sketch mathematical models of the 3D Servo Press and present numerical
results on the detection of model uncertainty from [50].

In order tomodel the elastic 3DServoPress, componentswere classified according
to their load scenario and their functional setting, respectively. The press mainly
consists of coupling links and bearings, see Fig. 4.22. Additionally, friction between
these components needs to be taken into account. In the following we describe the
mathematical models that were employed for the different parts of the press and for
the description of their behaviour:

• A bar model is employed for those coupling links where the stress under load
is very small. Each bar is discretised by the finite element method. Each finite
element stands for two masses connected by a spring. However, the actual bar
elements do not have a uniform cross-sectional area. To take this into account, a
mass-spring model is derived from a finite element analysis [50].

• The remaining coupling links which experience bending moments are modelled as
beams. Each beam is again discretised by the finite element method and reduced
to a mass-spring model with lumped masses, i.e. all non-diagonal elements in
the mass matrix are neglected. The governing equations come from the Euler–
Bernoulli beam theory [58].

• Due to their progressive stiffness characteristics, all bearings are modelled as non-
linear spring elements, located between the joints of the coupling links.

• As expected, frictionwas observed in all bearings thatmove. Thus, the results of the
experiments reveal a hysteresis behaviour in the load-displacement curve. Since the
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Fig. 4.22 Linkage
mechanism of the 3D Servo
Press [50]

complete physical modelling of friction is very challenging, we use application-
specific substitute models and evaluate them experimentally. We propose three
different models M1, M2 and M3 to deal with this phenomenon:

M1 : linear model where friction is neglected,
M2 : discontinuous Coulomb’s friction model,
M3 : continuous friction model with rate-independent memory.

In order to validate each of these models, several experimental data sets were col-
lected. The measurements were conducted with nu = 29 different process forces,
which we call input variables. The first 15 forces were part of the loading and the
last 14 were part of the unloading cycle. Our quantities of interest are the vertical
displacements in point D, the horizontal displacements in point F , and vertical dis-
placements in point B0, when a vertical process load qP is applied to the press, see
Fig. 4.22.

There are ns = 3 sensors installed at these locations which measure the displace-
ments. Each series of measurements was repeated nM = 6 times, although with
slightly different process forces. To deal with this variability, we work with the
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Table 4.2 Results for the optimum experimental design problem for modelM3. A sensor combi-
nation is defined by a three-digit number, where each digit stands for the usage (1) or non-usage
(0) of the corresponding sensor [50]

Sensor combination �A(C) �D(C) �E (C)

111 (initial) 4.959 ×1009 1.168 ×1016 4.956 ×1009

101 1.118 ×1029 7.183 ×1035 1.118 ×1029

011 6.258 ×1009 1.484 ×1016 6.256 ×1009

110 3.514 ×1009 2.756 ×1016 3.506 ×1009

known setpoint values of the applied forces and linearly interpolate the data, see [50]
for more details. We deviate from the algorithm presented in Sect. 4.3.1 to some
extent in that we do not distinguish between initial data and the actual acquisition of
measurements.

After the experimental data had been acquired and the measurement errors were
checked to be Gaussian, our goal was to minimise costs to obtain these measure-
ments by selecting only two out of the three sensors. The model parameters to be
estimated are the stiffnesses of two bars, k7 and k5, see Fig. 4.22. Since there are
only two parameters to be estimated, it suffices to employ two sensors and repeat
the measurement process. Table4.2 shows the results for the most important design
criteria for the model M3, where we used the matrix CS as covariance matrix, see
Sect. 4.3.1.

FromTable4.2 we infer that the absence of the second sensor entails an increase in
all design criteria by a factor of≈1020 compared to the initial value where all sensors
are employed. This is a strong indication that the covariance matrix became singular,
i.e. it is impossible to estimate the model parameters with that sensor choice. The
absence of the first sensor, though, increases the maximal expansion, which is related
to the design function�E (C), and the volume, which is related to the design function
�D(C), of the confidence ellipsoid. However, the sensor combination displayed in
the last row of Table4.2, i.e. measuring the vertical displacements in point D and
the horizontal displacements in point F only, leads to the smallest expansion of the
confidence ellipsoid. We choose this sensor pair. Computations for the models M1

and M2 bring us to the same conclusion.
As already mentioned, the experiments revealed a hysteresis behaviour. We want

to apply the algorithm introduced in Sect. 4.3.1 to see whether model uncertainty
is recognised in the friction models M1, M2 and M3. The output of these models
together with the measurement data is shown in Fig. 4.23 for comparison.

The continuous friction model is trained by an artificial neural network using real
and simulated data [16, 112]. Hence, we used four of the six data series. Thus, only
nM = 2 measurement series remained for the application of our algorithm. To stay
fair, we used these two measurement series for all models alike during the validation
whichwe perform by hypothesis testing. The splitting of the data set into a calibration
and a validation set was done in four different ways, see [50]. First, we split the test
set into loading zl and unloading zu . For the loading case, we again split the data
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Fig. 4.23 a repeated measurements of the force-displacement curve and b–d comparison of mea-
surements (- - -) with the model output M1, M2 and M3 (—–), respectively [50]

homogeneously into one calibration zl1c and one validation zl2v set. The samewas done
for the unloading case. Next, the loading scenario was tested against unloading, such
that we split the data homogeneously into one calibration zlc and one validation zuv
set. Finally, data points from both loading and unloading were tested against each
other, i.e. we had zluc for calibration and zluv for validation.

For each of these ntests = 4 test scenarios we computed the αmin, respectively,
as shown in Table4.3. Adopting the usual threshold TOL = 5% for the error of the
first kind and applying the conservative Bonferroni correction with ntests = 4, see
Sect. 4.3.1, the corrected test level becomes TOL/ntests = 1.25%. Then, it is clear
that model M1 is rejected in all four test scenarios. As expected, the experimental
data cannot be described by a linear model that neglects friction. A first attempt to
model hysteresis which is caused by friction is given byM2. This model seems to be
able to accurately model loading and unloading separately. However, it is insufficient
in describing both phenomena with the same set of parameters. Our algorithm is able
to detect this deficiency in the third and fourth test scenario. This result can be
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Table 4.3 Test results for modelsM1,M2 and M3 [50]

Calibration Validation αmin in %

for M1 for M2 for M3

zl1c zl2v 0.02 78.78 92.99

zu1c zu2v �0.01 23.33 66.06

zlc zuv �0.01 �0.01 24.59

zluc zluv 0.81 �0.01 93.45

explained with the fact that the Coulomb model is discontinuous whereas friction
is a continuous effect. The last column of Table4.3 shows that M3, which has been
trained by an artificial neural network, passes all tests successfully. Thus, this model
is able to explain the present type of hysteresis with the same set of parameters which
are valid within their confidence region.

In conclusion, we have seen that the algorithm introduced in Sect. 4.3.1 performs
well, if applied to the 3D Servo Press. The choice of the calibration and validation
test sets has been done by expert judgement because of the special behaviour of
the technical system, namely, the loading-unloading cycles. By splitting the data set
this way, we directly target the worst-case test scenario, so that a Monte-Carlo-like
splitting is not necessary. Since further development steps and online algorithms of
machines rely on a valid model, a statement about model uncertainty is a valuable
indication for the engineer. Furthermore, our hypothesis test could be used as a
stopping criterion for the performance training of an artificial neural network.Besides
the optimal placement of sensors for the model calibration, the presented method can
also be used to identify uncertainty in different complex models, to be considered in
the model selection.

4.3.3 Assessment of Model Uncertainty for the Modular
Active Spring-Damper System

Robert Feldmann, Christopher M. Gehb, Maximilian Schaeffner, and Tobias Melz

Research on methods to quantify model uncertainty in structural engineering has
intensified more and more in recent years. The information gain of such methods
typically relies on using experimental data, such as structural responses or vibration
analysis. Examples for methods range from the well-known Bayes-factor [137] to
methods based on the Bayesian inversion [60], an error-domain model falsification
approach [122], or a technique using the adjustment factormethod [124]. In Sect. 2.2 a
comprehensive overview overmethods for quantification ofmodel uncertainty can be
found. In this section, we introduce and compare two different methods to quantify
model uncertainty by applying them exemplarily to the MAFDS, as presented in
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Fig. 4.24 2 DOF model and
free body diagram of the
MAFDS

Sect. 3.6.1. First, a method based on the direct application of the Bayes’ theorem
is presented and, subsequently, a method based on the modelling of a discrepancy
function by means of a Gaussian process is shown.

Figure3.23 depicts theMAFDS and Fig. 4.24 the two degrees of freedom (2DOF)
model to capture its dynamic behaviour, where the drop height is denoted by h. The
position of both the upper and lower mass is determined by the coordinates zu and zl
of the 2 DOF model, where zr = zu − zl denotes their relative displacement. The
equations of motion are

(

mu + madd 0
0 m l

)(

z̈u
z̈l

)

+
(

b(żr) −b(żr)
−b(żr) b(żr)

)(

żu
żl

)

+
(

k(zr) −k(zr)
−k(zr) k(zr) + kef

) (

zu
zl

)

+
(

(mu + madd)g
m l g

)

= 0,

(4.21)

where k(zr) denotes the stiffness and b(żr) denotes the damping of the spring-damper
system, as functions of the relative displacement zr and kef denote the stiffness of the
elastic foot, as can be seen in Fig. 3.23. The structure is subject to gravitation g. For
details on the derivation of the equations of motion see [107]. Regression studies on
the stiffness and damping properties of the spring-damper system yielded several
model candidates to describe the dynamic behaviour by combinations of linear,
bilinear and power functions [105]. This leads to uncertainty regarding which model
candidate is most adequate to predict the dynamic behaviour of the MAFDS. This
model uncertainty is assessed and analysed subsequently by comparing the different
model candidates in terms of model adequacy. The main content of this section is
based on [45, 108].
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As outlined in Sect. 3.6.1, the inputs to the system are the drop height h and
the additional weight madd that can be added to the frame. The system inputs are
summarised in the input vector x = (h,madd)

�. Exemplarily, the system outputs
are the maximum relative compression zr,max, the maximum force in the elastic
foot Fef,max and themaximum force on the spring-damper system Fsd,max, as depicted
in Fig. 4.24. The system outputs were chosen in such away that they can be calculated
by simulation of the model candidates, as well as measured experimentally, and
thereby enable to compare different models. In Fig. 3.24 in Sect. 3.6.1, the system
outputs are shown as horizontal lines in the trajectories of the experimental drop
test. For simplicity of notation, the scalar simulation model outputs η and the scalar
experimental outputs y are condensed in the vectors η, y, respectively:

η =
⎛

⎝

zr,max,sim

Fef,max,sim

Fsd,max,sim

⎞

⎠ , y =
⎛

⎝

zr,max,exp

Fef,max,exp

Fsd,max,exp

⎞

⎠ . (4.22)

