
Chapter 1
Introduction

Peter F. Pelz

Abstract In this chapter, the motivation for this book is given. The analysis process
of socio-technical systems based on data and models is examined from the perspec-
tive of uncertainty. The synthesis process of systems based onmodels and/or intuition
leads to the important concepts of function and quality as well as data, model, and
structural uncertainty. This forms both the foundation and the introduction to the fol-
lowing chapters. It is shown that themastering of uncertainty is the key to Sustainable
Systems Design. Thus, the societal need for safety and sustainability is met.

P. F. Pelz (B)
Department of Mechanical Engineering, TU Darmstadt, Darmstadt, Germany
e-mail: peter.pelz@fst.tu-darmstadt.de

© The Author(s) 2021
P. Pelz et al. (eds.), Mastering Uncertainty in Mechanical Engineering,
Springer Tracts in Mechanical Engineering,
https://doi.org/10.1007/978-3-030-78354-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78354-9_1&domain=pdf
http://orcid.org/0000-0002-0195-627X
mailto:peter.pelz@fst.tu-darmstadt.de
https://doi.org/10.1007/978-3-030-78354-9_1


2 P. F. Pelz

How can we ensure product safety in a world of products with ever increasing com-
plexity? This question arises when designing lightweight structures and sustainable
systems. The question also comes up when implementing methods and technolo-
gies for controlled production quality. Mastering uncertainty is central to all these
topics and requires contributions from engineering, mathematics and law. This book
provides answers on how to master uncertainty in the life cycle of products from
the design phase via the production phase to the usage phase. These answers are
consolidated in strategies to master the uncertainty of a possible product usage, even
if partly unknown at the beginning of a new engineering design.

Invitation to visit the building devoted to mastering uncertainty

We do not intend to represent a definition, a method, or a technology for their own
sake. On the contrary, the building presented here, consisting of the fundamental
floor, middle and top floor, inspires the visitor how to master uncertainty in his
or her specific task. The craftsmen who built this house come from the fields of
engineering, mathematics and law. Together they have pursued the goal of further
developing systematic engineering design. Tomaster uncertainty, we always focus on
the function and quality of the product or system, i.e. its essence from the application
perspective.

On the fundamental floor we submit data, models and structures. Here we lay
the conceptual basis and define consistent uncertainty classes. On the middle floor
we introduce methods and technologies to identify, evaluate and counteract uncer-
tainty. On the top floor we introduce the strategies (i) robustness, (ii) flexibility,
(iii) resilience. All three strategies contribute to mastering uncertainty.

In order not to develop a method for its own sake, we have tested all tools, i.e.
definitions, technologies and strategies on the three technical systems that we have
developed, manufactured and used over the last twelve years. The systems are active
and semi-active systems. So, flexibility is achieved by the smart systems Active Air
Spring and 3D Servo Press. All research and its presentation focus on a load-bearing
example system, which is a lightweight structure. We invite you as our readers to be
guests in our house and hope that you will profit from your visit.

The chapter’s structure

Section1.1 outlines the motivation and Sect. 1.2 the concept of holistic control of
uncertainty over the product life phases. In Sect. 1.3, the focus is on the source and
quality of models. Section1.4 provides reflections on the sources and quality of data.
Section1.5 deals with the structures composed out of components. In Sect. 1.7, a
broad motivation for mastering uncertainty is presented. The chapter closes with
an overview of the book’s chapters and the three demonstrator systems designed,
manufactured and tested at the Technische Universität (TU) Darmstadt during the
last twelve years.
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1.1 Motivation

Back in the year 2008, an interdisciplinary group of about ten researchers designed a
research programon the topic of this book:MasteringUncertainty inDesign, Produc-
tion and Usage of Load-Bearing Structures in Mechanical Engineering. This led to
the Sonderforschungsbereich805 (SFB, Collaborative Research Centre), which was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) in three phases of four years each, from 2008 to 2021. About 60 doctoral
students have completed their research work during this time. The researchers, all
members of the TU Darmstadt, have come from fields as diverse as production engi-
neering, structural mechanics, fluid power, applied mathematics including nonlinear
and discrete optimisation, statistics, and law. The research topic as such is truly
interdisciplinary, which is also reflected in the topics of this book.

The topic from a society point of view is motivated by an increasing number of
product recalls in the automotive industry. In the era from 1990 to 1995, the number
of vehicles recalled annually in theUSmarket rose from5million to 20million. In the
year 2014, 64 million vehicles were recalled contrasting 17 million vehicles sold, see
Fig. 1.1. Hence, for every vehicle that entered the US market in 2014, four vehicles
were recalled for lack of safety [10, 28]. In the same year, 1.5 million vehicles were
recalled and 3 million vehicles sold within Germany [41, 46].

Recalls are made on the basis of the Product Safety Act [7]: a recall is required if
the product causes a sudden and for the user unforeseen serious danger. The decision
is based on the likelihood of failure during the product’s lifetime combined with
the severity of possible personal injury [11]. In 2014, the recall of vehicles on the
German market was in 70% of the cases due to mechanical safety problems and in
20% due to faults in the mechatronic system, including servo-hydraulics [46].

Product safety is equally a strong motivation for mastering uncertainty in the
capital goods industry, in mechanical and plant engineering, and in the aerospace
industry. Mainly the following three reasons led to the recalls mentioned:

Fig. 1.1 Vehicle recalls in the US (left) and Germany (right) in 2014 [28]
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(i) A conflict of objectives between effort and availability, while, at the same time,
the future product usage is still uncertain, i.e. the design target is moving.

