Skip to main content

The New Frontier in Medicine at the Convergence of Nanotechnology and Immunotherapy

  • Chapter
  • First Online:
Nanoparticle-Mediated Immunotherapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 12))

  • 393 Accesses

Abstract

This chapter provides an overview of the field of nanotechnology, its current applications and potential use in biology and medicine. We are witnessing the convergence of nanotechnology and biological sciences, which has the potential to revolutionize medical research and immunotherapy. The combination of nanotechnology and molecular biology has already generated a myriad of nanoscale-based devices and methods for probing the cell machinery, elucidating intimate life processes that were heretofore invisible to human inquiry, and detecting early signs of disease occurring at the molecular level. Furthermore, applied research in nanotechnology has now led to the development of nanoparticles (NPs) that can be engineered with multiple useful therapeutic features, involving various payloads with antigens and/or immunomodulatory agents such as cytokines, ligands for immunostimulatory receptors or antagonists for immunosuppressive receptors. In this chapter, we review multiple approaches to NP-based therapies designed to affect the tumor microenvironment and stimulate innate and adaptive immune systems to obtain effective anti-tumor immune responses for novel and improved immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y., Hardie, J., Zhang, X., Rotello, V.M.: Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 34, 25–32 (2017)

    Article  Google Scholar 

  2. Dobrovolskaia, M.A., Shurin, M., Shvedova, A.A.: Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299, 78–89 (2016)

    Article  Google Scholar 

  3. Vivier, E., Malissen, B.: Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17–22 (2005)

    Article  Google Scholar 

  4. Kononenko, V., Narat, M., Drobne, D.: Nanoparticle interaction with the immune system. Arch. Ind. Hyg. Toxicol. 66, 97–108 (2015)

    Google Scholar 

  5. Sarma, J.V., Ward, P.A.: The complement system. Cell Tissue Res. 343, 227–235 (2011)

    Article  Google Scholar 

  6. Najafi-Hajivar, S., Zakeri-Milani, P., Mohammadi, H., Niazi, M., Soleymani-Goloujeh, M., Baradaran, B., Valizadeh, H.: Overview on experimental models of interactions between nanoparticles and the immune system. Biomed. Pharmacother. 83, 1365–1378 (2016)

    Article  Google Scholar 

  7. Coyne, C.B., Zeh, H.J., Lotze, M.T.: PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012)

    Article  Google Scholar 

  8. Petrarca, C., Clemente, E., Amato, V., Pedata, P., Sabbioni, E., Bernardini, G., Iavicoli, I., Cortese, S., Niu, Q., Otsuki, T., Paganelli, R., Di Gioacchino, M.: Engineered metal based nanoparticles and innate immunity. Clin. Mol. Allergy. 13, 13 (2015)

    Article  Google Scholar 

  9. Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., Rothen-Rutishauser, B.: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein. J. Nanotechnol. 5, 1625–1636 (2014)

    Google Scholar 

  10. Tomić, S., Dokić, J., Vasilijić, S., Ogrinc, N., Rudolf, R., Pelicon, P., Vučević, D., Milosavljević, P., Janković, S., Anžel, I., Rajković, J., Rupnik, M.S., Friedrich, B., Čolić, M.: Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One. 9, 1–13 (2014)

    Article  Google Scholar 

  11. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G.A., Li, J., Mottram, P.L., McKenzie, I.F., Plebanski, M.: Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004)

    Article  Google Scholar 

  12. Mottram, P.L., Leong, D., Crimeen-Irwin, B., Gloster, S., Xiang, S.D., Meanger, J., Ghildyal, R., Vardaxis, N., Plebanski, M.: Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4, 73–84 (2007)

    Article  Google Scholar 

  13. Scholer, N., Hahn, H., Muller, R.H., Liesenfeld, O.: Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int. J. Pharm. 231, 167–176 (2002)

    Article  Google Scholar 

  14. Hirn, Semmler-Behnke, M., Schleh, C., Wenk, A., Lipka, J., Schäffler, M., Takenaka, S., Möller, W., Schmid, G., Simon, U., Kreyling, W.G.: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 77, 407–416 (2011)

    Article  Google Scholar 

  15. Sonavane, G., Tomoda, K., Makino, K.: Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B Biointerfaces. 66, 274–280 (2008)

    Article  Google Scholar 

  16. Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P., Bachmann, M.F.: Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404–1141 (2008)

    Article  Google Scholar 

  17. Liu, Y., Ashton, J.R., Moding, E.J., Yuan, H., Register, K., Choi, J., Whitley, M., Zhao, X., Qi, Y., Ma, Y., Vaidyanathan, G., Zalutsky, M.R., Kirsch, D.G., Badea, C.T., Vo-Dinh, T.: A plasmonic gold Nanostar Theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 5(9), 946–960 (2015)