Application of Bayes’ theorem for quantification of model uncertainty

In [108] we presented a method to compare different mathematical models based
on the extent of agreement between simulation model output η and experimental
output y.Model uncertaintywas quantified for P = 4 selectedmathematical models.
In a Bayesian framework, the posterior probability gives a measure of how adequate
a mathematical model represents the dynamic behaviour of the MAFDS. It estimates
the probability of a simulationmodel outputη of eachmodel candidatewith indexq =
1, . . . , Q under the condition that the experimental output y has been observed, for
which measurement errors were not considered. Assuming an event-based Bayesian
approach, Hy,q denotes the statistical event describing the output of each model
candidate q and Ay is the statistical event associated with the observed experimental
output y. Bayes’ theorem [13] is then written as

P(Hy,q |Ay) = P(Ay|Hy,q)P(Hy,q)

P(Ay)
, q = 1, . . . , Q, (4.23)

where P(Hy,q) denotes the prior probability that themodel Hy,q is the truemodel and
is assumed equal for all Q = 4 model candidates: P(Hy,q) = 1/4. The likelihood
P(Ay |Hy,q) is the probability that experimental output y is observed when assuming
amodel q. Similar to a distancemetric, it is estimated by theCartesian vector distance
dp of the simulation model and experimental outputs (4.22):

P(Aye |Hy,q) = e
−

(

dq
minq=1,...,P dq

)

, where dq = ‖Aye − Hy,q‖2. (4.24)

The total probability P(Ay) serves as a normalisation constant and is determined
analytically as the sum of the product of the likelihood P(Ay|Hy,q) and the prior
probabilities P(Hy,q) for all mathematical models q. Subsequently, the posterior
probability (4.23) is calculated for K = 9 different, independent events. Here, an
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Fig. 4.25 Comparison of
posterior probabilities
P(Hy,k,q |Aye,k) for each
hypothetical event k
predicted by model q = 1
( ), model q = 2 ( ),
model q = 3 ( ), and
model q = 4 ( )
according to [107]

event constitutes an experimental output y and simulation model output η for the
Q = 4 model candidates. For each k = 1, . . . , K event, the numerical values of
the system inputs xk are unique as given in [108]. Figure4.25 depicts the posterior
probabilities P(Hy,k,q |Ay,k) for the four model candidates and the nine events.

Models 3 and 4 exhibit a higher posterior probability for all K = 9 events than
models 1 and 2, indicating that models 3 and 4 prove more adequate to predict
the dynamic behaviour. In order to compare models over a multitude of events, the
probability that one model holds true for all K = 9 events can be determined by

P(Hy,q |Ay) =
K=9
∏

k=1

P(Hy,k,q |Ay,k) (4.25)

and is used as a measure of adequacy. For models 1 and 2, the overall posterior prob-
ability amounts to 7.0 · 10−8 and 5.6 · 10−5. Models 3 and 4 exhibit significantly
higher values of the posterior probability with 0.38 and 0.618, respectively. In con-
clusion, model 4 is most adequate to represent the dynamic behaviour of MAFDS.
In summary, the presented method provides a straightforward, computationally non-
intensive way to quantify model uncertainty for comparing different models.

A Gaussian process-based method for quantification of model uncertainty

Now, we apply a different method as presented in [45] to quantify model uncertainty.
It is assumed that all models are wrong and incorporate a model error due to missing
or incomplete physics in the mathematical model [23]. Based on this assumption,
the method builds upon the pioneering work of Kennedy and O’Hagan [87], where a
model discrepancy function is introduced to incorporate the model error; it thereby
serves as a measure of adequacy of a mathematical model. In this framework, any
experimental output of a system is represented as

yn = η(xn) + δ(xn) + εn, (4.26)
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where yn ∈ R, (n = 1, . . . , N ) denotes the nth of a total of N measurements, η is
the simulation model output (i.e. Fef,max, Fsd,max, zr,max) with not necessarily unique
inputs xn = [h,madd]�, δ is the discrepancy function and εn represents zero-mean
normally distributed measurement noise for each measurement n. We model the dis-
crepancy function δ(x) by a Gaussian process δ(X) ∼ N (

m(X),C(X, X)
)

, where
X represents an input matrix X = [x1, . . . , xN ]. The mean function is denoted by
m(X) and C(X, X) is the covariance matrix which is built up by the covariance
function c(xi , x j ) where xi , x j with i, j = 1, . . . , N denote the input vectors. The
Gaussian process itself is fitted to the difference between measurement yn and the
model output η(xn), using the data set

[

(

x1, y1 − η(x1)
)

, . . . ,
(

xN , yN − η(xN )
)

]

. (4.27)

For the Gaussian process, a constant mean scalem and a squared exponential covari-
ance function c(xi , x j ) are selected

m(X) = β, c(xi , x j ) = σ 2
f exp

(

−1

2
(xi − x j )

�M(xi − x j )

)

+ σ 2
n δi j , (4.28)

where δi j denotes the Kronecker delta in this case. The matrix M is set to M = I�−2

with identity matrix I ∈ R2×2 and length scale � > 0 [132]. The signal variance σf >

0 determines howmuch the discrepancy function values deviate from themean value.
Larger values of the signal variance σf lead to larger deviations of the discrepancy
function. Measurement noise is accounted for by the noise level parameter σn in the
covariance function (4.28). It is assumed to be an additive, independent identically
distributed Gaussian noise with variance σ 2

n [132].
The hyperparameters (β, �, σf, σn) inherent to the mean and covariance func-

tion (4.28) essentially govern the behaviour of the Gaussian process and are deter-
mined using a Bayesian optimisation scheme. Using the optimised set of hyperpa-
rameters, the quantiles of the 95%-confidence interval for the discrepancy functions
are specified analytically by

C2.5 = β − 2σ f , C97.5 = β + 2σ f . (4.29)

Comparing the 95%-confidence interval of the discrepancy functions by their 2.5 and
97.5% quantilesC2.5 andC97.5 yields ameasure to select between competingmodels.
The maximum absolute value of the two quantiles shows how much the discrepancy
function deviates from zero and consequently indicates how adequate the model is.

For the example at hand, the Gaussian processes describing the discrepancy func-
tions δq,zr , δq,Fsd and δq,Fef are determined for the q = 1, . . . , 4model candidates (The
model candidates are not identical with the ones investigated in the previous section).
The 95%-confidence intervals of the discrepancy functions are shown in Fig. 4.26.
All models overestimate the three outputs of the system,which can be seen by the fact
that the absolute values of the 2.5 and 97.5% quantiles of the discrepancy functions
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Fig. 4.26 The mean scale β (shown as bars) and the 95%-confidence intervals bordered by its
quantiles calculated by (4.29) for the discrepancy function δ for the Q = 4 model candidates: a
for relative displacement discrepancy function δq,zr ( ) b for force discrepancy functions δq,Fef
( ) and δq,Fsd ( )

are consistently negative. For output zr,max displayed in Fig. 4.26a, the 2.5% quantile
for model 3 is closest to zero, indicating a higher adequacy of the model. However
for the force outputs Fsd,max and Fef,max shown in Fig. 4.26b, the 2.5% quantile for
model 1 is closest to zero, suggesting that model 1 is most adequate. In conclusion,
no model consistently ranks best in terms of model adequacy.

Conclusion

Both presented methods provide a measure of adequacy that can be used to quantify
model uncertainty. They essentially differ in their assumptions about model error.
The method presented first does not differentiate between model error and measure-
ment error. In consequence, the chosen likelihood function (4.24) does not reflect a
distribution but is rather to be understood as a distance metric. In contrast, the Gaus-
sian process based method assumes the model discrepancy as a Gaussian process
and accounts for measurement error separately.

Further, the discrepancy function provides valuable information about the differ-
ence between model and measurement. For example, the mean scale exhibits if a
model tends to under- or overestimate system quantities. In contrast, for the method
based on the Bayes’ theorem, this information is lost due to the quadratic form of
the likelihood function.

For themodelling of an adequate discrepancy function, theGaussian process based
method essentially relies on assumptions on or a priori knowledge about suitable
mean and covariance functions. As a priori knowledge is missing here, a rather
simple choice for mean and covariance function was made. For the rare cases, in
which there is a priori knowledge about the model discrepancy, the mean function
could for example be polynomial, or consist of weighted basis functions.
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As a concluding remark, the computing time for the first method is negligible,
whereas it highly depends on the number of model inputs, outputs andmeasurements
for the hyperparameter optimisation.

4.3.4 Model Uncertainty in Hardware-in-the-loop Tests

Manuel Rexer, Philipp Hedrich, and Peter F. Pelz

Hardware-in-the-Loop (HiL) tests investigate the behaviour of real components con-
nected to real time simulated systems [82, 98]. As depicted in Fig. 3.20, HiL tests
enable mastering uncertainty by a stepwise integration of a module into a real system
by combining cyber world and real world. This section discusses the influence of the
active interface between the two worlds. Therefore, compared to a simulation of the
virtual component, HiL tests are in the virtual system.

The first HiL tests were used in 1936 to simulate instruments in an aircraft cock-
pit [82]. In the mid 1960s, electrical and hydraulic actuators were used to simulate
cockpit movements [82]. Since the late 1960s, HiL tests have been used to simulate
the response of structures and components to earthquakes [119]. Since the 1980s,
HiL has been used at universities as well as in research and development departments
for component validation [133, 139].

Formulated briefly, HiL tests are a symbiosis of an experiment and a simulation
as Fig. 3.20 shows. This results in the following advantages compared to classical
tests and pure simulation [82, 98, 139]:

1. Real system components can be tested in the virtual system at an early design
stage. This saves costs and development time. It is a prerequisite for the agile
development of physical systems.

2. Parameters of the virtual system can be changed with little effort to investigate
different test configurations.

3. Components with complex non-linear behaviour can be investigated in the sim-
ulation as real components. The model uncertainty is reduced, since reality can
be investigated.

Therefore, HiL tests are ideal to examine components like the Active Air Spring with
the associated partswedeveloped, cf. Sect. 3.6.2. It is not necessary to have a twomass
oscillator or a complete vehicle in hardware, since they can be virtually simulated
to master the uncertainty of the component in an early design stage. HiL tests can
therefore already be used in the design phase of the product life cycle introduced
in Sect. 1.2. The disadvantages of HiL tests are a real time capable hardware being
required with this hardware having an influence on the result; this is due to signal
propagation times, measurement uncertainty, filtering, and the dynamics of the test
rig, as shown in this subsection. In addition, an appropriate modelling is necessary,
where a compromise between the required computing time and the complexity of
the model has to be found. The relevant reality, cf. Sect. 1.3, is never represented
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Fig. 4.27 Basic structure of the HiL experiments, consisting of simulation and hardware, as well
as all signal flows [73]

completely, so there is model uncertainty. In this subsection we therefore investigate
the incertitude of model uncertainty and our approach in mastering this uncertainty.