(ii) Increased demands on cross-company quality assurance due to the shift in value
creation to globally developing and producing suppliers with the difficulties of
communication and interfaces.

(iii) Increased development speed as a result of global competition.

As a reaction to the increasing speed of development, systems are more and more
being developed virtually. This increases the demands onmastering the uncertainty in
the models during the product life cycle. All of the above-mentioned points form the
current boundary conditions under which safety-relevant load-bearing structures—
whether passive, semi-active or active—are developed, produced and used today. At
the same time, the importance of product safety law is growing. It is to be expected that
complexity will increase even further, as self-adaptive systems gain in importance in
the future.

After one decade of research within the SFB805, the Boeing 737 MAX accident
shows that today the mastering of uncertainty in all product life phases is more rel-
evant than ever: on 29 October 2018, a Boeing 737 MAX airliner crashed because
of a newly introduced pitch control system. In retrospect, the crash had five causes:
firstly, insufficient testing of the newly introduced autonomous pitch control system;
secondly, insufficient training of the pilots; thirdly, sensor failure; fourthly, the over-
ride control of the pilots by the software; fifthly, the lack of visual feedback to the
pilots [40]. The crash of the Boeing 737 MAX in its consequence is an extreme but
at the same time typical example of unmastered uncertainty.

Hence, there is a growing need to master uncertainty in all phases of the product
life cycle by

(i) laying a solid foundation of classification, definitions and metrics of uncer-
tainty;

(ii) assessing and developing methods and technologies for quantification, evalua-
tion and master uncertainty;

(iii) developing and validating strategies to master uncertainty.

The three points form the blueprint of our specific approach onmastering uncertainty.
They are addressed in detail in Chap.3.

1.2 Holistic Control of Uncertainty over the Phases
of the Product Life Cycle

Figure1.2 shows the broken out bushing in the bicycle of the author of this chapter.
The failure occurred during a downhill run in the Odenwald. Due to the failure,
the wheel guiding and wheel damping functions were completely lost, the wheel
being blocked. The rider remained unharmed. The bicycle’s usage can be described
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Fig. 1.2 Broken bushing support of the author’s mountain bike. The failure occurred during a
downhill run in the Odenwald
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Fig. 1.3 A product or system design, B production, C usage; all phases are interconnected by the
flow of physical goods and data, information and money

by factors, such as geography, speed, damper setting, rider’s weight, maintenance
condition and others.

But not only the usage has to be evaluated: in order to avoid such a failure,
the uncertainty over all phases of the product life cycle including product design
must be viewed holistically. The failure of the load-bearing structure can have its
causes in unmastered uncertainty in one, two or all three phases (A) product design,
(B) production or (C) usage, cf. Fig. 1.3. Within this book, we exclude the phases
resources and reuse. We are aware that sourcing and recycling are important topics
but they are not what we want to focus on.
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The phases of the product life cycle are, on the one hand, interconnected by the
flowofmaterial or physical products.On the other hand, the phases are interconnected
by the flow of data, as well as information including the flow of costs and profits [21].
Although the separation of the product life cycle including product design in phases
is common [8, 29, 42], methods and strategies for the holistic, cross-phase mastering
of uncertainty have not yet been developed and validated. The following hypothesis
can therefore be formulated:

Uncertainty can be mastered, if uncertainty is described, quantified and evaluated in all
phases of the product life cycle; further, if it is reacted to and learnt from experience, and if
follow-up processes are anticipated.

A process is seen here in a general sense. It may be a production process with an
input and output of a physical material flow. It may also be the usage of a component
of a load-bearing structure, such as a suspension strut, or a system being composed
of many such components.

Following the chain from sourcing to production, to usage and reuse, it is evident,
that the uncertainty of a specific product property propagates downstream. Provided
this process is unmastered, an accumulation of uncertainty from process step to
process step can occur. The task is to master a possible accumulation of uncertainty
or even reduce the uncertainty along the process chain. Therefore, the product stress
and strength or changes in load and system degradation should be quantified and
evaluated in the usage phase, and fed back to the design and production phase. This
is the outer closed control loop of mastering uncertainty. For subordinate control
loops and complete transparency, the uncertainty should be described, quantified
and evaluated after each process step in all phases. The feedback loops are ideally
closed across all phases, sketched in Fig. 1.3.

Classic approach to master uncertainty by safety factors

Trained engineers are used to safety factors. A safety factor serves to absorb all
uncertainties of the design, production and usage phase. For example, a lack of
knowledge about the product usage typically leads to oversized systems. This is
understandable, since the function of the product is of primary importance for its
use. How the “quality” of this function is fulfilled ranks second. Oversizing may
not necessarily be a shortcoming for the customer. However, it leads to the fact that
design, production and usage are not sustainable. That this is quite serious can be seen
from a simple number. In order to operate fluid systems in Europe in the year 2014,
the estimated energy amount of 900TWh was required [32].

The spatial separation of “generation” and use of (electrical) energy was pushed
forward in the 19th century by Werner von Siemens. We will concentrate here only
on the consumption side: the electrical energy that drives the fluid systems in use
is provided by the output of about 100 large thermal power plants. It is estimated
that 40 power plants alone could be saved by sustainable planning and operation
of the fluid systems [32]. The driven machines on the consumption side serve the
functions of cooling, heating, ventilation, transport, mixing, dosing as well as the
power transmission from and through liquids and gases. The example drastically
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Fig. 1.4 Generic probability density function of properties θ of production p(θP) of the strength
θP and usage p(θU) of the stress θU with mastered uncertainty in (a) design (A) and production (B)

and (b) usage (C) [15]

illustrates the effect of oversizing. In the Anthropocene, saving energy in the use
of energy consuming systems should be our priority. The good news is that sus-
tainable systems design is promoted by the methods presented in this book, among
others.