    Article  Google Scholar 

  18. Getts, D.R., Shea, L.D., Miller, S.D., King, N.J.C.: Harnessing nanoparticles for immune modulation. Trends Immunol. 36, 419–427 (2015)

    Article  Google Scholar 

  19. Xie, X., Liao, J., Shao, X., Li, Q., Lin, Y.: The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 7, 3827 (2017)

    Article  Google Scholar 

  20. Talamini, L., Violatto, M.B., Cai, Q., Monopoli, M.P., Kantner, K., Krpetic, Z., Perez-potti, A., Cookman, J., Garry, D., Silveira, C.P., Boselli, L., Pelaz, B., Serchi, T., Gutleb, A.C., Feliu, N., Yan, Y., Salmona, M., Parak, W.J., Dawson, K.A., Bigini, P.: Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano. 11, 5519–5529 (2017)

    Article  Google Scholar 

  21. Yuan, H., Wilson, C.M., Xia, J., Doyle, S.L., Li, S., Fales, A.M., Liu, Y., Ozaki, E., Mulfaul, K., Hanna, G., Palmer, G.M., Wang, L.V., Grant, G.A., Vo-Dinh, T.: Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. Nanoscale. 6(8), 4078–4082 (2014)

    Article  Google Scholar 

  22. Liu, Y., Carpenter, A.B., Pirozzi, C., Yuan, H., Waitkus, M., Zhou, Z., Hansen, L., Seywald, M., Odion, R., Greer, P.K., Hawk, T., Chin, B.B., Vaidyanathan, G., Zalutsky, M.R., Yan, H., Vo-Dinh, T.: Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology. 30, 27 (2019)

    Article  Google Scholar 

  23. Bartneck, M., Keul, H.A., Singh, S., Czaja, K., Bockstaller, M., Moeller, M., Zwadlo-klarwasser, G.: Rapid uptake of gold Nanorods by primary human blood phagocytes and chemistry. ACS Nano. 4, 3073–3086 (2010)

    Article  Google Scholar 

  24. Xiao, Y., Xu, W., Komohara, Y., Fujiwara, Y., Hirose, H., Futaki, S., Niidome, T.: Effect of surface modifications on cellular uptake of gold Nanorods in Human primary cells and established cell lines. ACS Omega. 5(50), 32744–32752 (2020)

    Article  Google Scholar 

  25. Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., Kawaguchi, A., Hasegawa, H., Kajino, K., Ninomiya, T., Ijiro, K., Sawa, H.: Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 7, 3926–2938 (2013)

    Article  Google Scholar 

  26. Li, Z., Sun, L., Zhang, Y., Dove, A.P., O'Reilly, R.K., Chen, G.: Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 5(9), 1059–1064 (2016)

    Article  Google Scholar 

  27. Yang, Y., Zhang, J., Xia, F., Zhang, C., Qian, Q., Zhi, X., Yue, C., Sun, R., Cheng, S., Fang, S., Jin, W., Yang, Y., Cui, D., Human, C.I.K.: Cells loaded with au Nanorods as a theranostic platform for targeted photoacoustic imaging and enhanced immunotherapy and photothermal therapy. Nanoscale Res. Lett. 11, 285 (2016)

    Article  Google Scholar 

  28. Schanen, B.C., Karakoti, A.S., Seal, S.D.R.D., Warren, W.L.: Exposure to titanium dioxide nanomaterials provokes infammation of an in vitro human immune construct. ACS Nano. 3, 2523–2532 (2009)

    Article  Google Scholar 

  29. Doshi, N., Mitragotri, S.: Macrophages recognize size and shape of their targets. PLoS One. 5, 1–6 (2010)

    Article  Google Scholar 

  30. Guo, L., Yan, D.D., Yang, D., Li, Y., Wan, X., Zalewski, O., Yan, B., Lu, W.: Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow sulfide nanoparticles. ACS Nano. 8(6), 5670–5681 (2014)

    Article  Google Scholar 

  31. Gregas, M.K., Scaffidi, J.P., Lauly, B., Vo-Dinh, T.: Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomedicine. 7, 115–122 (2011)

    Article  Google Scholar 

  32. Gregas, M.K., Scaffidi, J.P., Lauly, B., Vo-Dinh, T.: Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Appl. Spectrosc. 64, 858–866 (2010)

    Article  Google Scholar 

  33. Scholer, N., Hahn, H., Muller, R.H., Liesenfeld, O.: Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine prosduction of macrophages. Int. J. Pharm. 231, 167–176 (2002)

