
Chapter 12
Outlier Detection for Pandemic-Related
Data Using Compositional Functional
Data Analysis

Christopher Rieser and Peter Filzmoser

Abstract With accurate data, governments can make the most informed decisions
to keep people safer through pandemics such as the COVID-19 coronavirus. In such
events, data reliability is crucial and therefore outlier detection is an important and
even unavoidable issue. Outliers are often considered as the most interesting obser-
vations, because the fact that they differ from the data majority may lead to relevant
findings in the subject area. Outlier detection has also been addressed in the context
ofmultivariate functional data, thus smooth functions of several characteristics, often
derived from measurements at different time points (Hubert et al. in Stat Methods
Appl 24(2):177–202, 2015b). Here the underlying data are regarded as compositions,
with the compositional parts forming the multivariate information, and thus only rel-
ative information in terms of log-ratios between these parts is considered as relevant
for the analysis. The multivariate functional data thus have to be derived as smooth
functions by utilising this relative information. Subsequently, already established
multivariate functional outlier detection procedures can be used, but for interpre-
tation purposes, the functional data need to be presented in an appropriate space.
The methodology is illustrated with publicly available data around the COVID-19
pandemic to find countries displaying outlying trends.

12.1 Introduction

The crisis caused by COVID-19 in almost all areas of life has also revealed that an
accurate data collection is a challenge that cannot be easily resolved due to political
or logistic problems. However, the availability of clean and reliable data is a key
step in fighting a pandemic. On the one hand, knowing the real number of tested,
newly infected and dead people allows to investigate the causes of the observed
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developments and to take appropriate measures to stop the spread of an infection.
On the other hand, insurance companies offering a protection linked to some specific
events during a pandemic would like to have reliable data to avoid the possibility of
moral hazard.

Many countries report the number of cases, deaths, tests, and further parameters
(variables) related to the COVID-19 pandemic regularly over time, and the data are
accessible in public data repositories. Rather than treating the data with tools from
time series analysis, it is common to consider them as functional data, so that the
measurements are represented by smooth functions over time.One could then analyse
themultivariate information contained in the functions for the different variables, and
compare the countries with respect to this information. Thus, countries for which
the multivariate information differs from the main trend given by the majority of the
countries are possible outliers. Instead of directly considering the reported number
(represented by the functions), one could also focus on analysing relative information.
This can be done by taking (log-)ratios between the variables. Thus, the source of
information for the analysis would not consist in the number of cases, death, tests,
etc., for a particular day in a particular country, but in the (log-)ratios between these
numbers. This is what is done in compositional data analysis, and outlier detection
in this context will focus on atypical behaviour in the multivariate information of
such (log-)ratios. For example, if the development of the number of cases over time
is similar in some countries, but in one country the number of deaths develops more
rapidly, this could be much better visible in a (log-ratio) than in the reported values.
Thus, treating COVID-19 data as compositional data and analysing relative rather
than absolute information can be very beneficial for outlier detection.

In this paper we consider a newmethod for the detection of outliers in the compo-
sitional functional data setting. The detection of outliers in the p-dimensional mul-
tivariate data case has been intensively investigated throughout the years and many
methods have been developed. Denote by xk ∈ R

p, for k = 1, ..., K , the observed
samples. A popular approach considers an outlier of these samples as a point xk0 for
which the robustified version of the Mahalanobis distance,

√
(xk0−m)′C−1(xk0−m),

wherem respectivelyC are robust estimators for themean and the covariancematrix,
is above a certain threshold and thus far away from the centre m with respect to the
covariance structureC; see Rousseeuw (1985), Rousseeuw and Driessen (1999) and
Hubert and Debruyne (2010). The idea of defining an outlier as a point being far
away from the centre has been extended to more general measures related to statis-
tical depth, see Tukey (1975), Serfling (2006) and Mosler (2012).

In recent years, many methods of multivariate statistics have been generalised
to Functional Data Analysis (FDA). In FDA one considers data points to be whole
functions, i.e. in the notation above, data points xk : I → R

p are multivariate func-
tions; for an overview of FDA we refer to Ramsay (2004), Ferraty and Vieu (2006)
or Kokoszka and Reimherr (2017). Accordingly, the concept of outliers has been
extended from the multivariate to the FDA setting, see Fraiman and Muniz (2001),
Febrero et al. (2008), Sun and Genton (2011) and Hubert et al. (2015b).

In this paper we consider extending the ideas of outlyingness to functional data
with image in the compositional data space. Thus, Sects. 12.1.1 and 12.1.2 provide
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a short introduction to the concepts of compositional data analysis and functional
data, respectively. Further, in Sect. 12.2 we consider smoothing for functional data
with image in the compositional space. In Sect. 12.3 we look at how one can detect
outliers for the latter setting. That is, we extend themethods of detecting outliers from
the non-compositional FDA case to the compositional one. Furthermore, Sect. 12.4
contains an application of themethod presented. The data is comprised of COVID-19
data of different countries over time. Each country represents a functional data point.
We finish in Sect. 12.5 with a summary and some conclusions.