Accounting for uncertainty by safety factors is illustrated in Fig. 1.4. If we think
of a load-bearing system, the function is described by a load history resulting in the
system’s stress. Here, the stress of the system shall be smaller than the strength of
the system; otherwise there would be a failure. This happened to the Tay Rail Bridge
on the night of the 28 December 1879 in a strong winter storm, only 19months
after its opening. Theodor Fontane then wrote his ballad ‘The Bridge by the Tay’
with the line “A bauble, a nought, what the hand of man hath wrought!” (in German
“‘Tand, Tand ist das Gebilde von Menschenhand”’), cf. quotation at the beginning
of this chapter. Fontane, as a representative of society, criticises the unrestrained
uncertainty in this poem. In fact, the wind load and, thus, the stress during the usage
phase was underestimated in the planning [22].

This is indicated in Fig. 1.4a where there is an overlap between the probability
density function p(θU) of the stress θU in the usage phase with the probability density
function p(θP) of the strength θP in production. Both are influenced by the system’s
design and production.

In the framework of stochastic uncertainty, cf. Chap.2, the density function of the
feature θ has mean θ and standard deviation σ(θ). Hence, mastering uncertainty in
the design and production phase, Fig. 1.4a, may be reached by increasing θP and/or
reducing σ(θ ′

P) < σ(θP).
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Knowing the uncertainty of stress and strength enables potential savings in mass,
energy or other metrics that measure effort.Mastering uncertainty in the usage phase,
Fig. 1.4b, may be reached by limiting θU and/or reducing σ(θ ′

U) < σ(θU). This may
be reached by adapting semi-active components or using active components.

In response to the Tay Bridge disaster, the second bridge of the railway line on
the east coast of Scotland, the Forth Bridge, opened in 1890, and was significantly
oversized. Thanks to new production methods—smaller fluctuations of semi finished
and final products by quality control—and the avoidance of oversizing, it can be
assumed that only half of the steel used would be needed today.

1.3 Components are Represented in Models

The basis of decisions made by humans or machines is information derived from a
representation of a process, i.e. a model [19, 25]. Each model serves the purpose to
represent the relevant part of reality and derive specific information out of the model.
Hence, there are no general, purpose-free models. Since models are the prerequisite
for evaluating the propagation of uncertainty in process chains, designing and opti-
mising robust systems and selecting suitable process chains or structures from the
solution space, a careful inspection of models is needed. This is evenmore important,
as models connect data and structures, as will be seen, cf. Chap.2.

The object to be represented by a model is a component or process of a technical
system. In mechanical engineering, we distinguish between physical and software
components. Each fulfils a sub-function of a system. Functions can be combined to
form amodule, an assembly, a sub-process chain or a single process. In the following,
we use the representative term component.

A model represents only a part of the relevant reality. The model may even cover
a part of the unreality. The data are embedded into the models. This is illustrated by
the schematic Fig. 1.5: Data are linked to the models. Therefore, they are represented
as a subset of the model. The boundary between relevant reality and the model is
called model horizon [18]. The part of relevant reality not represented by the model
is ignorance.

Themodel horizon is concisely described by the trained engineer and later philoso-
pher Wittgenstein “The limits of my language mean the limits of my world” [47].
This does not mean, that every model has to be written in the mathematical language.
Experience and implicit knowledge, which are often the basis of intuition, can also
be regarded as a model. In fact, engineering design and production is often based on
intuition. Intuition should therefore not be confused with ignorance.

The physicist and philosopher Heinrich Hertz, judgedmodels with respect to their
conciseness and simplicity. Hertz [19] demands that a model should be

(i) consistent, in a logical sense;
(ii) correct, i.e. themodel implementation is done properly, and themodel provides

an appropriate map of the technical system;
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socio-technical reality

relevant 
reality

ignorance
model
horizon

data

model

Fig. 1.5 Euler diagram to clarify relevance, ignorance, model and model horizon: socio-technical
reality is separated in relevant and irrelevant reality. This separation is task-dependent. Humans or
machines generate representations of this relevant reality, i.e. they model the relevant reality. It is
not possible to completely model the relevant reality. The uncovered part of the relevant reality
is named ignorance. The boundary between the model and the relevant reality is named model
horizon. Data are formed by the values of parameters and process variables. Modelling only a part
of the relevant reality is summarised by “there’s more to the picture than meets the eye” [48]

(iii) concise, i.e. it should contain as few empty relations and assumptions as pos-
sible.

The latter requirement is known as the principle of simplicity. In the following, we
shed some light on the three requested features of a model: consistency, correctness
and conciseness.