    Article  Google Scholar 

  34. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G.A., Li, J., Mottram, P.L., McKenzie, I.F.: Plebanski tumors. J. Immunol. 173, 3148–3154 (2004)

    Article  Google Scholar 

  35. Shvedova, A.A., Kisin, E.R., Mercer, R., Murray, A.R., Johnson, V.J., Potapovich, A.I., Tyurina, Y.Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L698–L708 (2005)

    Article  Google Scholar 

  36. Vallhov, H., Qin, J., Johansson, S.M., Ahlborg, N., Muhammed, M.A., Scheynius, A., Gabrielsson, S.: The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 6, 1682–1686 (2006)

    Article  Google Scholar 

  37. Zolnik, B.S., Gonzalez-Fernandez, A., Sadrieh, N., Dobrovolskaia, M.A.: Nanoparticles and the immune system. Endocrinology. 151, 458–465 (2010)

    Article  Google Scholar 

  38. Tan, Y., Li, S., Pitt, B.R., Huang, L.: The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene Ther. 10, 2153–2161 (1999)

    Article  Google Scholar 

  39. Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J.: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 12, 13608–13619 (2008)

    Article  Google Scholar 

  40. Sheen, M.R., Lizotte, P.H., Toraya-Brown, S., Fiering, S.: Stimulating antitumor immunity with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6(5), 496–505 (2014)

    Article  Google Scholar 

  41. Dunn, G.P., Old, L.J., Schreiber, R.D.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 21, 137–148 (2004)

    Article  Google Scholar 

  42. Ullrich, E., Koch, J., Cerwenka, A., Steinle, A.: New prospects on the NKG2D/NKG2DL system for oncology. Onco. Targets. Ther. 2, e26097 (2013)

    Google Scholar 

  43. Phuengkham, H., Ren, L., Shin, I.W., Lim, Y.T.: Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 31(34), e1803322 (2019)

    Article  Google Scholar 

  44. Song, C., Phuengkham, H., Kim, Y.S., Dinh, V.V., Lee, I., Shin, I.W., Shin, H.S., Jin, S.M., Um, S.H., Lee, H., Hong, K.S., Jin, S.M., Lee, E., Kang, T.H., Park, Y.M., Lim, Y.T.: Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence, nature. Communications. 10, 3745 (2019)

    Google Scholar 

  45. Roth, A., Rohrbach, F., Weth, R., Frisch, B., Schuber, F., Wels, W.S.: Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct. Br. J. Cancer. 92, 1421–1429 (2005)

    Article  Google Scholar 

  46. Un, K., Kawakami, S., Suzuki, R., Maruyama, K., Yamashita, F., Hashida, M.: Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol. Pharm. 8, 543–554 (2011)

    Article  Google Scholar 

  47. Wegmann, F., Gartlan, K.H., Harandi, A.M., Brinckmann, S.A., Coccia, M., Hillson, W.R., Kok, W.L., Cole, S., Ho, L.P., Lambe, T.: Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat. Biotechnol. 30, 883–888 (2012)

    Article  Google Scholar 

  48. Ma, W., Chen, M., Kaushal, S., McElroy, M., Zhang, Y., Ozkan, C., Bouvet, M., Kruse, C., Grotjahn, D., Ichim, T., Minev, B.: PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int. J. Nanomedicine. 7, 1475–1487 (2012)

    Article  Google Scholar 

  49. Toraya-Brown, S., Sheen, M.R., Baird, J.R., Barry, S., Demidenko, E., Turk, M.J., Hoopes, P.J., Conejo-Garcia, J.R., Fiering, S.: Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr. Biol. (Camb). 5, 159–171 (2012)

    Article  Google Scholar 

  50. Nie, L., Cai, S.Y., Shao, J.Z., Chen, J.: Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front. Immunol. 9, 1523 (2018)

    Article  Google Scholar 

  51. Beck, B., Dorfel, D., Lichtenegger, F.S., Geiger, C., Lindner, L., Merk, M., Schendel, D.J., Subklewe, M.: Effects of TLR agonists on maturation and function of 3-day dendritic cells from AML patients in complete remission. J. Transl. Med. 9, 151 (2011)

    Article  Google Scholar 

  52. Shenoi, M.M., Shah, N.B., Griffin, R.J., Vercellotti, G.M., Bischof, J.C.: Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond.). 6(3), 545–563 (2011)