In ourHiL tests, theActiveAir Spring is coupledwith the virtual quarter car,which
is simulated in parallel in a real-time simulation environment. Figure4.27 shows the
principle structure and signal flows of these HiL tests. The air spring deflection 	z
calculated in the real-time simulation is transmitted to the uniaxial servo hydraulic
test rig, the active interface, which deflects the Active Air Spring. Themeasured axial
force F is fed back into the simulation. This is therefore a “closed loop simulation”.
The simulated quarter car model—a foot point excited two mass oscillator—and the
implemented controller are introduced in Sect. 3.6.2. The excitation is also used in
the preview function of the implemented controller, which is equally integrated in
the real time simulation. In order to minimise the influence of measurement noise,
measured and fed back signals are filtered with a second order Butterworth filter with
a cut-off frequency of 170 Hz (ZQC in Fig. 4.27). A more detailed investigation in
the results of the HiL experiments can be found at Hedrich [73].

The performance indicators that are examined with these HiL tests are driving
safety, e.g. wheel load fluctuation σFw , and driving comfort, e.g. variation of body
acceleration σz̈b , being obtained from real time simulation.

The conflict diagram, Fig. 4.28, displays themeasurement result of a HiL test driv-
ing on a highway with 100km/h marked by the diamond. To this end the standard
deviations of the wheel load Fw and the body acceleration z̈b are determined by the
time signals measured for T = 20 s. Figure4.28 shows the measured points for the
designed controller with preview. The simulated result (square) is determined with a
linear Active Air Spring model and the quarter car model from Sect. 3.6.2. The active
Pareto line represents an ideal active system where the controller parameters have
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Fig. 4.28 Conflict diagram with the results for driving safety σFw and driving comfort σz̈b for the
HiL tests (diamond) and the basic simulations (square), as well as the simulated active Pareto line
as reference driving on a highway at 100km/h [73]

Fig. 4.29 Adapted simulation structure. By taking into account the transfer functions of the hard-
ware, the influence of these functions can be considered in the simulations [73]

been optimised. TheHiL influence appears in a deviation of the experiment from sim-
ulation in driving safety by 11%. The influence on driving comfort is negligible. Our
investigations and results from literature [26] with similar HiL tests show that the test
rig in particular has a mayor influence on the results of the HiL tests. The dynamics
of the test rig and the sensors have not yet been taken into account in the simulation,
since this has never been necessary at any open loop component measurement. Fol-
lowing the principle of simplicity from Heinrich Hertz introduced in Sect. 1.3, the
transfer functions Gp = Gsen,z = Gsen,F = 1 were assumed (cf. Fig. 4.29, square).
The model used for the hardware therefore does not take the reality sufficiently into
account.
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Fig. 4.30 Conflict diagram with the results for driving safety σFw and driving comfort σz̈b for
the HiL tests (diamond) and the basic (square) and adapted (triangle) simulations, as well as the
simulated active Pareto line as reference driving on a highway at 100km/h [73]

To consider the influence of the HiL test rig on the calculations, we modelled
the hardware as shown on the right in Fig. 4.29. The transfer function GP is used to
model the behaviour of the test rig. The transfer functions of the position sensor and
the force sensor are also included via Gsen,z and Gsen,F respectively. Experiments
carried out with the sampling time of 1 ms have shown that (i) the transfer behaviour
of the position-controlled servo-hydraulic test rig up to 25 Hz can be approximately
described by a dead time of 10 ms [100, 102] and that (ii) the influence of the sensor
system in this frequency range can be neglected compared to the dead time of the
testing machine. These results are consistent with results from literature [11]. A Padé
approximation Gp with a dead time of 10 ms of the third order is used to represent
the dead time of the test rig in the hardware model [102].

Figure4.30 shows all results in the conflict diagram. The deviation of the HiL
test from the adapted simulation (triangle) in driving safety comes down to 2%.
The following conclusions can be drawn: (i) The influence of the active interface
is recognisable and it influences the results. (ii) If the influence of the test rig is
considered in the calculation via a dead time element, measurement and simulation
correspond quantitatively well. (iii) The remaining deviation is acceptable in the
context of the linearised models used and measurement uncertainty.

The model uncertainty, i.e. the neglect of the influence of the active interface, can
thus be mastered by taking the transfer function of the test rig into account. Since the
influence on the driving comfort, which is the main focus of the tests, is small, the
HiL influence on the experiments is tolerated. In the future we will investigate the
Active Air Spring integrated in the MAFDS with foot point excitation. This enables
validations of the HiL tests and the simulation of the virtual component in the virtual
system with a real component in the real system.
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4.3.5 Identification of Model Uncertainty in the Development
of Adsorption Based Hydraulic Accumulators

Jakob Hartig and Peter F. Pelz

When starting a product development from scratch, not much is known about the
intended system. There is general physical knowledge and experience in the form
of physical axioms and constitutive equations (cf. Sect. 1.3). However, ignorance in
these early stages of product development can lead to a significant model uncertainty
(see Fig. 1.5 in Sect. 1.3).

In this section, we demonstrate this point in the development of innovative
hydraulic accumulators. To ensure consistency with general knowledge we used
axiomatic models to determine the potential of hydraulic accumulators filled with
adsorptive material. In the following, we show that the omission of some of the sys-
tem’s numerous interconnected physical effects can lead to a largemodel uncertainty.

Hydraulic accumulators are used to store energy in hydraulic systems, e.g. for
dynamic energy demand. The storage medium is compressed gas. Especially in
mobile applications space and weight reduction by smaller and lighter components
is very important. Thus the quality measured in acceptance and effort is increased,
cf. 1.9. However, with hydraulic accumulators there are two opposing dependencies:

(i) The energy density of hydraulic accumulators depends on the excitation fre-
quency due to heat transfer processes. At low frequencies hydraulic accumu-
lators are isothermal, whereas at large frequencies the state change is adia-
batic. The transition frequency between isothermal and adiabatic behaviour is
inversely proportional to the accumulator volume (to be more precise, it is pro-
portional to the specific surface) and therefore, large volume and isothermal
behaviour are mutually exclusive.

(ii) The energy content of the hydraulic accumulators depends on the volume of the
accumulator and thus on the size [93, 131]. Hence, energy density and energy
content of conventional hydraulic accumulators cannot be maximised at the
same time.

To overcome this limitation, different physical effects can be considered.One of these
effects is adsorption, i.e. adherence of gas molecules to the surface of a porous mate-
rial (adsorbent) which was proposed in [126, 131]. The idea behind filling hydraulic
accumulators with adsorbent material like activated charcoal, is that adsorption will
act as an additional gas storage capacity. In addition to that, gas molecules inter-
act with the adsorbent and therefore lose a translatory degree of freedom during
adsorption. Kinetic energy of adsorbed molecules is consequently lower than of free
molecules, and energy in the form of heat has to be released during adsorption (heat
of adsorption EA). Adsorption is consequently a heat source [113]. The interde-
pendence of these effects make it necessary to evaluate the usability of adsorption
in reducing the size of hydraulic accumulators via suitable models. In the follow-
ing, we show some challenges of adequately modelling hydraulic accumulators with
adsorption and the potential huge impact of model uncertainty on the outcome.
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Fig. 4.31 Relationship between pressure and volume. Shaded area is the work for volume change
performed on a gas volume

The increase of energy density in hydraulic accumulators is equivalent to stiff-
ness reduction. Figure4.31 illustrates this connection. The work for volume change
performed on a gas volume corresponds to the shaded areas in Fig. 4.31. The work
for the volume change performed is limited by the upper working pressure p1 based
on the mean working pressure p0. A lower stiffness of the hydraulic accumulator
is reflected by a lower gradient in the p-V diagram. With the same upper working
pressure p1, a lower stiffness leads to a higher compression from the averageworking
volume V0 to V1 instead of V ′

1. Thereby more volume change work can be carried
out and thus more energy can be stored.

The intended function of adsorbent material for reducing the stiffness was origi-
nally thought to be the additional gas storage capacity. With this in mind an analysis
of a simple model was done in the two publications [126, 131]. For completeness
the model from the two publications and some results are presented below.

In comparison to the frequencies found in the application of hydraulic accumula-
tors, the typical inherent time for adsorption is much smaller. Consequently, adsorp-
tion was modelled as an equilibrium process. The number of adsorbed molecules q
in mol depends on the pressure p in the accumulator and the mass of adsorbentmads.
For small deviations from equilibrium conditions, the linear Henry approximation
with Henry constant H is valid

q = mads Hp. (4.30)

For the gas we assume the ideal behaviour
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p = �RT (4.31)

to hold, where � is the gas density, R is the specific gas constant and T is the abso-
lute temperature. The equations of mass and energy conservation for the hydraulic
accumulator result in

�
dV

dt
+ V

d�

dt
= −M

dq

dt
, (4.32)

cvV

(

dT

dt
� + T

d�

dt

)

+ T�cp
dV

dt
= −α(T − Tu)A − EA

dq

dt
, (4.33)

where V is the volume of the accumulator, M is the molar mass of the gas, cv and cp
are the specific heat capacities of the gas. The heat transfer to the surrounding gas
with temperature Tu is modelled with the heat transfer coefficient α and surface area
of heat transfer A. All parameters for the hydraulic accumulator (V0, p0, α, Tu , A, V̂ )
were chosen to represent typical accumulators found in literature [93]. All adsorption
parameters, namely isosteric heat of adsorption EA and Henry-coefficient H were
estimated for nitrogen as described in [111].

In our case the accumulator volume V is changed dynamically, denoted by

V = V0 + V̂ sin(2π f t), (4.34)

where the index 0 denotes the pre-charged average working state of the accumulator.
Both energy density and energy content depend on the change of the pressure p

with changing volume V , i.e. the stiffness

K = − 	p

	V
(4.35)

and for comparison purposes are de-dimensioned with

K+ = K
V0

p0
. (4.36)

For dynamic applications the stiffness of the accumulator as a function of loading
frequency � = 2π f is of interest. Therefore, the frequency response of the stiffness
is shown in Fig. 4.32 (white-filled circles). Comparing the frequency response to the
response of a model without adsorption (light grey curve), a stiffness reduction in
the isothermal range, and a stiffness increase in the adiabatic range are visible [126,
131].

Measurements on a similar system however, showed a stiffness reduction in the
whole frequency range [29]. This deviation from reality is a sign of model uncer-
tainty (cf. Sect. 2.2. Consequently, the assumptions for the model were revisited and
the assumption of temperature independence of the adsorption was given up. In the
updated model, the number of adsorbed moles is a function of pressure and temper-
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Fig. 4.32 Comparison of stiffness for model q = q(p) according to 1st hypothesis as published
in [126, 131], model according to 2nd hypothesis q = q(p, T ) and reference accumulator model
without adsorption q = 0

ature. For the temperature dependency of the Henry coefficient H(T ) the following
exponential Arrhenius relation can be assumed [113]

H(T ) = H0 exp

( −EA

MRT

)

. (4.37)

The resulting stiffness from numerical simulation of the full nonlinear equations can
be seen in Fig. 4.32 (black dots). It shows a stiffness reduction in the whole frequency
range.

Tofind the reason for the stiffness reduction, a parameter variation of the linearised
newmodel in the adiabatic range was carried out. The parameter variation of the new
model for the parameters H0 and EA in the adiabatic frequency range (cf. Fig. 4.33)
shows that the stiffness in the adiabatic range is mainly influenced by EA. This
indicates that themagnitudeof the adsorption enthalpy ismore significant for stiffness
reduction than the process of adsorption itself.