Firstly, a model is considered (i) consistent with a theory framework if the model
is free of contradictions to the knowledge represented by that framework. Simple
examples illustrate the demand for consistency and the difference between consis-
tency and correctness: a polynomial model or a neural network, both data-driven
models, can certainly represent measurement data, such as a stress-strain relation of
an elastomer or an adsorption isotherm of a gas and its adsorption material. There-
fore, most engineers refer to the two models as correct or verified because they
represent reality in a sufficient precision. The correctness may be quantified by the
confidence and prediction levels of the model. In order for the models to be consis-
tent with a more general theory framework, both models shall be consistent with the
second law of thermodynamics [17]. If this demand for consistency is ignored, model
uncertainty can be dramatic when the models are applied outside their calibration
range. Vice versa, consistency reduces model uncertainty. Axiomatic i.e. deductively
derived models are consistent per se, cf. Fig. 1.6. Consistency of data-driven models
is improved by Bayesian inference using prior knowledge, see Fig. 1.6. A prominent
example for this is Kalman filtering first used in the Apollo program 60years ago for
trajectory prediction [2, 23].

In today’s language, consistency and verification are used synonymously. In the
context of this book we follow this common usage in Chap.2 and beyond, knowing
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Fig. 1.6 Mapping of the real or cyber world to the world of intuition, inspiration, ideas, theories
and knowledge by analysis and synthesis

that Hertz and empiricists like Hume or Popper understand the process of verification
differently.

Secondly, it is important to stress, that from Hertz’s point of view, widely used
verification and validation processes address only the second of Hertz’s demands, the
(ii) correctness. Design engineers on the one hand and scientists on the other hand
use the term verification in the above mentioned sense. If it is about the engineering
design process of a product (physical or cyber), then verification is the examination
of the specification-compliant implementation and work of models, methods and
technologies.

For the empiricists it is about the ‘truth’ of models. According to Karl Popper,
the ‘truth’ of physical models is in principle not generally verifiable: the hypothesis-
model, i.e., the model “all swans are white” is falsified by the proof that black swans
actually exist.

Here, too, there is an ambiguity: when scientists speak of the validity of a model,
they evaluate the ‘truth’ of the model by comparing the model prediction with real-
ity. According to Popper, this can only be done for a limited empirical context. This
narrower concept of truth has proved extremely successful in the natural and engi-
neering sciences since Galileo Galilei. This concept of ‘truth’ is a very successful
concept.

Therefore, natural scientists should rather stick to the concept of verification in
order to have a clear language, but wewill not change this. For designers the language
is clearer.When design engineers talk about product validation, they have acceptance
in mind. They ask: Does a product fulfill its purpose and is it accepted? This means
the product is useful.

Thirdly, the requirement for the (iii) conciseness or simplicity of a model has
so far been underestimated when dealing with uncertainty. Two models serving the
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same purpose may both be equally consistent and equally valid but may differ in
the number of assumptions needed to form the model [19]. To quote the medieval
philosopher William Occam [30], a father of modern epistemology: “frustra fit per
plura, quod potest fieri per pauciora”, i.e.

it is unnecessary to let something happen by several [factors], which can also happen with
few [factors].

This applies to axiomatic models, but also to data driven models [1]. The principle
of simplicity is known as Occam’s razor in philosophy of science [30].

Scientists tend to model more and more nuances. Engineers tend to get lost in
the details of a design. That is because it’s easy to be complex but it’s difficult to be
easy. By doing so, there is a danger of losing the essence of a technical system out
of focus. This implies the function, the effort to gain this function, the availability of
the system and the system’s acceptability.

Why is simplicity so important in the context of mastering uncertainty? Each
unnecessary assumption or relation is a source of uncertainty. This becomes relevant
for forecasts or extrapolation, when a model is to be applied outside its calibration
range. This is important in the context of resilience, as a strategy tomaster uncertainty,
cf. Sect. 6.3. Resilient systems are capable to anticipate downstream processes.

TodayOccam’s razor serves as guiding principle for axiomatic andmore andmore
for data driven models [24].

In summary, simplicity, i.e. conciseness and also consistency reduce uncertainty,
whereas the correctness of a model does not per se reduce uncertainty. This is rele-
vant if models are to be used for forecasting, forward control, model prediction or
anticipation of downstream processes.

What are the sources of our models?

In the above, we have used the terms axiomatic and data-driven models. The former
is seen here not only for first principles, but also as a synonym for the state of
knowledge, ideas and theories, which are independent of a specific application or
even context.

As Fig. 1.6 schematically shows, the sphere of intuition, inspiration, ideas, the-
ories and knowledge is filled by an upstream pipe, the analysis, formed out of (i)
measurements done in the real or cyber world, (ii) aggregation of the measurements,
(iii) induction of general relations, by possibly using prior knowledge. This prior
knowledge may be accessible by the Bayesian inference or other means deducted
from the sphere of ideas, cf. Sect. 5.3. The philosophic problem of induction dis-
cussed above is in the engineering science only of minor relevance.

Today, this upstream pipe is very successfully used in data-driven modelling or
black box modelling, e.g. in industrial image processing. The great success, ease of
use and low threshold of expertise lead us to consider such models as a panacea.
They work successfully when, for example, image data are available in abundance.

The focus here is on overcoming uncertainty. The question arises whether data
driven models are sufficient to enable the design process. It is inherent in the inno-
vation process that the technical system is only just emerging. Therefore, only a
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limited amount of data can be collected in the early phase. Consequently, the situ-
ation of small data instead of big data is typical for the composition and operation
of innovative technical systems. The models required by the engineers are therefore
initially white box models deducted or adopted from a general theory, knowledge
or experience. In summary, the synthesis of physical or cyber products is always
triggered by an intuition. In the context of Sustainable Systems Design, this idea is
motivated from a society need. The consequent methodological system design has a
deduction phase (iv) and a composition phase (v). In the deduction phase component
models are derived. Those component models are composed i.e. connected forming
a system fulfilling the society needs ideally sustainable.