    Article  Google Scholar 

  53. Cubillos-Ruiz, J.R., Engle, X., Scarlett, U.K., Martinez, D., Barber, A., Elgueta, R., Wang, L., Nesbeth, Y., Durant, Y., Gewirtz, A.T., et al.: Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J. Clin. Invest. 119, 2231–2244 (2009)

    Google Scholar 

  54. Niikura, K., Matsunaga, T., Suzuki, T., SKobayashi, S., HYamaguchi, H., Orba, Y., AKawaguchi, A., Hasegawa, H., Kajino, K., Ninomiya, T., Ijiro, K., HSawa, H.: Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 7(5), 3926–3938 (2013)

    Article  Google Scholar 

  55. Roldão, A., Mellado, M.C.M., Castilho, L.R., Carrondo, M.J.T., Alves, P.M.: Virus-like particles in vaccine development. Expert Rev. Vaccines. 9(10), 1149–1176 (2010)

    Article  Google Scholar 

  56. Fusciello, M., Fontana, F., Tähtinen, S., Capasso, C., Feola, S., Martins, B., Chiaro, J., Peltonen, K., Ylösmäki, L., Ylösmäki, E., Hamdan, F., Kari, O.K., Ndika, J., Alenius, H., Urtti, A., Hirvonen, J.T., Santos, H.A., Cerullo, V.: Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat. Commun. 10, 5747 (2019)

    Article  Google Scholar 

  57. Liu, Q., Wang, C., Zheng, Y., Zhao, Y., Wang, Y., Hao, J., Zhao, X., Yi, K., Shi, L., Kang, C., Liu, Y.: Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials. 258, 120275 (2020)

    Article  Google Scholar 

  58. Hildebrandt, B., Wust, P., Ahlers, O., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002)

    Article  Google Scholar 

  59. Frey, B., Weiss, E.M., Rubner, Y., et al.: Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperth. 28(6), 528–542 (2012)

    Article  Google Scholar 

  60. Schildkopf, P., Ott, O.J., Frey, B., et al.: Biological rationales and clinical applications of temperature controlled hyperthermia—implications for multimodal cancer treatments. Curr. Med. Chem. 17(27), 3045–3057 (2010)

    Article  Google Scholar 

  61. Wust, P., Hildebrandt, B., Sreenivasa, G., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

  62. Ostberg, J.R., Dayanc, B.E., Yuan, M., Oflazoglu, E., Repasky, E.A.: Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J. Leukoc. Biol. 82, 1322–1331 (2007)

    Article  Google Scholar 

  63. Todryk, S.M., Melcher, A.A., Dalgleish, A.G., Vile, R.G.: Heat shock proteins refine the danger theory. Immunology. 99, 334–337 (2000)

    Article  Google Scholar 

  64. Asea, A., Rehli, M., Kabingu, E., Boch, J.A., Bare, O., Auron, P.E., Stevenson, M.A., Calderwood, S.K.: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002)

    Article  Google Scholar 

  65. Vabulas, R.M., Ahmad-Nejad, P., Ghose, S., Kirschning, C.J., Issels, R.D., Wagner, H.: HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112 (2002)

    Article  Google Scholar 

  66. Suzue, K., Zhou, X., Eisen, H.N., Young, R.A.: Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. U. S. A. 94, 13146–13151 (1997)

    Article  Google Scholar 

  67. Moroi, Y., Mayhew, M., Trcka, J., Hoe, M.H., Takechi, Y., Hartl, F.U., Rothman, J.E., Houghton, A.N.: Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. U. S. A. 97, 3485–3490 (2000)

    Article  Google Scholar 

  68. Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P.J., Kuppner, M.C., Roos, M., Kremmer, E., Asea, A., Calderwood, S.K., Issels, R.D.: Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169, 5424–5432 (2002)

    Article  Google Scholar 

  69. Day, E.S., Morton, J.G., West, J.L.: Nanoparticles for thermal cancer therapy. J. Biomech. Eng. 131(7), 074001 (2009)

    Article  Google Scholar 

  70. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS. 100, 13549–13554 (2003)

    Article  Google Scholar 

  71. Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23(3), 217–228 (2008)

    Article  Google Scholar 

  72. Yuan, H., Khoury, C.G., Wilson, C.M., Grant, G.A., Bennett, A.J., Vo-Dinh, T.: In vivo particle tracking and photothermal ablation using plasmon resonant gold Nanostars. Nanomedicine. 8, 1255–1363 (2012)

    Google Scholar 

  73. Yuan, H., Fales, A.M., Vo-Dinh, T.: TAT peptide-functionalized gold Nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134, 11358–11361 (2012)

    Article  Google Scholar 

  74. Yuan, H., Khoury, C.G., Hwang, H., Wilson, C.M., Grant, G.A., Vo-Dinh, T.: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology. 23(7), 075102 (2012)