12.1.1 Compositional Data Analysis Concepts

Assume we have given a D-dimensional random vector x for which each entry is
strictly positive, i.e. x ∈ R

D+ , where R
D+ denotes the D-dimensional real number

space with strictly positive entries. In the framework of compositional data analysis
(CODA) it is assumed that the ratios x j

xk
, for any j, k ∈ {1, ..., D}, j �= k, carry the

relevant information, and thus only relative information is essential. As ratios do not
change when multiplying xwith a strictly positive scalar λ > 0, it holds that λx =: y
carries the same information as x. This motivates defining the equivalence relation

x ∼ y ⇐⇒ ∃λ > 0 λx = y for any x, y ∈ R
D
+

which partitions the space RD+ into equivalence classes. Choosing for each equiva-
lence class the representative x = (x1, ..., xD)′ satisfying

∑D
j=1 x j = 1, leads to the

set of equivalence classes called the D-part simplex

SD :=
{
x = (x1, ..., xD)′ ∈ R

D
+,

D∑

j=1

x j = 1

}
.

The spaceSD is turned into aHilbert space—called theAitchison geometry on the
simplex, see Aitchison (1982)—by defining addition (perturbation), multiplication
with a scalar (powering), an inner product and a norm for x = (x1, ..., xD)′, y =
(y1, ..., yD)′ ∈ SD and α ∈ R:

• Perturbation: x ⊕ y := (x1y1, ..., xD yD)′
• Powering: α � x := (xα

1 , ..., xα
D)′

• Inner product:

〈x, y〉A := 1

2D

D∑

j=1

D∑

k=1

log

(
x j

xk

)
log

(
y j
yk

)

• Norm: ‖x‖A := √〈x, x〉A.
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Furthermore, the Aitchison geometry is (bijectively) isometric to RD−1. To show
this, firstly define the centred log-ratio (clr)

clr : SD → R
D, clr (x) :=

(
log

(
x1

D

√∏D
j=1 x j

)
, ..., log

(
xD

D

√∏D
j=1 x j

))′

(12.1)

which satisfies the properties of being invariant under the above operations and the
norm, i.e.

clr(x ⊕ y) = clr(x) + clr(y) (12.2)

clr(α � x) = α clr(x) (12.3)

〈x, y〉A = 〈clr(x), clr(y)〉E , (12.4)

see Filzmoser et al. (2018). However, as for any x ∈ SD , the entries of clr(x) sum
up to zero,

∑D
i=1 clr(x)i = 0, it follows that the clr mapping does not satisfy the

property of being one-to-one ontoRD . To obtain a bijectivemapping, choose a D − 1
dimensional basisV = (v1, ..., vD−1), where v j ∈ R

D , for j = 1, . . . , D − 1, are clr
coefficients, and define the isometric log-ratio (ilr) mapping as

ilrV : SD → R
D−1, ilrV(x) := V′ clr(x). (12.5)

The latter is a one-to-one mapping fulfilling (12.2), (12.3) and (12.4), see Filz-
moser et al. (2018). As there are infinitely many possibilities to choose a basis V, ilr
coefficients are frequently considered to express all relative information of a composi-
tion appropriately in the usual Euclidean geometry, for which the common statistical
tools have been designed. If an interpretation is desirable, the relative information
is often re-expressed in terms of clr coefficients by clr(x) = V ilrV(x), because they
relate to the original compositional parts in terms of relative information of the part
to an “average” (geometric mean), see (12.1).

12.1.2 Functional Data

In FDA we consider observations to be multivariate smooth functions f : [t1, tN ] →
R

D . In practice, such observations often originate as time series, measured at certain
time points ti , with i = 1, . . . , N , and thus they are not necessarily forming smooth
functions. In this case, a preprocessing step is needed to find an estimate f̂ for f
given (ti , yi ), with yi ∈ R

D, i = 1, . . . , N , being noisy samples of f(ti ). We assume
in the following Gaussian centred uncorrelated noise with equal variance. Although
many methods exist to recover smooth functions, it is common that f̂ is estimated by
smoothing spline methods. The literature on spline methods is vast and we refer to
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Reinsch (1967), Wood (2017) and Yee (2015) for a good overview. The main idea is
that given multivariate data (ti , yi ) we find an estimate f̂ which is, on the one hand,
sufficiently smooth but, on the other, also a good approximation to the data. It is
common to look at the following vector valued smoothing problem

f̂ := argmin
f

N∑

i=1

‖yi − f(ti )‖2E + λ

∫ tN

t1

∥∥f ′′(t)
∥∥2
E dt, (12.6)

where λ > 0 is a fixed smoothing parameter, and ‖·‖E denotes the Euclidean norm.
The idea is that with increasing λ, the second derivative f ′′ is forced to zero,
i.e. towards a linear function. From Problem (12.6) it can be deduced that the solution
is of the form f(t) := ∑N

i=1 ai bi (t), see Yee (2015), with bi being basis functions of
the cubic spline space, and ai being fixed vectors in R

D . Plugging this basis expan-
sion into (12.6) shows that the penalty function acts as regularisation penalty on ai
restraining the flexibility of the latter. In reality, one never uses the full basis expan-
sion as given above, but rather a different and equally flexible expansion with less
basis functions to save coefficients and avoid unnecessary computation in the case
of a lot of data, for example a B-spline basis. Plugging in a specific basis expansion
f(t) := ∑N

i=1 ai bi (t) we can see that the problem is a convex problem, and solving
this vector valued problem is discussed in Yee (2015).