To examine this issue further, a sensitivity analysis of the adsorption equilibrium
was carried out. The results show that the sensitivity of the equilibrium loading with
respect to temperature T is greater than on pressure, i.e.
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Fig. 4.33 Isolines of dimensionless stiffness K+ in the adiabatic range for variation of H0 and
|EA|. A stiffness decrease can only be seen for values of |EA| being larger than about 9 · 103 J/mol.
In this parameter range the size of the Henry coefficient H0 has little influence on the stiffness

Due to ∂q/∂T being larger than ∂q/∂p, the number of adsorbedmolecules decreases
when compressing. Therefore, both results suggest that the stiffness reduction in the
adiabatic range is reduced by a lower increase of temperature due to EA being
drawn from gas for desorption. The pressure and temperature rise of compression
are diminished due to the heat EA being released in the adsorption. In other words:
In contrast to the original assumptions, the adsorptive material is an additional mass
source and a heat sink instead of being a mass sink and heat source.

This is a totally different effect than originally intended, and therefore demon-
strates a large model uncertainty due to omission of relevant effects. The discovery
of this unexpected behaviour was only possible by comparing results from related
areas with the model in early stages of the product development process. Inspired
by these results, the model uncertainty, i.e. relevant but ignored reality was identi-
fied (cf. Sect. 1.3). It emphasises the large effect model uncertainty can have on the
results, especially in systems with interdependent physical effects.

4.3.6 Uncertainty Scaling—Propagation from a Real Model
to a Full-Scale System

Johannes Brötz and Peter F. Pelz

Models may be mathematical, but they may also be physical, i.e. scaled real models
representing a full-scale component or system.The realmodel is usually scaled in size
or material. Geometrically scaled models are common in architecture. In mechanical
engineering, scaled models are equally gaining more and more relevance. When it
comes to agile development, rapid prototyping is increasingly used resulting in scaled
real models.
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Fig. 4.34 Methods for predicting the function of a full-scale component using the example of a
buckling beam

Figure4.34 shows two methods to predict the functionality of the full-scale com-
ponent taking the example of a buckling beam: firstly, scaling from real model mea-
surements; secondly, predicting the function of the full-scale prototype by means of
a cyber model. This cyber model is a mathematical model of the component, e.g. a
finite element model.

Here, we focus on the first method, the scaling of the prototype’s function from
model measurements. Compared to the cyber model, the advantage of the methodol-
ogy presented here is that there is no need to consider the uncertainty ofmathematical
modelling, see Sect. 2.2 So far it has remained an open question how to scale the
uncertainty in shape and measurement of the physical model test to the full-scale
component.

State of the art for scaling are the four steps: (i) produce a scaled physical model,
(ii) measure, (iii) undimension and (iv) scale, see Fig. 4.35. When mastering uncer-
tainty, it is no longer sufficient to only take the parameter uncertainty of a real model
into account. In addition, the uncertainty must be scaled in a fifth process step, see
Fig. 4.35. In this subsection we introduce a newmethodology to propagate the uncer-
tainty from a physical model to the real prototype. The beam and the related buckling
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Fig. 4.35 Five steps in the process of scaling

load are used as an application-related example being an important predefined func-
tional restriction g ≤ 0 of a load carrying structure.

The following subsections describe the procedure of dimensional analysis, scal-
ing and newly introducing the propagation of scaling uncertainty. We refer to the
application of uncertainty scaling according to Vergé et al. [156].

Dimensional analysis

The following recap of dimensional analysis is based on Spurk [148]. A system
function g and/or quality F is prescribed by n dimensional physicalmeasures p j , j =
1, . . . , n. The unit of each physical measure p j is given as a monomial of the i =
1, . . . ,m base units Pi . The dimension of the measure is

[p j ] =
m

∏

i=1

P
ai j
i . (4.39)

The matrix A = (

ai j
)

n,m is the dimension matrix being central in dimensional anal-
ysis. The coefficients ai j are the exponents of the i th base unit for the j th physical
measure.

As a consequence of the Bridgeman’s postulate [24] the relation of p j , j =
1, . . . , n, is equivalent to the relation of � r with r = 1, . . . , d dimensionless mea-
sures. Each �r is a monomial of the j = 1, . . . , n physical measures.

�r =
n

∏

j=1

p
kr j
j , r = 1, . . . , d. (4.40)

The demand [�r ] != 1 for a truly relative quantity yields

1
!=

n
∏

j=1

P
ai j kr j
i , r = 1, . . . , d. (4.41)

This is only satisfied for
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ai j kr j = 0,

i = 1, . . . ,m

j = 1, . . . , n

r = 1, . . . , d.

(4.42)

There are d linear independent solutions of this linear system of equations. From
linear algebrawe know that d = n − rg(A), where rg(A) is the rank of the dimension
matrix A = (

ai j
)

n,m .
As an illustrative example we look for the buckling load of a beam. The analytic,

i.e. mathematical model goes back to Euler [43]. This analytic model is not in focus
here. The buckling beam in Fig. 4.34 with fixed-free clamping is assumed to be a
cylindrical beamof circular cross-sectionwith nominal diameter D, length l, Young’s
modulus E and the second moment of area I . For predicting the demanded buckling
load Fc of the full-scale component we use the measured buckling load F ′

c of the
physical scaled model.

For the system there is only one dimensional product

Fn(Fc, l, E I ) = 0 ⇔ � = Fcl2

EI
∝ Fcl2

ED4
= const. (4.43)

Scaling

Scaling is used to predict the function g and quality F of the full-scale component.
Not only geometric quantities, but other physical quantities, such as the buckling
load Fc, can be scaled. The physical properties of the physical model p′

j (values of
our physical model are marked by a prime) correlate with the full-scale p j by

p j := p′
j M j , j = 1, . . . , n, (4.44)

with the scaling factors Mj . If the dimensionless products of a real physical and a
full-scale model are equal, both are said to be similar [148]:

�r = �′
r , r = 1, . . . , d. (4.45)

If there is equality of all dimensionless products, we speak of complete similarity.
With Eq. (4.44) and (4.45) we demand

1
!=

n
∏

j=1

M
kr j
j , r = 1, . . . , d (4.46)

for complete similarity.
For the beamwe assume complete similarity in the dimensionless product� given

in Eq. (4.43). Hence, using Eq. (4.46) we get the scaling factor MFc of the critical
buckling load Fc
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MFc = MEM4
D

M2
l

. (4.47)

The use of such a scaling law is straight forward: Usually the geometric scaling
factors MD and Ml are known. The same is true for the scaling factor ME for the
Young’s modulus. Hence, the scaling law helps predicting the full scale function Fc
from the measured model function F ′

c.

Uncertainty scaling

In order to take uncertainty into account, the true value p j is given as the combination
of the nominal value p j and the tolerance range δp j for incertitut, cf. Sect. 2.3:

p j = p j ± δp j , j = 1, . . . , n. (4.48a)

With the definition of relative uncertainty Uj := δp j/p j , the true value is

p j = p j (1 ±Uj ), j = 1, . . . , n. (4.48b)

The same can be applied to the dimensionless products

�r = �r

n
∏

j=1

(1 ±Uj )
kr j , r = 1, . . . , d. (4.49)

When considering uncertainty, the product of the scaling factors reads

1
!=

n
∏

j=1

M
kr j
j =

n
∏

j=1

M
kr j
j

n
∏

j=1

(

1 ±Uj

1 ±Uj ′

)kr j

, r = 1, . . . , d. (4.50)

Since we assume complete similarity of the dimensionless products,
∏n

j=1 M
kr j
j = 1

applies. Hence, we obtain

1 =
n

∏

j=1

(

1 ±Uj

1 ±Uj ′

)kr j

, r = 1, . . . , d. (4.51)

With Eq. (4.51) the uncertainty of the function and/or quality of a physical system
can be calculated. The equation only needs to be solved according to the uncertainty
sought.

The manufacturing of the physical model of the full scale beam entails production
tolerances. For uncertainty quantification,we refer to the ISO2768-1 standard [33]. In
ISO 2768-1 general tolerances are given for components not specified in great detail.
Here the incertitude of the distribution is covered by intervals. For the physical model
we choose a length l ′ = 200mm and a diameter D′ = 10mm. We assume that the
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material used is not changed. Hence, there is a complete similarity of the material
ME = 1. The uncertainty of the critical buckling load of the modelUFc that is gained
by model measurements, is defined for our example UF ′

c
= 0.085. With Eq. (4.51)

the uncertainty of the critical buckling load results in:

±UFc =
(

1 ±UD

1 ±UD′

)4 (

1 ±Ul ′

1 ±Ul

)2
(

1 ±UF ′
c

) − 1. (4.52)

Equation (4.52) shows that the ratios of the uncertainty of the model and full-scale
parameters have an influence on the calculation of the full-scale function uncertainty.
These ratios are multiplied by the term for the measured uncertainty of the model
function. The uncertainty scaling is illustrated in Fig. 4.36. A geometric scaling factor
MD = Ml = 1 represents our real physicalmodel. For scaling factors greater thanone
(upscaling), the relative uncertainty decreases. This is due to higher precision being
possible in manufacturing of large diameters and lengths. For downscaling, which
is for lower geometric scaling factors, there is a strong increase in the production
uncertainty. This affects the uncertainty of the critical buckling loadUFc of the beam,
which shows a variation of higher range. Since the tolerances are defined for specific
parameter regions, we obtain a discontinuous function for the uncertainty UD and
Ul and thus for UFc .

Conclusion

The analysis has shown that there is a strong need for uncertainty scaling. In the
example of the buckling load, the relative uncertainty of the predicted function, the
buckling load Fc, increases when scaling down. This has to be considered in the
design, as it may otherwise lead to unforeseen failure due to the great uncertainty.

4.3.7 Improvement of Surrogate Models Using Observed
Data

Sebastian Kersting and Michael Kohler

Computer models of technical systems are playing a more and more important role
in the design and construction of complex technical systems. Implemented as com-
puter code, such models enable the use of so-called computer experiments, i.e. an
experiment with the technical system is simulated via a computer program using
the underlying mathematical model. An overview of the design and analysis of
computer experiments can be found in [138] or [44]. In general, these computer
models are imperfect, in the sense that they do not predict the reality perfectly, as
discussed in Sect. 2.2 There are several reasons, e.g. because of missing knowledge
of underlying physical dependencies, or because of an approximation of those to
reduce complexity. A typical example is neglecting the friction or considering it
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Fig. 4.36 Uncertainty of the buckling load of the full-scale beam UFc

constant. Furthermore, in uncertainty quantification it is often required to perform a
large number of computer simulations of an experiment with the technical system,
which can be time-consuming, since typically these computer simulations are com-
putationally expensive. A solution to circumvent this problem is to use a so-called
surrogate model. There is a vast variety of literature on methods for estimating a sur-
rogate model. For example [25, 31, 90] used quadratic response surfaces, [22, 32,
77] investigated surrogate models in the context of support vector machines, [121]
concentrated on neural networks, [17, 86] used kriging and [160] used Gaussian
processes. In the following, a method is described, which is able to circumvent
the challenges of the imperfectness and the computationally expensiveness of the
computer model, by estimating an improved surrogate model, which has a smaller
prediction error and is faster to compute than the computer model, as shown in [62,
88, 91]. Furthermore, the improved surrogate model can then be used to quantify
and analyse model uncertainty as shown in [164]. According to Fig. 3.1 the method
is applied in the product or system design phase (A).