The upper sphere shown in Fig. 1.6 is not homogeneous.“I believe in intuition
and inspiration. […] Inspiration is more important than knowledge.” [45]. Thus,
Einstein is consistent with David Hume, who considered the interplay between ratio
and inspiration: “Reason is, and ought only to be the slave of the passions.” The
engineer, the homo faber, needs both inspiration and knowledge in an outbalanced
interplay.

Sometimes prior knowledge may be used. This may be supplied from another
context or a physical model test, cf. Sect. 4.3.6. As often, there is no black or white.
Today the combination of both, upstream and downstream modelling approaches is
common. The results are so-called grey box models, where grey is a mixture of the
white axiomatic models with the black, i.e. data driven models. It remains a task
integrating implicit knowledge into grey box models.

“All models are wrong, some are helpful”

is a quote from Box [4]. Models are inherently uncertain as Fig. 1.5 indicates. With
regard to model uncertainty, cf. Sect. 2.2, models may have either an unsuited struc-
ture to model the relevant part of the reality or model parameters may be uncertain.
It is evident that model uncertainty, due to an unsuited model structure, cannot be
mastered by mastering the uncertainty of the model parameters. This is indicated by
the Euler diagram shown in Fig. 1.5. Nevertheless, many engineers still cling to their
familiar models, even if a model is unsuitable. By calibrating the model parameters,
originally axiomatic models are degenerated to data-driven models without being
recognised as such by the user. A wrong model structure is not helpful.

For example, an unsuitable structure may be given when trying to model a diffusion problem with
an elliptic partial differential equation, if a parabolic equation is suitable. An unsuitable structure
may also be present when a journal bearing is modelled using the Reynolds’ equation of lubrication
theory, even if the product of Reynolds’ number Re and relative clearance ψ is greater than one.
In this case the inductance within the bearing itself is a relevant part of reality. This inductance is
ignored in classical lubrication theory, which is part of most engineering education. Dimensionless
model parameters, such as the product of Reynolds’ number and relative clearance ψ Re, are often
weights of the different terms of a model resulting from a dimensional analysis.

To sum up, it is often the engineer’s experience and his or her ability to evaluate the
applicability of a model.
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1.4 Data and Data Sources

Data are connected to physical or cyber components, which in turn are mapped to
the models. This is the one side of the system. The other side is the structure with its
individual components.

The data addressed here can be the value of any model parameter or any measure-
ment signals gained from a process. There are three main data sources:

(i) the process itself,
(ii) a representative process,
(iii) the archived data.

For sources (i) and (ii), the data may come from (a), a sensor in the real (physical
sensor) or cyber world (simulation data), or (b), a soft sensor. A soft sensor combines
a model with a physical sensor to derive data that are not physically accessible with
limited effort [16]. Provided the process itself delivers signals by means of integrated
sensors, cf. Sect. 4.2.2.

A representative process (ii) is firstly a sample test, where the sample’s properties
are assumed representative for all similar parts; it is secondly a physical model test,
where the model may be a scaled prototype. Performing a sampling inspection is
common in quality assurance. Testing a downscaled physical model is common in
turbo-machinery, aerospace andmarine industry [38]. The necessary scalingmethods
are based on the Bridgman postulate [5] and the Buckingham Pi-theorem [6]. In
both cases, the data are gained offline of the relevant process. This might have the
advantage thatmeasurement uncertainty is reduced.But any offline testmust take into
account physical dissimilarity. This dissimilarity may be treated by scaling methods,
which are a source of uncertainty [20, 43], cf. Sect. 4.3.6.

The archived data (iii) can be quality-assured, i.e. findable, accessible, interop-
erable, reusable (FAIR). This requires data governance and curation. The storage
has to take place in such a way that the raw data are linked to their metadata in a
machine-readable form [13]. Often archived data are not FAIR. Archived data are
also fuzzy data remembered by an engineer or worker.

Data quality has two sides [13]: firstly, formal data quality achieved by following
the FAIR-principles, and secondly, content quality. Since uncertainty is associated
with trust in data [14, 15], formal data quality should not be ignored: the higher the
formal data quality, the more the data is trusted. A detailed view on data quality is
given in Sect. 2.1.

Two or more data sources can be used simultaneously to derive information. This
data fusion will lead us to a concept called data-induced conflicts, which will be
discussed in Sect. 4.2. It is a concept that allows to assess confidence in data sources
but also model uncertainty.
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1.5 Component Structures

Structures consist of components, physical components and/or cyber components,
i.e. algorithms in the form of software. Having treated component models and data,
we come to the system level represented by the term structure.

In the classical engineering design [29], the system’s function is usually the start-
ing point from where a system’s functional structure with related sub-functions is
derived, cf. Sect. 3.3. The system’s function structure is independent of a product,
process or system realisation. After the decision on the integration or separation of
the functions into individual physical or cyber components, the functional structure
of the system is mapped to the components. These form the real system.

The decision about the integration or separation of the functions is guided by
the mastering of the internal and external complexity. This decision process is the
foundation of modular design, which allows an economic scaling. An illustrative
example of modular design obtained by intelligent function integration and function
separation is shown in Fig. 3.19.