    Article  Google Scholar 

  75. Vo-Dinh, T., Fales, A.M., Griffin, G.D., Khoury, C.G., Liu, Y., Ngo, H., Norton, S.J., Register, J.K., Wang, H.N., Yuan, H.: Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale. 5, 10127–10140 (2013)

    Article  Google Scholar 

  76. Vo-Dinh, T., Liu, Y., Crawford, B.M., Wang, H.N., Yuan, H., Register, J.K., Khoury, C.G.: Shining gold nanostars: from cancer diagnostics to photothermal treatment and immunotherapy. J. Immunological Sci. 2(1), 1–8 (2018)

    Article  Google Scholar 

  77. Gannon, C.J., Cherukuri, P., Yakobson, B.I., Cognet, L., Kanzius, J.S., Kittrell, C., Weisman, R.B., Pasquali, M., Schmidt, H.K., Smalley, R.E., Curley, S.A.: Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 110, 2654–2665 (2007).

    Google Scholar 

  78. Toraya-Brown, S., Sheen, M.R., Baird, J.R., Barry, S., Demidenko, E., Tur, M.J.P.J., Conejo-Garcia, J.R., Fiering, S.: Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr. Biol. (Camb). 5(1), 159–171 (2013)

    Article  Google Scholar 

  79. Inman, B.A., Sebo, T.J., Frigola, X., et al.: PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 09(8), 1499–1505 (2007)

    Article  Google Scholar 

  80. Bellmunt, J., Mullane, S.A., Werner, L., et al.: Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann. Oncol. 26(4), 812–817 (2015)

    Article  Google Scholar 

  81. Xylinas, E., Robinson, B.D., Kluth, L.A., et al.: Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur. J. Surg. Oncol. 40(1), 121–127 (2014)

    Article  Google Scholar 

  82. Boorjian, S.A., Sheinin, Y., Crispen, P.L., et al.: T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin. Cancer Res. 14(15), 4800–4808 (2008)

    Article  Google Scholar 

  83. Inman, B.A., Frigola, X., Dong, H., Kwon, E.D.: Costimulation, coinhibition and cancer. Curr. Cancer Drug Targets. 7(1), 15–30 (2007)

    Article  Google Scholar 

  84. Dong, H., Strome, S.E., Salomao, D.R., et al.: Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8(8), 793–800 (2002)

    Article  Google Scholar 

  85. Webster, W.S., Thompson, R.H., Harris, K.J., et al.: Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine. J. Immunol. 179(5), 2860–2869 (2007)

    Article  Google Scholar 

  86. Rosenberg, J.E., Hoffman-Censits, J., Powles, T., et al.: Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 387(10031), 1909–1920 (2016)

    Article  Google Scholar 

  87. Powles, T., Eder, J.P., Fine, G.D., et al.: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 515(7528), 558–562 (2014)

    Article  Google Scholar 

  88. Liu, Y., Maccarini, P., Palmer, G.M., Etienne, W., Zhao, Y., Lee, C., Ma, X., Inman, B.A., Vo-Dinh, T.: Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) for the Treatment of Unresec-table and Metastatic Cancers. Scientific Reports. 7, 8606 (2017)

    Article  Google Scholar 

  89. Liu, Y., Chongsathidkiet, P., Crawford, B.M., Odion, R., Dechant, C.A., Kemeny, H.R., Cui, X., Maccarini, P.F., Lascola, C.D., Fecci, P., Vo-Dinh, T.: Plasmonic gold nanostar-mediated photothermal immunotherapy for brain tumor ablation and immunologic memory. Immunotherapy. 11, 1293–1302 (2019)

    Article  Google Scholar 

  90. Vo-Dinh, T., Inman, B.A.: What potential does plasmonics-amplified synergistic immuno photothermal nanotherapy have for treatment of cancer. Nanomedicine. 13(2), 139–144 (2018)

    Article  Google Scholar 

  91. Garg, A.D., Nowis, D., Golab, J., Vandenabeele, P., Krysko, D.V., Agostinis, P.: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim. Biophys. Acta. 1805(1), 53–71 (2010)

    Google Scholar 

  92. Chen, Q., Xu, L., Liang, C., Wang, C., Peng, R., Liu, Z.: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (1R01EB028078-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vo-Dinh, T. (2021). The New Frontier in Medicine at the Convergence of Nanotechnology and Immunotherapy. In: Vo-Dinh, T. (eds) Nanoparticle-Mediated Immunotherapy. Bioanalysis, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-78338-9_1

Download citation

Publish with us

Policies and ethics