Mathematical setting

The method, which will be described below is based on the following mathematical
setting: Let (X,Y ), (X1,Y1), (X2,Y2), …be independent and identically distributed
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random variables with values in Rd × R, and let m : Rd → R be a measurable
function. Here X describes (random) inputs of an experiment with the technical
system, Y the outcome of the experiment and m is a computer simulation of the
experiment with the technical system, thus we use m(X) as an approximation of Y .
Given the data

(X1,Y1), . . . , (Xn,Yn),
(

Xn+1,m(Xn+1)
)

, . . . ,
(

Xn+Ln ,m(Xn+Ln )
)

, (4.53)

the aim is to estimate an improved surrogate model m̂n : Rd → R of the computer
simulation m. Note that the method implicitly assumes that the distribution PX of
X is either known or that a large quantity of input values is available, i.e. stochastic
uncertainty as described in Sect. 1.6 occurs. In an application, this is often not the
case. How to circumvent this problem is described in Sect. 4.3.8.

Method

In the following, a method to estimate an improved surrogate model based on exper-
imental data and a computer simulation is described. The method is based on the
proposed estimators in [62, 88, 91, 164].

We start by estimating a surrogatemodel m̂Ln of the computer simulationm. There
is a vast variety of methods (cf. [44, 138]). Here (penalised) least-squares estimates
are used, defined by

m̂Ln (·) ∈ argmin
f ∈F

1

Ln

n+Ln
∑

i=n+1

| f (Xi ) − m(Xi )|2 + pen2n( f ), (4.54)

where F is a set of functions, (X1,m(X1)), . . . , (XLn ,m(XLn )) is the set of input
values evaluated with the computer modelm of size Ln ∈ N and pen2n(·) is a penalty
termwhichusually penalises the ‘roughness’ of the function andwhich is nonnegative
for each f ∈ F , i.e. pen2n( f ) ≥ 0. If the input dimension is smaller or equal to 3
then smoothing spline estimates can be used forF as shown in [91]. For bigger input
dimensions neural network estimates can be applied as in [62] or [88]. Of course,
there exist other estimator function classes as discussed above.

As discussed in Sect. 2.2, usually every computer model has an inherent model
error. To circumvent this problem, an estimator of the residuals is constructed by first
calculating the residuals of the surrogate model with respect to the experimental data

εi = Yi − m̂Ln (Xi ) (i = 1, . . . , n) (4.55)

and then applying a (penalised) least-squares estimate on this sample, defined by

m̂ε
n(·) ∈ argmin

f ∈F̄
1

n

n
∑

i=1

| f (Xi ) − εi |2 + pen2n( f ), (4.56)
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where F̄ is a set of functions. Finally, the improved surrogate model is a composition
of the estimators above, defined by

m̂n(x) = m̂Ln (x) + m̂ε
n(x) (x ∈ R). (4.57)

In case that only a small sample of experimental data is available, the estimator
of the residuals (4.55) usually does not yield satisfying results. In this case, if an
additional independent sample of input values Xn+Ln+1, . . . , Xn+Ln+Nn of size Nn ∈
N is available, one can use a weighted (penalised) least-squares estimate instead
of (4.56) defined by

m̂ε
n(·) ∈ arg min

f ∈F̄
w(n)

n

n
∑

i=1

| f (Xi ) − εi |2 + (1 − w(n))

Nn

Nn
∑

i=1

| f (Xn+Ln+i )|2 + pen2n( f ),

(4.58)

where w(n) ∈ [0, 1] is a weighting term, which should be chosen data-dependent.
Here, adding the weighted mean square of the euclidean norm of the vector
( f (Xn+Ln+1), . . . , f (Xn+Ln+Nn )) of function values of the additional sample is used
as a regularisation.

Application

In order to demonstrate the usefulness of the above described approach, we apply
it to the drop tests with the MAFDS, which are described in Sect. 3.6.1; here we
only consider the drop height as input variable and neglect the additional payload,
as in [91]. The system outputs are the maximum relative compression zr,max . For F
and F̄ we use a smoothing spline estimator as implemented in theMATLAB routine
csaps().A smoothing spline estimator depends on an additional smoothing parameter.
In the estimation of m̂Ln this smoothing parameter is chosen by generalised cross-
validation, cf. [157]. The smoothing parameter and the weighting parameter w(n)

in the estimation of m̂ε
n are chosen by a k-fold cross-validation, cf. [68], where the

smoothing parameter is chosen from the fixed set {2l : l ∈ {−8, . . . ,−1}} and the
weighting parameter is chosen from the set {0, 0.1, . . . , 1}.

The result is illustrated in Fig. 4.37. To conclude, we observe that model uncer-
tainty occurs. The computer model overestimates the outcome of the experiments,
whereas the improved surrogate model fits the experimental data quite accurately.
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Fig. 4.37 Measured data (X1, Y1), . . . , (Xn, Yn) (black circles), computer model m (dashed line)
and improved surrogate model m̂n (solid line)

4.3.8 Uncertainty Quantification with Estimated Distribution
of Input Parameters

Sebastian Kersting and Michael Kohler

Methods of uncertainty quantification are frequently applied in an experimental set-
ting. This serves to quantify the uncertainty in the outcome Y of an experiment with
a technical system, depending on an input X . This would be easy, if a large quantity
of experimental data is available, but in most cases running experiments is expensive
and time consuming. In order to circumvent this problem, one can use knowledge
(e.g. physical knowledge) of the experiment with the technical system to implement
a computer model m and use this to generate a data set of computer experiments. In
this context, the input-output tuple (X, Y ) is modelled as anRd × R valued random
variable, i.e. the experiment depends on a d-dimensional real valued input and has
a real valued output. Then, if the input distribution PX is known, one can generate
realisations of the input X and evaluate them with the computer modelm to generate
the data set

(

X1,m(X1)
)

, . . . ,
(

Xn,m(Xn)
)

(4.59)

of computer experiments. This data set can then be used as an approximation of
reality to apply a method of uncertainty quantification, for example see Sect. 5.2.6.
In the case that the computer model does not fit reality and a sample of experimental
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data is available, one can also use the method described in Sect. 4.3.7 to construct an
improved surrogate model, which then can be used instead of m.

Frequently, we see the situation that the distribution PX is unknown and instead
only a (rather small) data set of experimental data is available. In the following a
method to estimate the probability density function g : R → R of Y based on the set
of experimental data and a computer model m : Rd → R is described. Comparing
the probability density function estimated by the method with an estimate of the
probability density function based on the computer model enables the detection of
model uncertainty. The method is according to Fig. 3.1 applied in the product or
system design phase (A).

Mathematical setting

The method described in the following is based on the subsequent mathematical
setting: Let (X,Y ), (X1,Y1), (X2,Y2), …be independent and identically distributed
random variables with values in Rd × R, and let m : Rd → R be a measurable
function, i.e. stochastic uncertainty as described in Sect. 1.6. Here Y describes the
outcome of an experiment with the technical system, X the (random) inputs of the
experiment and m is a computer model of the experiment with the technical system,
thus we use m(X) as an approximation of Y . Given the data

(X1,Y1), . . . , (Xn,Yn) (4.60)

the aim is to estimate the probability density function g : R → R of Y . Note that to
apply the method described below, it will be necessary that the evaluation of m on
specific input values is possible.

Method

The method described in the following is based on [88], which is an extension of [62,
91]. In the following, we will assume that X is multivariate normally distributed
to estimate its distribution and generate a sample based on this estimated input
distribution. An overview of methods to generate a data set based on a specific
class of distribution can be found in [35].

In order to estimate the parameters of the distribution PX of X , a maximum
likelihood estimate based on the data (4.60) defined by

μ̂ = 1

n

n
∑

i=1

Xi (4.61)

and

�̂ =
(

1

n

n
∑

k=1

(

X (i)
k − μ̂(i)

)

(X ( j)
k − μ̂( j))

)

1≤i, j≤d

(4.62)
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is used, where X (i)
k denotes the i th component of the d-dimensional random variable

Xk . Alternatively, one can use the unbiased version of (4.62) defined by

�̂ =
(

1

n − 1

n
∑

k=1

(

X (i)
k − μ̂(i)

)

(X ( j)
k − μ̂( j))

)

1≤i, j≤d

. (4.63)

Given these estimators of the parameters μ and � of the input distribution PX , a
sample of size Nn = Nn,1 + Nn,2 ∈ N can be generated which is independent and
multivariate normally distributed with mean μ̂ and covariance �̂. Therefore, we first
generate an independent sample Z1, . . . , ZNn of d-dimensional vectors, where for
each vector the components are independent and standard normally distributed, and
set for every i = 1, . . . , Nn

X̄i = Ô�̂1/2Zi + μ̂, (4.64)

where Ô and �̂ are defined by the eigendecomposition

�̂ = Ô�̂ÔT (4.65)

of �̂. Here �̂ = diag(λ̂1, . . . , λ̂d) is a diagonal matrix consisting of eigenvalues of
�̂ and Ô is an orthogonal matrix whose columns are eigenvectors of �̂.

To estimate an improved surrogate model m̂n of m we use the method described
in Sect. 4.3.7, with a few minor changes. To estimate the surrogate model m̂Ln of m
we first generate the data set

U1,n, . . . ,ULn ,n (4.66)

of size Ln ∈ N, where the values in this set are independent and uniformly distributed
on the centred cube Bn := [−c · (log Ln), c · (log Ln)]d , for some suitably chosen
constant c > 0. This set is then used to construct the surrogate model m̂Ln of m, i.e.
we define the estimator by

m̂Ln (·) = argmin
f ∈F

1

Ln

Ln
∑

i=1

| f (Ui,n) − m(Ui,n)|2 + pen2n( f ), (4.67)

where F is a set of functions. In case the data set (4.60) is sufficiently large, the
estimator of the residuals can be defined as estimate (4.56) in Sect. 4.3.7. Otherwise
we make a modification of estimate (4.58) from Sect. 4.3.7, where we replace the
sample of additional input data by the first Nn,1 of the generated input data, i.e. the
estimator is defined by

m̂ε
n(·) ∈ arg min

f ∈F̄
w(n)

n

n
∑

i=1

| f (Xi ) − εi |2 + (1 − w(n))

Nn,1

Nn,1
∑

i=1

| f (X̄i )|2 + pen2n( f ), (4.68)
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where F̄ is a set of functions.
The improved surrogate model is constructed as in Sect. 4.3.7, i.e. it is defined by

m̂n(x) = m̂Ln (x) + m̂ε
n(x) (x ∈ R). (4.69)

In order to estimate the probability density function g of Y , the kernel density esti-
mator of [123, 135] is applied on the sample m̂n(X̄ Nn,1+1), …, m̂n(X̄ Nn,1+Nn,2), i.e. it
is defined by

ĝNn,2(y) = 1

Nn,2 · hNn,2

Nn,1+Nn,2
∑

i=Nn,1+1

K

(

y − m̂n(X̄i )

hNn,2

)

, (4.70)

for some bandwidth hNn,2 > 0 and some kernel K : R → R, which is usually
chosen as a symmetric and bounded density, e.g. the Gaussian kernel K (t) =
1√
2π

exp(− 1
2 t

2).