With respect to the system’s function and quality, a quantitative evaluation of the
system’s uncertainty is only possible at the system level; we evaluate the system’s
uncertainty with respect to effort, availability and acceptability, frequently being
only possible at the component level. Structural uncertainty, cf. Sect. 2.3, therefore
results from the fact that a multitude of possible functional structures can be found
for a system’s function that is still subject to uncertainty; and in turn a multitude of
component structures can be realised for each functional structure. This results in a
combinatorial explosion of the solution space [39], which is only partially compre-
hensible and assessable for humans. The unnoticed part of the solution space remains
in the area of ignorance due to this structural uncertainty [33].

For example, the difference between data, model and structure is exemplified by the design task
of a hydrostatic transmission sketched in Fig. 1.7. Figure1.7a shows a double-acting piston, whose
force-displacement curve has to be controlled by a structure or system formed out of the sketched
components, i.e. the hydraulic valves. Figure1.7b shows the load history, which may be uncertain.
The system’s function is described by such a load history.

Each valve is a component being described by a functional relation of input u, output z andmodel
parameters m: f (u, z,m, . . . ) + δ f = 0. Here, the model f of the valve arises from a differential-
algebraic system of equations, and δ f is the residuum between model and reality. The operational
inputs u determine the valve position, density, pressure difference and particle concentration. The
parameters m include the maximal valve opening and diameter. The output is given by the wear
history. Thus, the time-varying flow-characteristic and at the same time, the evolution or wear due
to particle erosion are described, cf. Sect. 3.3. Hence, the wear for an arbitrary load history and
structure is given [44].

The system is composed of different admissible components schematically collected in the
design space as sketched in Fig. 1.7. The design space with admissible structures all fulfilling the
demanded function is so large that it cannot be explored manually. The different design solutions
S all differ in the system’s degeneration due to particle wear.

If only one solution out of the design space is selected and the countless other solutions are
ignored, we call this form of uncertainty firstly structural uncertainty and secondly ignorance.
Only if an optimal structure Sopt is selected, here Fig. 1.8b, with regard to minimal particle erosion,
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Fig. 1.7 a Design task of a hydrostatic transmission with minimal particle wear. The pressure
source of a pump (high pressure) and the tank (atmospheric pressure) is to be connected by a so far
unknown structure of hydraulic valves with a double-acting hydraulic cylinder; when the pump is
connected to the left volume and the tank to the right volume, the cylinder extends; b the function
is described by a load history; the control valves shall be selected from a field of possible hydraulic
valves; the right half of the valves allow the pressure drop to be adjusted. The representation of the
possible hydraulic valves implies that any structural solutions S are possible [44]

(b)(a)

Fig. 1.8 Design for a ignored structural uncertainty, b minimal wear; the availability with respect
to wear due to particle erosion is increased by a factor of 16 [44]

we speak of mastered structural uncertainty. Figure1.8a shows the usual design using a standard
4/3 directional control valve with the optimal structure Sopt showing minimal wear as in Fig. 1.8b.

Data uncertainty θ = θ + δθ and model uncertainty f (u, z,m, . . . ) + δ f = 0 have to be
encountered in the structural uncertainty. They propagate into the structure S. There are some
examples in this book how this is achieved by means of robust optimisation, see for example
Sect. 6.1.1.
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1.6 Sustainable Systems Design—The Extended Motivation
for This Book

In Sect. 1.1 the topic ‘mastering uncertainty’ ismotivated solely by product safety. As
Figs. 1.2 and 1.3 exemplify, product safety is determined mainly by its load-bearing
capacity, i.e. the system’s function. A broader scope of the process chain, system
or structure will guide us to an extended motivation to master uncertainty. For this
reason, we first discuss the relations of function, effort, availability and acceptability.

Towards optimal quality subject to functionality

The design variants are denoted by x . The system’s function and additional con-
straints are given by relations of the type g(x) ≤ 0, cf. Fig. 1.9. An example of such
a constraint is e.g. seen in Fig. 1.7b. At this point, the discussion about structural
uncertainty shows that the design variants x differ for each structure S. Hence, the
paradigm ‘form follows function’ created by the American architect Louis Sulli-
van, at the beginning of the 20th century, is not an objective, it is a constraint. The
missing objective is ‘less but better’ created by Rams and Klatt [35]. The renowned
German designer Dieter Rams having worked many years for the company of Braun,
demanded in the mid of the 20th century: ‘Weniger, aber besser’! This is the missing
objective. In the optimisation, we are not only looking for better quality measured
in effort, availability and acceptability, but Pareto optimal quality. Hence, the two
paradigms ‘form follows function’ and ‘less but better’ are evolving into ‘towards
optimal quality subject to functionality’. The union of both paradigms is the guiding
principle when designing, manufacturing and operating systems under uncertainty.
The achievement of ‘optimal quality with consideration of functionality’ is what we
call ‘Sustainable Systems Design’.

availabilty =0
= const.

optimal design 
point

admissable design
space

minimise effort, maximise availability & acceptability,min = , , 0
system‘s
functions

effort =

acceptability =
, subject to the functions of

the system are fulfilled, i.e.

objective function

0.

 )b( )a(

Fig. 1.9 Equivalence of a the Sustainable Systems Design and b the constrained optimisation
problem
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What is our understanding of function and quality?

The objectives are (i) minimise effort F1, (ii) maximise availability F2, and (iii)
maximise acceptability F3. The three objectives are often conflicting. Hence, the
multi-criterial decision problem min [F = {F1,−F2,−F3}] leads to a Pareto set of
optimal solutions [12]. The selected optimal solution always depends on the ranking
of the three objectives (i) effort, (ii) availability, (iii) acceptability.