Application

As an example we consider a lateral vibration attenuation system with piezo-elastic
supports. A visualisation of the technical system can be found in [103, Fig. 1].

This system consists of a beamwith circular cross-section embedded in two piezo-
elastic supports A and B. Support A is used for lateral beam vibration excitation
and support B for lateral beam vibration attenuation, as proposed in [61]. The two
piezo-elastic supports A and B are located at the beam’s end; each consists of one
elastic membrane-like spring element made of spring steel, two piezoelectric stack
transducers arranged orthogonally to each other and mechanically prestressed with
disc springs, as well as the relatively stiff axial extension made of hardened steel that
connects the piezoelectric transducers with the beam. For vibration attenuation in
support B, optimally tuned electrical shunt circuits are connected to the piezoelectric
transducers [63].

Our aim is to quantify uncertainty, i.e. to estimate the probability density function
of the maximal amplitude of the vibration occurring in an experiment with this
attenuation system. Five parameters vary during the construction of the attenuation
system and influence the maximal vibration amplitude: the lateral stiffness klat,y and
klat,z in direction of y and z, the rotatory stiffness krot,y and krot,z in direction of
y and z, and the height of the membrane hx . In our setting these five values are
the input X of the experiment with the technical system. A computer model (above
denoted by m) is available with which we can compute an approximation m(X) of
the maximal vibration amplitude Y to a corresponding input value X . To apply the
density estimator (4.70) we measured the corresponding parameters for ten real built
systems. As a result we got the data in Table4.4.

Since the parameters vary in scale, it does not make sense to estimate the surro-
gate model m̂Ln on Ui,n ∼ U ([−c · log(Ln), c · log(Ln)]d). Instead we rescale the
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Table 4.4 Measured data for the ten built systems. The values of krot,y and krot,z are given in
Nm/rad, the values of klat,y and klat,z are given in N/m, the values of hx are given in m and the
values of the maximal vibration amplitude y are given in m

s2
/V

1 2 3 4 5 6 7 8 9 10

krot,y × 102 1.31 1.34 1.31 1.23 1.14 1.29 1.35 1.28 1.04 1.20

krot,z × 102 1.31 1.28 1.43 1.25 1.30 1.34 1.22 1.16 1.18 1.11

klat,y × 107 3.27 3.28 3.35 3.29 3.22 3.26 3.19 3.54 3.21 3.42

klat,z × 107 3.07 3.22 3.29 3.25 3.30 3.18 3.16 3.51 3.37 3.44

hx × 10−4 6.79 6.77 6.82 6.80 6.79 6.76 6.81 6.74 6.68 6.84

y × 101 1.45 1.42 1.44 1.42 1.43 1.35 1.47 1.32 1.31 1.63

Fig. 4.38 Density estimator based on surrogate model (dashed line), density estimator based on
improved surrogate model (solid line) and as reference the data Y1, . . . , Yn indicated on the x axis

components of Ui,n so that for each component U ( j)
i,n ∼ U ([μ̂( j) − 2 · √

σ̂ j j , μ̂
( j) +

2 · √

σ̂ j j ]) holds.
We apply the density estimator (4.70) to the data and obtain as a result Fig. 4.38,

where we compare it to a density estimator based on the surrogate model m̂Ln .
The result shows that the estimator based on the improved surrogate model fits the
data better, i.e. the improved surrogate model is able to predict the reality more
accurately than the surrogate model; hence the density estimator is more accurate.
Model uncertainty occurs which leads to the conclusion that the computer model
does not fit reality.
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4.4 Representation and Visualisation of Uncertainty

Moritz Weber, Georg Staudter, and Reiner Anderl

Product development is a knowledge-intensive process where, despite its uncer-
tainty [42, 95, 106], designers define what the product has to achieve in the physical
domain and how this has to be accomplished, potentially, according to customer
specifications, cf. Sect. 1.2. As to the definitions it is determinated which tests are
necessary, how and in which quantity the product must be manufactured and at what
time it needsmaintenance.Uncertaintymay have negative effects on decisions,which
can lead to over-sizing, unfulfilled customer demands and unforeseen failures [74].
As pointed out by Anderl et al. [6], software applications used in the engineering
context rarely consider uncertainty quantification, which partly explains the lack of
awareness about uncertainty by designers. This section introduces our approach to
overcome this issue by visualising uncertainty and its consequences for developers
and the required digital representation of knowledge about uncertainty. This aims
to support engineers and designers to better understand uncertainty regarding prod-
uct and process properties, and thus helps the engineers to recognise, evaluate and
analyse uncertainty in their designs (cf. Sect. 1.7).

A three-layer architecture that includes representation, presentation and visuali-
sation of uncertainty [6] is the basis for the approach introduced in this section. The
representation layer is dedicated to the digital representation of data uncertainty with
all of its subtypes (cf. Sect. 2.1). For this purpose, it uses an ontology-based infor-
mation model, see Sect. 4.4.1. The presentation layer serves as an auxiliary layer
for the visualisation and creates use-case defined objects, which serve as an inter-
mediate representation for visualising uncertainty. The concept of uncertainty cloud
(uCloud) enables the tangible presentation of geometric tolerance uncertainty. To
this end, it creates an Euclidean space that describes the probability distribution of a
body existence of a physical part [6]. The visualisation layer uses the instances of the
presentation layer and maps its objects into the functionality of computer graphics,
see Sect. 4.4.2. The MADFS (see Sect. 3.6.1) serves as an application example for
the outlined approach and its methods, see Sect. 4.4.3.

4.4.1 Ontology-Based Information Model

Moritz Weber and Reiner Anderl

For the purpose of identifiying the uncertainty in early stages of the product devel-
opment process and thus enabling uncertainty management, information about all
product life cycle phases is necessary. Therefore, a suitable model is required to dig-
itally represent information about uncertainty. The ontology-based approach offers
the opportunity of an appropriate conceptual space based on scientific knowledge
about uncertainty. In addition, it provides high semantic value.
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Ontologies are defined as “formal models of selected aspects of the real
world” [67]. They digitally represent objects or assets and their relations for the use
in advanced applications of information and communication technology. Ontologies
are designed for the specification of semantics of higher-order to enable knowledge
representation. Ontologies use triples to formalise information. Each triple comprises
subject, predicate, and object.

For authoring the ontology, we use a variant of the Web Ontology Language in
version 2 (OWL 2). OWL 2 is standardised by the World Wide Web Consortium
(W3C) and comprises three language variants of various expressive power. Here, we
chose the variant OWL Description Logics (DL), since it comes with the greatest
possible expressive power, while maintaining the computational completeness and
decidability necessary for inference and validity checking. OWL 2 supports seri-
alisation using the Extensible Markup Language (XML), which enables the easy
exchange of information. A further advantage of OWL 2 for dealing with uncer-
tainty and especially ignorance is the Open World Assumption made by OWL 2, so
a statement can be true irrespective of whether it is known to be true [64].

Since ontologies are based on description logic, so-called inference machines can
infer new knowledge based on already known information. In addition, they can be
used to verify the integrity of the knowledge [7, 20]. An ontology comprises an
Assertional Box (A-Box) and a Terminational Box (T-Box). The T-Box formalises
the knowledge about the concepts—also called classes—of the described domain,
whereas the A-Box contains the knowledge about the specific instances of these
concepts in the domain.

This section describes the information model used for the exchange and visual-
isation in load-bearing systems and therefore forms the fundament for the methods
described in Sect. 4.4.2 and Sect. 4.4.3 and is therefore a contribution to the mod-
elling of uncertainty in information technology. Figure4.39 provides an overview of
the ontology-based information model named Collaborative Ontology-based Prop-
erty Engineering System (COPE), which we have developed with its major com-
ponents [145]. It incorporates the property-driven development approach [162]
and comprises the three life cycle phases development, production, and usage
(cf. Sects. 3.2 and 1.7). Data uncertainty is characterised as uncertain property value
and uncertain relationship that specifies the effect of the uncertain value. The product
model and a process model define the context of these two components. A major
approach of the ontology is property and process classification. The following para-
graphs describe four of the major components of the ontology-based information
model “COPE” in more detail.

Uncertain property value

For the representation of the uncertain property values, we have developed a partial
model referred to as ‘Uncertainty Data Type’ (UDT) [146]. Its aim is to represent
digitally the uncertainty of product and process properties to improve the inter-
changeability of these data types. The approach is based on the digital uncertainty
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Fig. 4.39 Overview of COPE [145]

representation introduced and discussed in Sect. 2.1, and it covers all three types of
data uncertainty described there.
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Uncertain relation

Multivalent directed relations represent the dependencies on uncertain causal con-
nections in the ontology. Thus, it is supported to define the distinct relationship types
and to parametrise the relations individually. These relations can refer to both, the
nominal value and the distribution of the uncertain property [147].

Process model

Processes are highly important in the context of uncertainty, and therefore processes
are integrated to the main parts of the information model. Four values characterise
processes. The Name of the process describes its type semantically (e.g. drilling,
landing). Appliances are resources that the process needs but does not consume (e.g.
drill, light aircraft). In- and Output represent the transformation by the process (e.g.
speed, load). The last value comprises influencing factors. They are structured into
disturbance, information, resources, and user (e.g. temperature, energy, qualifica-
tion).

Standardised terminologies are used as far as possible within the process model.
For production, we use the classification given by DIN 8580 [34]. It provides an
overview of production processes, such as forming and drilling. In contrast, the usage
processes depend on the used product. For the application of load-bearing structures
in mechanical engineering, such a standard is not available. Therefore, the developer
must anticipate the potential processes of the product during the development phase
and specify them further later.

Product model integration

The information model is integrated into the product model for two reasons. It refer-
ences the uncertainty in the integrated product model and is used to assign uncertain
property values to parts of the product model. This approach enables unique iden-
tification throughout all life cycle phases and improves the usability of uncertainty
information. Furthermore, the integration into the product model provides an appro-
priate basis for the visualisation of the uncertainty information (see Sect. 4.4.2) in
the respective product context. The item references entities of the Boundary Repre-
sentation (BRep) to localise the uncertainty information.

The ontology-based information model extends the product model based on
ISO standard 10303-108 for parameterisation and geometric boundary conditions
of explicit product models of parts and assemblies. In this context, the ontology
constitutes the T-Box. Specific CAD models and attached data constitutes the A-
Box. The definition of uncertain geometric entities results in a geometrically under-
determined state in the A-Box. Systems of equations cannot further characterise the
relations between the geometric entities without reducing the degrees of freedom
of the geometric entities and thereby removing the information of the geometric
variation. The A-box describes geometry and topology of the geometric entities and
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Fig. 4.40 a Representation of points in the information model and b visualisation in the CAD-
model

allows the characterisation of the solutions of the system of equations, which are
algebraically identical but geometrically different.

For the processing of time-variant uncertainty information (see Sect. 3.4), we have
developed a concept with the corresponding implementation for the bidirectional
connection of a CAD system (Siemens NX), and a numerical linear equation system
solver (Matlab). The ontology serves as a mediator between the two systems so that
the results of the ontology queries are applied in the CAD system, as well as in
Matlab. The representation of time-variant uncertainty extends the A- and T-Box
representing design variants in the parametric product model. Furthermore, time-
variant changes in the geometry of assembly components are also represented [168].
Figure4.40a shows a graph-based visualisation of a small section of the information
model. It shows individual points and their connections. Circular symbols indicate
concepts, and diamonds indicate specific instances. This example depicts a point
with its three Cartesian coordinates and four points derived from it. The derived
points represent possible corner points after production and after consideration of the
uncertainty. The figure equally shows a small part of the class hierarchy. Figure4.40b
is a visualisation of the CAD-Model and a larger quantity of derived points for
selected vertices. A designer interprets the selected geometry and decides whether
the boundary conditions meet the requirements.

The automated generation of the T-Box is based on the software OntoStep devel-
oped by the National Institute of Standards and Technology (NIST) [96]. This soft-
ware tool has been extended for the extraction of product parameters for the genera-
tion of the instances. In this way, data sets concerning uncertainty and its distributions
are integrated.

The ontology-based information model was also adapted for a specific
domain [170]. Here, we extended the ontology for the application scenario Uncer-
taintyMode and Effects Analysis (UMEA) for human effects in aerospace. UMEA is
an extension of the failure mode and effects analysis (FMEA), and was proposed by
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Engelhardt [41]. Besides our own extensions, domain-specific [8] and cross-domain
(e.g. Dolce UltraLight [110]) ontologies were used. Thus, we could confirm that
the ontology-based information model can be contextualised and reused in further
specialised use-cases.

As a further extension of the ontology-based information model, the automatic
extension of the knowledge base and the automatic classification of contradictory
data were taken into account. The methods used for this purpose comprise ontology
matching and inductive reasoning.

For inductive reasoning, methods of pattern recognition and clustering extend
reasoning. Entities are classified with respect to similarity with the result that new
inferences are possible [163]. In consequence, however, this classification and the
knowledge acquired is uncertain. Nevertheless, this knowledge enables improve-
ment of product development decisions. Therefore, the designer is provided with the
inferences including a measure of confidence. Ontology matching is applied to inte-
grate knowledge from heterogeneous and distributed sources automatically. Thereby,
analogies between two or more ontologies need to be identified and used to join the
knowledge.

Domain-specific rules for ontology matching and inductive reasoning of axioms
of geometric relationships are the core of the integration of both methods in the
ontology-based information model. This enables the integration of methods to detect
and control data and model uncertainty into the ontology-based information model.

We presented an ontology-based information model that combines domain-
specific knowledge to support product developers. In addition, it provides a basis
for further analyses and the visualisation of the effects of uncertainties. We chose an
ontology-based information model that is based on description logics and OWL 2.
Thereby, the advantages of an expressive, descriptive language are combined with
those of decisive formal semantics. In contrast to alternative forms of data repre-
sentation, such as databases, ontologies not only allow data queries but automated
classification, validation of the integrity of data, and extension of the knowledge
base by inference. Furthermore, due to the high semantic value, knowledge interpre-
tation improves, and the exchange of information is simplified. The ontology-based
information model offers a functionality to store not only time-invariant but time-
variant information about uncertainty, too. Furthermore, instances can be generated,
and ontology matching and inductive reasoning can extend the knowledge automati-
cally. The use of an ontology-based approach allows to extend the informationmodel
further. The integration into a digital twin, for example, can enlarge the knowledge
base and thus increase the quality of product development decisions, see Sect. 4.4.3.
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4.4.2 Visualisation of Geometric Uncertainty in CAD Systems

Georg Staudter and Reiner Anderl

The visualisation of geometric uncertainty comprises the graphical presentation of
the statistical distribution of data obtained from measurements conducted during
production and usage, by utilising the functionality of computer graphics [47] to
generate an appropriate appearance of uncertainty [6, 84, 154]. The following section
introduces our approach for the visualisation of the geometric uncertainty in CAD
(computer-aided design) systems, focusing on stochastic data uncertainty associated
with geometrical model parameters, see Sect. 2.1. The visualisation of uncertainty
is part of the middle layer of the framework of mastering uncertainty introduced
in Sect. 1.7 and thus, an important element within the analysis, quantification and
evaluation of uncertainty in mechanical engineering.

Despite the fact that the consideration of uncertainty associated with geometry
is crucial during the design process, today’s CAD systems provide only a limited
design-oriented view with functionalities to specify nominal geometry and geomet-
ric tolerances. There is still a lack of functionalities for the visualisation of geo-
metric uncertainty [6]. The effect of the different geometric tolerances on the part
(e.g. shape, dimensions, features, locations) cannot be graphically visualised either.
Advanced tools, such as Computer-Aided Tolerancing (CAT), focus mainly on geo-
metric dimensioning and somebasic stack-up analysis, but donot provide harmonised
solutions for the graphical visualisation of tolerance and uncertainty associated with
measurement. Therefore, there is a need to integrate geometric uncertainty in the
geometric product model in order to explicitly depict uncertainty [6, 145].

Our approach for the visualisation of geometric uncertainty focuses on the inte-
gration of information about uncertainty and its correlations into CAD-systems via
an ontology-based information model. Therefore, the geometric product model rep-
resenting the 3D-CAD model is decomposed into appropriate elements, such as
features and boundary representation elements (BREP-elements), which enable the
association of uncertainty. The hierarchical structure of the product model, as well as
its uncertainty information, are mapped into the ontology-based information model
in terms of a product and process representation, see Sect. 4.4.1. Themapping assures
that the product model can be transformed into an ontology-based representation and
vice versa [6, 116, 145].

When integrating information about geometric uncertainty into the productmodel,
it is necessary to do both, specifying uncertainty explicitly and deriving a presen-
tation appropriate for visualisation. For the presentation of geometric uncertainty
associated with tolerance, we have developed the concept of the uncertainty cloud or
“uCloud”. The uCloud concept creates a three-dimensional space that visualises the
probability distribution of the physical part surface location. The uCloud is generated
by a set-theoretical operation, which compromises two volumes, each representing
a maximum, respectively minimum value of a particular geometrical property [6].
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VmaxBody = Volume with maximum geometric property

VminBody = Volume with minimum geometric property

VuCloud = VmaxBody\VminBody = {

x |(x ∈ VmaxBody)
∧

(x /∈ VminBody)
}

The resulting uCloud element is then used to apply visualisation techniques for
geometric tolerances. Conceptually, visualisation techniques are divided into the
domains of (i) graphical, (ii) symbolic, (iii) structural and (iv) verbal visualisa-
tion [6].

(i) Graphical visualisation uses functionality of computer graphics, such as colour,
colour intensity, transparency or coloured patterns. To attach the semantics of uncer-
tainty to the graphical appearance of uncertainty, a cross-reference table is needed [6].
(ii) Symbolic visualisation associates predefined symbols to presentation objects, and
it enables the attachment of uncertainty information. In the domain of (iii) structural
visualisation presentation objects are mapped onto structures, such as lists, tables,
tree- and graph-structures. (iv) Verbal visualisation expresses uncertainty lexically
and creates a textual output using the ontology approach [146, 147]. Figure4.41
shows graphical visualisation techniques for uncertain properties and their uncertain
value description with respect to the Uncertainty Data Type (UDT).

With the concept of uCloud combined with visualisation techniques for uncer-
tain geometric properties, we provide an approach for the static visualisation of
time-invariant uncertainty on individual parts by creating a cloud-like space, which
contains the part surface of the real product. The result is a visualisation through
transparently shaded offset bodies, which are linked to the corresponding UDTs
(Uncertainty Data Type). Additionally, uncertainty information related to product
structures such as lists, tables or tree structures can be displayed.

Figure4.42 shows the uCloud approach for a geometric deviation of the diameter
of a shaft with different types of uncertain value descriptions resulting frommanufac-
turing process specific tolerances. Figure4.42a illustrates the uCloud for an interval,
or more specifically for a geometric tolerance, where an upper deviation, a nominal
diameter and a lower deviation are graphically visualised [145]. With respect to this
information, the diameter of the manufactured surface of the shaft lies within the
transparent shaded offset. Since the geometric deviations are small in relation to the
dimension of the shaft, the technique of enlarged detail, known from technical draw-
ings, is used. This approach is also available for visualising stochastic tolerance data.
Therefore, a sigma level (e.g. Six Sigma) or a confidence interval of the distribution
function (e.g. 99.9997%) is selected, depending on the available input data. Both
sigma levels and the expected value result in three characteristic points, as indicated
by an additional specific symbol [145].

Figure4.42b shows the visualisation of the geometric deviation of the diameter of a
shaft with stochastic uncertainty information regarding its geometric tolerance. With
a given histogram as an input, the colour density range is mapped onto the minimum
and maximum frequency, and it is visualised by elements which correspond to the
classes of the histogram. The element colour density corresponds to the probability
distribution given by the representation of the histogram. In the case of a given
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Fig. 4.41 Graphical visualisation techniques for different types of uncertainty (a) in relation to the
UDT (b)

distribution function, the uCloud element colour density is mapped to the probability
of the function [6].

Each uCloud element has to be generated respectively to the given type of the
uncertainty value description. With the approach of a sectional view we enable engi-
neers and designers to interpret different influences, which occur in the product life
cycle, such as imperfect manufacturing, wear and corrosion. Engineers are able to
interpret uncertainty occurring within a single part or an assembly. Furthermore, the
uCloud concept complements the 3D data model without manipulating the idealised
description of the geometry allowing its further usage for e.g. Finite ElementMethod
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Fig. 4.42 uCloud for the visualisation of time-invariant uncertainty with a interval-, b histogram-
and distribution-based geometric tolerance information based on [6]

(FEM) or Digital Mock Up (DMU) analysis [145]. Detailed information and further
visualisation examples are available in [6, 145, 147].

Geometric uncertainty is not only crucial in the context of individual parts. The
effects of component properties affected by uncertainty also appear in the context
of assemblies, in which individual uncertainties are mutually influential and inter-
dependent. A typical example is the tolerance stacking of geometric manufacturing
tolerances. In order to make uncertainty information about afflicted part properties
available throughout the entire assembly, this information is attached to elements of
the topology of the 3D CAD-model as attributes described by Product Manufactur-
ing Information (PMI) [74]. PMI comprises non-geometric information and aims at
providing annotations for 3D geometric models [74]. It is typically used to describe
additional properties to define the product geometry more precisely, primarily for
manufacturing purposes such as manufacturing tolerances. PMI also refers to any
data that is linked to geometry or topology of a 3D CAD-model [74].