Linguistically, the system’s function is described by verbs, such as to carry, store
or transport. The function is mostly further specified by a load spectrum or load
history. The objective function is determined by the quality of how the function
is fulfilled. Here, quality symbolises the adverb to a verb, namely a function, like
for example efficient transport. The adverb, i.e. the quality, characterises the three
aspects of effort, availability and acceptability.

(i) Effort is measured, for example, by the total cost of ownership. Sometimes
only the material or energy consumption are measured. In the usage phase of
lightweight structures, the weight is the determining factor for the effort.

(ii) Availability can bemeasured, for example, by the sumof themean time between
two failures and the repair time relative to the total time. Alternatively, the
anticipated remaining service life can also be specified. For this purpose, an
assumption regarding future usage and an ageing model are necessary. A gen-
eral ageing model is presented in Chap.3.

(iii) From the three measures of the objective function, the acceptability is the most
difficult measure. Acceptability has two sides, a formal and an informal side:
A formal aspect of acceptability, presented in Sect. 5.1 lies in the conformity
with regulations, such as the Product Safety Act [7]. Formally, acceptability
can also be achieved through a regulation. For example, an ordinance can be the
function of an electronic stability control system (ESP) mandatory for vehicles.
For formal acceptability, the politically consented society needs are cast into
regulations. Either products have to meet the regulations or the regulations
demand defined technologies.
The counterpart to the formal side of acceptability is the informal acceptability
gained through positive user experiences. The user may be a consumer in the
consumer goods market, but also a company in a business-to-business market.
This user experience has many facets and it would go far beyond the scope of
this book to fully immerse into this field. Schmitt coined the term perceived
quality in this context [37]. Instead, we focus on the facet product quality being
important for informal acceptability.

It is obvious that the higher the experienced quality of a product and the lower
the effort measured against the costs, the higher the acceptability. The quality is
measured on the one hand by the expected functional performance given by the
deviation δg = gs − g from the expectation, cf. the 3rd case study in Chap.3, and
on the other hand by the expected effort F1 and by the expected availability F2. As
Fig. 1.10 shows, gs is the specified function and g is the realised function.
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Fig. 1.10 Sustainable Systems Design presented as a closed loop, indicating the localisation of
model uncertainty, structural uncertainty and data uncertainty, which is dealt with in Chap. 2. The
process of system specification between different stakeholders is a source of uncertainty, which is
discussed in Sect. 5.1.1

Customer expectations must match the quality promise. This is either explicitly
given by the manufacturer or it must be consistent with the usual market quality. If
necessary, the quality is also defined in regulations, see Sect. 5.1. Here, too, it can be
seen that the various aspects of a product depend on each other: formal and informal
acceptability overlap in parts.

The schematic representation of the constrained optimisation problem as a closed
control loop helps identifying the different uncertainty sources, Fig. 1.10: model
uncertainty, structural uncertainty and data uncertainty,which is dealtwith inChap.2.
The dynamic process of system specification between different stakeholders is a
source of uncertainty, which is discussed in Sect. 5.1.1.

Sustainable Systems Design is model-based: the system function g and system
quality F is evaluated on the basis of models. The recognition, evaluation and mas-
tering of model uncertainty, cf. Sect. 2.2, is thus one core of this book. By integration
of functions or separation of functions, by combination of materials and compo-
nents often more than seven competing systems fulfil the same specific function
gs. The number seven is known to be the limit on human capacity for processing
information [26]. Roughly speaking, all other possible variants remain in the field
of ignorance for people in system design. This structural uncertainty can only be
controlled by algorithms discussed in this book. For this, rules of the game and sys-
tem boundaries have to be set. This must be recovered by the stakeholders. In order
to quantify the system quality in the evaluation step, metrics for effort, availability
and acceptability are necessary. The evaluation of the function and quality requires
models, see Chap.3. Secondly, weighting factors wi are necessary. In the evaluation
step, Pareto surfaces can be presented.
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Fig. 1.11 Improvement of system performance by an active component, here the Active Air Spring
introduced in Sect. 3.6.2. A compact car is driving over a country road at a speed of 70km/h. The
standard deviation of the body acceleration is plotted versus the time-averaged actuating power in
W and the standard deviation of the relative wheel load. The white circle is the reference for the
vehicle with a passive suspension system [36]

As good as it gets—orientation helps mastering uncertainty

The demand to improve quality beyond an existing Pareto surface requires an
extended playing field or altered rules of the game. This is achieved by new tech-
nologies. A Pareto line for a chassis design using an Active Air Spring as component
is shown in Fig. 1.11. The effort F1 in the example of an active chassis may be
defined by the power consumption. The acceptability in the example F3 is given by
the functional quality of the suspension system. The sub-functions are isolating the
body and reducing wheel load fluctuation, i.e. to foster driving safety. As seen in
the figure, the position of the Pareto line is determined by the available power of the
active component. However, there is often a technology-independent, i.e. asymptotic
Pareto boundary. The question ‘what can be achieved in the optimal case, if there is
no limitation, for example to the power?’ can often be answered.

In engineering sciences, this asymptotic Pareto line or surface is determined by
physical laws. Themost prominent Pareto surface is theCarnot efficiency of a thermal
power plant. Due to the second law of thermodynamics only the fraction 1 − T1/T2
of the input heat flux Q̇may be transferred intomechanical power PS. The knowledge
of this asymptote i.e. Pareto surface motivated engineers to increase the combustion
temperature T2 more and more (T1 is the ambient or cooling temperature). This
triggered the development of high temperature material. For wind power [3] and
water power [31, 34] we have similar upper limits independent of the system design



20 P. F. Pelz

and operation. For ‘energy production’ a clear asymptotic upper limit can often be
given. These upper limits have names like Carnot law or Betz law. For active systems,
i.e. energy consuming systems, it is also possible to specify Pareto limits. Often these
are much more complicated to find and are unfortunately still hardly used in industry
for orientation.