For the purpose of visualising geometric uncertainty in assemblies, PMI is
attached to topology entities of the 3D CAD-model and specified for object-oriented
implementation. In this context, the target topological entities for referencing PMI
are body-, face-, and edge-attributes, as they are important for assembly constraints.
The body-attribute serves as an individual part specific information carrier and con-
tains all information from face- and edge-attributes, that belong to an entire body.
Through the configuration of individual parts via assembly constraints, the body-
attributes associate corresponding parts with one another and enable bidirectional
PMI exchange [74]. One individual part contains exactly one body-attribute but
multiple face- and edge-attributes; these comprise uncertainty information mapped
into a specific PMI being associated with the afflicted object property. The ontology-
based information model provides the informational context, which is linked to the
different attributes [74].

Object attributes for edges refer to the information for the mathematical descrip-
tion of the geometrical instance of the edge in a three-dimensional space. Object
attributes for faces reference information for the corresponding surface, such as:
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Fig. 4.43 Informational context for the connection of single parts with assembly constraints based
on [74]

direction of the normal surface, radius and central axis of cylindrical surfaces, surface
contents as well as the mathematical description of the surface and the uncertainty
type in relation to the geometric deviation [74]. Thus, the geometric deviation in the
x-, y- and z-direction in a three-dimensional space is described. Object attributes for
bodies collect the information from attributes attached to a part’s surfaces and edges
to provide a complete attribute bundle for the neighbouring parts. In order to reference
individual parts within an assembly, the designer assigns assembly constraints, refer-
ring to different reference elements. Figure4.43 illustrates the interlinking between
attributes, individual parts, assembly constrains and configuration logic.

Through the referencing of two individual parts using an assembly constraint,
the body-, edge- and face-attributes of the individual parts are automatically linked
bidirectionally with one another [74]. As a result, PMI containing geometric uncer-
tainty are referenced to the neighbouring part. The configuration logic for assembly
constraints defines how the geometric uncertainty is being propagated into the neigh-
bouring parts. With the help of object attributes and their internal processing in the
ontology-based information model, the concept of uCloud can be extended from
single parts to assemblies. Combined uncertainty zones of individual parts within an
assembly are visualised with respect to an absolutely positioned, freely selectable
individual part. The validation of the concept, applied to theMAFDS (see Sect. 3.6.1),
is outlined in Sect. 4.4.3, see [74].
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4.4.3 Digital Twin of Load Carrying Structures
for the Mastering of Uncertainty

Georg Staudter and Reiner Anderl

The digital representation of physical objects (e.g. a product, a production system,
a test rig), as well as the biunivocal relationship between such physical objects and
their equivalent digital counterparts are subject to the digital twin concept, together
with the cyber-physical system approach [59, 115]. Having a digital twin allows
defining, simulating, predicting, optimising and verifying the objects along their life
cycle phases, from conception and design, via production, to usage and servicing.
Along the life cycle phases, different types of models are created and used to repre-
sent physical objects, e.g. system models, functional models, 3D geometric models,
multiphysics models, manufacturing models, and usage models, see Sect. 1.3. These
models constitute the digital twin.

The transfer of data from the physical domain to the digital domain is a key
approach to generate the digital twin. In the widest sense, a digital twin requires to
implement a data flow where data, acquired from testing, production, maintenance
and operation are integrated into a digital domain to support such models and assist
in predictive and decision-making processes, see Sect. 1.4. This section addresses the
challenges ofmastering uncertainty associatedwith the respective data (Sect. 2.1) and
models (Sect. 2.2 and introduces our approach to the visualisation of data-induced
conflicts (Sect. 4.2) for uncertainty identification (Sect. 3.3) in the digital twin context.

The benefits derived from the digital twin implementation, depend on incorporat-
ing data from the physical domain into the digital domain. In the physical domain,
data acquisition requires measuring physical magnitudes. The result of measure-
ment should be a threefold structure: nominal value of the magnitude, measurement
unit, and uncertainty of the measurement [18]. The most widely used data quality
dimensions are: accuracy, completeness, currency, and consistency [15]. Within the
accuracy dimension, the uncertainty of a measured magnitude is a significant con-
tributor to the indicator of the data validity, see Sect. 2.1. However, literature shows
that explicitness of the uncertainty of measured data is still a challenge. There is a
lack of bidirectional semantic harmonisation of the uncertainty representation in the
standards used to transfer data, both from the digital domain to the physical domain
and vice versa [134].

Geometric data obtained from the physical domain are used to recreate 3D geo-
metric models of the physical objects. In the literature, these models are named
with the terms as-built, as-fabricated and as-manufactured [28, 59, 153]. The aim
of having an as-manufactured 3D model is to represent the geometric deviations
caused by the manufacturing processes and use the model representation to perform
simulations that previously were executed using an as-designed 3D model. Conse-
quently, it is necessary to explicitly represent the uncertainty of the reconstructed
as-manufactured 3D model, see Sect. 2.2
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Fig. 4.44 Virtual
Demonstrator of the MAFDS
from Sect. 3.6 in Siemens
NX

Measurements are necessary to capture the main geometrical dimensions of the
physical components. We used measurement results with their corresponding uncer-
tainty to create a 3Dmodel of the physical test rigMAFDS (see Sect. 3.6.1) referred to
as the virtual demonstrator. The virtual demonstrator includes material and physical
properties in addition to part geometries and product structures. It consists of aMulti-
Body-Simulation (MBS) model with a set of virtual sensors to simulate the func-
tional behaviour while visualising the behaviour and movements of the test rig. The
dynamic analysis allows the determination of velocities, accelerations and displace-
ments of the moving components, as well as the reaction forces. Figure4.44 shows
the implementation of the virtual demonstrator in Siemens CAD-System NX12.

Internally, the moving components, joints and drivers are converted into a math-
ematical system of differential equations, which can then be solved to determine the
desired quantities. This can be performed using different solvers which depend on
the respective CAD-system and are mostly proprietary. Additionally, moving com-
ponents are simplified to their mass, inertia properties and geometrical dimensions,
while deformation properties are neglected. This leads to a major challenge for the
quantification of the respective model uncertainty [5].

In the context of a digital twin, another effect that must be taken into account
for MBS is the influence of geometric tolerances of the physical component, see
Sect. 4.4.2. Since such effects are often not taken into account, it may appear, for
instance, that an interference fit situation occurs in the simulation, when in reality
there is a slight clearance in the joint or vice versa. Therefore, it is not only neces-
sary to explicitly represent the uncertainty of the reconstructed as-manufactured 3D
model, but to consider effects, such as the classical tolerance stacking of geomet-
ric manufacturing tolerances in assemblies. With the help of object attributes and
their internal processing in the ontology-based information model, as outlined in
Sect. 4.4.2, the concept of uCloud allows the visualisation of combined uncertainty
zones of individual parts within an assembly.

Figure4.45 shows the visualisation of an uncertainty zone by the bidirectional
exchange of information about stochastic data uncertainty associated with geomet-
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rical model parameters between individual parts with a maximum deviation due to
overlapping forms of geometric uncertainties in the subassembly of the upper struc-
ture of the MAFDS.

The uncertainty zone visualises the possible geometric deviation resulting from
cumulative manufacturing tolerances of the individual parts in the context of assem-
bly constraints as faceted bodies. The object attributes of the topology elements con-
tain information about geometric uncertainty, such as the divergence between actual
and target geometry or surface roughness. Using the concept of object attributes, it
is also possible to consider non-geometric properties, such as damping properties
and spring stiffness, with uncertainty ranges in order to simulate product behaviour
under uncertainty [169].

In general, the digital twin concept aims at integrating measured data acquired
from testing, production, maintenance and operation into the digital domain to assist
in decision-making processes. These processes depend strongly on the quality of the
underlying information base. The data to quantify and evaluate a system response is
typically gathered by a variety of sensors, see Sect. 1.4. Because of the complexity of
the context, several data streams must be integrated, and possible data-induced con-
flict situationsmust be identified, seeSect. 4.2. To identify a possible erroneous sensor
behaviour, values of interest are observed redundantly in the physical domain. The
objective is to avoid situationswhere possible errors remainunnoticed, seeSect. 4.2.1.
Redundancy increases the availability of information and thus, contributes to the
verification of the data. On the other hand, if several sources provide inconsistent or
conflicting data, a defective interpretation may occur. Therefore, it is necessary to
provide methods for explicitly representing and visualising data-induced conflicts in
the digital twin context, see Sect. 4.2.3.

Section4.2.1 presents a methodology for the identification of data-induced con-
flicts and the interpretation of conflicting sensor data. The approach is based on dif-
ferentiating data sources, such as soft sensors, into models and sensors, by spanning
the investigation from the redundant observation of a single value to the interconnec-

Fig. 4.45 Visualisation of geometric deviation of individual parts in assemblies based on [74]
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Fig. 4.46 Concept for the visualisation of data-induced conflicts in Siemens NX

tion between models and sensors throughout a technical system. Here, the proposed
methodology is applied to the virtual domain for the purpose of the visualisation of
data-induced conflicts in CAD systems, see Fig. 4.46.

In addition to information on components, such as dimensions and parameters
with their respective uncertainty, the information model represents the underlying
sensor system as well as models for generating analytical redundancy. Each sensor
of a physical test rig is represented by its metadata, including identification data, cal-
ibration data, known uncertainty, as well as relative and absolute placement within
the test rig. Soft sensors are used to convert the measured data values and to gener-
ate analytical redundancy, see Sect. 1.4. In order to represent information about the
models, system knowledge, such as symmetry characteristics and orientation of the
system components, are integrated into the information model.

The information model is the basis for the data evaluation and is as such imple-
mented in Matlab. The prototype development comprises also methods and classes
for the propagation and calculation of the resulting uncertainty. The result is a soft-
ware tool for the automatic detection of data-induced conflicts, see Sect. 4.2.3. The
output of the system provides detailed information on data-induced conflicts, as well
as on the interconnections between models and sensors throughout the system. In
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addition, the prototype software tool allows to generate statistics for each sensor,
providing information on the total amount of redundant observations (comparisons)
including sensing, as well as the total percentages of confirmations and conflicts with
other sources. Assuming that the models describe the system behaviour with suffi-
cient accuracy (Sect. 2.2, the trustworthiness of the respective sensor is visualised in
the form of a histogram.

The virtual demonstrator is interconnected via Siemens NX’s application pro-
gramming interface (API) NX Open with the prototype data evaluation tool imple-
mented in Matlab. The information model allows to map metadata of the sensor
system as well as the evaluation results into its virtual counterpart. The CAD system
serves as a user interface through which the data sets are loaded and the evaluation
results visualised. Figure4.46 illustrates a conceptual example of the visualisation
concept applied to a piezoelectric force sensor in the upper truss of the MAFDS,
see Sect. 4.2.3. In case of any decision-making process where conflicting data could
occur, this information helps engineers to identify uncertainty, upcoming conflicts
and to limit the selection of valid sensors to be considered in the process. The devel-
oped prototype supports the identifying of the trustworthiness level and the interpre-
tation of sensor data.
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