Even for an ideal, active system, which consumes whatever energy, the goals
can still be contradictory. Figure1.11 shows a energy consuming system. Design
solutions that lie at the asymptotic Pareto boundary are reference solutions of the ‘as
good as it gets’-type.

Pareto surfaces and asymptotic Pareto boundaries offer an orientation for design-
ers that should not be underestimated. Not every case requires an optimal solution.
However, the aim should be to know the distance from the optimal solution. This
helps to counteract the often prevailing lack of orientation.

The need for deep diving is expressed by the British designer Jonathan Ive at the
beginning of this century: “you have to deeply understand the essence of a product
in order to be able to get rid of the parts that are not essential” [9]. The essence is
the system’s function g and the system quality F seen from the user’s perspective.
The way to sustainability is cleared by optimal quality subject to functionality.

1.7 Outlook on the Following Book Structure

Mastering uncertainty in the phases design, production and usage does not only refer
to the system’s function but also to (i) effort, (ii) availability, and (iii) acceptability,
as depicted in Fig. 1.9. Hence, product safety stands next to other motivations all
covered in this book from a specific point of view:

(i) Ensuring product safety,
(ii) realising lightweight structure and Sustainable Systems Design,
(iii) controlling production quality.

The schematic Fig. 1.11 shows that mastering uncertainty may lead to resource sav-
ings. This is immanently important for lightweight structures where the weight is to
be minimised for a given load-bearing function. The example sketched in Fig. 1.8
is an example of a Sustainable Systems Design under uncertainty, where the wear
was minimised. In production, the control of uncertainty can save costs by making
processes more flexible and adaptive. In Sustainable Systems Design, the control of
uncertainty leads to robust or even resilient systems.

The three floors of mastering uncertainty in mechanical engineering

We organise this book with a picture of a truss structure, shown in Fig. 1.12. The truss
structure has three floors. These are, firstly, the fundamental floor built from terms
and definitions, secondly, approaches to uncertainty quantification on the one hand
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Fig. 1.12 Framework of mastering uncertainty presented in this book mapped on a truss structure

and methods and technologies on the other hand, and thirdly, strategies to master
uncertainty.

The fundamental floor (I) is formed by the motivation as well as the reflection on
data and models given in this chapter, the lower left bar in Fig. 1.12. At the beginning
of our researchmore than ten years ago, it became clear that formastering uncertainty
a definition of uncertainty classes is important. Onlywhen things are defined by name
do they become tangible. The motivation and discussions in this chapter and Chap.2
describe the classification of uncertainty into stochastic uncertainty, incertitude and
ignorance by the first classifier and into data, model and structural uncertainty by
the second classifier. This results in the matrix of uncertainty classes, shown in
Fig. 2.2. With the first three bars and chapters the foundation is given for a solid
middle floor. Chapter 3 provides our specific approach on mastering uncertainty.
Within Chap.3, we introduce three technical systems created, tested, and verified
in the context of mastering uncertainty. The first system is a load-bearing structure
representing a generic light weight structure called Modular Active Spring-Damper
System; the second system is the Active Air Spring – a technology which is ideal to
prevent kinetosis when driving autonomously; the third system is the 3D Servo Press
allowing flexible production and a closed-loop control of the product properties.
These three systems, all developed manufactured and validated from scratch at TU
Darmstadt during the previous decade, form the heart of the book. They will be
highlighted from different perspectives. The central bar Chap. 3 is connected via the
two supports to the state of the art mechanical engineering, applied mathematics
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and law. The engineering view differs significantly in method and language from the
mathematical view. This is no drawback but makes the book interesting to read—so
we hope.

The middle floor (II) is formed first by Chap.4 and then by Chap.5. Chapter 4
deals with the methods to analyse, quantify, evaluate uncertainty in single processes
and their propagation in process chains. Sections 4.1 and 4.4 are devoted to the
identification and visualisation of uncertainty. Section4.2 deals with the methodol-
ogy of ‘data-induced conflicts’ for the identification of data and model uncertainty.
Section4.3 provides insight into model uncertainty from different perspectives: opti-
mal design of experiments with respect to the evaluation of model uncertainty, model
uncertainty related to hardware-in-the-loop testing, as well as scaling under uncer-
tainty. In summary, Chap.4 provides the basis for the identification and quantification
of uncertainty in mechanical engineering. Chapter 5 deals for the first time with the
mastering of uncertainty itself by introducing methods and technologies to master
uncertainty. This includes the management of product safety from a regulatory per-
spective, Sect. 5.1. Design methods to master uncertainty are discussed in Sect. 5.2.
Active and semi-active processes are often needed to react to changes in the usage and
production phases. A controlled process chain, i.e. a system is described in Sect. 5.3,
active components and single processes are discussed in Sect. 5.4.

The top floor (III) is devoted to strategies of uncertainty mastering. This floor
builds on floors (I) and (II). We discuss three strategies: robustness Sect. 6.1, flex-
ibility Sect. 6.2, and resilience Sect. 6.3. Progress in discrete and nonlinear robust
optimisation methods is presented together with robust production processes and
development methods for a robust system.
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