12.2 Smoothing for CODA Time Series

In this section we consider functional observations with image in SD , i.e. functions
u : [t1, tN ] → SD . As before, we assume that only a set of discrete samples (ti , xi )
is given, with i = 1, . . . , N and xi ∈ SD , where xi is a sample of u(ti ). To construct
a smooth estimate û of u, we firstly define derivatives and smoothing splines in a
compositional context. For a function u : [t1, tN ] → SD , its derivative at a time point
t is defined as

u′(t) := lim
h→0

1

h
� u(t + h) � u(t). (12.7)

Accordingly, one can define higher order derivatives inductively, e.g. u′′(t) :=
(u′)′(t). For a reference on compositional calculus we refer to Pawlowsky-Glahn
and Buccianti (2011). In accordance with the previous section, define û as

û := argminu

N∑

i=1

‖xi � u(ti )‖2A + λ

∫ tn

t1

∥∥u′′(t)
∥∥2
A dt, (12.8)

where λ > 0 is again a fixed smoothing parameter controlling the smoothness.
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Using the continuity of ilrV and (12.2), it follows that

ilrV(u′)(t) = ilrV

(
lim
h→0

{
1

h
� u(t + h) � u(t)

})

= lim
h→0

ilrV

(
1

h
� u(t + h) � u(t)

)

= lim
h→0

ilrV(u(t + h)) − ilrV(u(t))

h
= ilrV(u)′(t)

holds. With the same arguments, the equation ilrV(u′′)(t) = ilrV(u)′′(t) follows.
Therefore, defining f := ilrV(u), Problem (12.8) can be reformulated using the

latter, as well as the properties (12.2) and (12.4):

argminu

N∑

i=1

‖xi � u(ti )‖2A + λ

∫ tn

t1

∥∥u′′(t)
∥∥2
A dt (12.9)

⇐⇒ argminu

N∑

i=1

‖ilrV(xi ) − ilrV((u(ti ))‖2A + λ

∫ tn

t1

∥∥ilrV((u′′(t))
∥∥2
A dt

(12.10)

⇐⇒ argminf

N∑

i=1

‖ilrV(xi ) − f(ti )‖2E + λ

∫ tn

t1

∥∥f ′′(t)
∥∥2
E dt. (12.11)

The latter is a vector valued smoothing problem in R
D−1 for the data (ti , ilrV(xi )),

see Problem (12.6), and it can be solved accordingly.
Given a solution f̂ to (12.11), a solution to (12.8) is then û = ilr−1

V (f̂) per definition
of f . In the case that different solutions to (12.11) exist, e.g. f̂1 and f̂2, we know from
the equivalence chain before and from the fact that ilrV is isometric, that also ilr−1

V (f̂1)
and ilr−1

V (f̂2) are different solutions to Problem (12.8). Equally, having two different
solution of (12.8) leads to different solutions of (12.11). This means that if (12.11)
is uniquely solvable for a chosen V, we get that û is also uniquely determined.
Therefore, the choice of V is irrelevant. With the exception of some very degenerate
settings, Problem (12.11) is uniquely solvable in most applications.

12.3 Outlier Detection in Compositional FDA

In the univariate case we can think of outliers as observations being very far away
from the main mass of the data set, thus far away from the data centre with respect
to the scale (Maronna et al. 2006).
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The outlyingness of a multivariate observation x ∼ PX, where PX denotes the
distribution of a p-dimensional random vector X and x a realisation, can be built
on the univariate case by means of projection onto a line defined by r ∈ R

p, with
‖r‖ = 1, thus r′X. As discussed in Donoho et al. (1992), the outlyingness of an
observation x of the projection r′x can be measured by

|r′x − median(r′X)|
mad(r′X)

, (12.12)

where “mad” denotes the median absolute deviation, i.e. the median of |X −
median(X)|. Taking the supremum of (12.12) over all r with ‖r‖ = 1 yields a mea-
sure of outlyingness for any x independent of the direction r. Adjusting (12.12) for
skewness—see Hubert and Vandervieren (2008) for adjusted boxplots of skewed
distributions in the univariate case—the adjusted outlyingness (AO) is defined as

AO(x, PX) :=

⎧
⎪⎪⎨

⎪⎪⎩

sup‖r‖=1

(
r′x−median(r′X)

w2(r′X)−median(r′X)

)
if r′x > median(r′X)

sup‖r‖=1

(
median(r′X)−r′x

median(r′X)−w1(r′X)

)
if r′x ≤ median(r′X),

where w1 and w2 are functions that allow to adjust for the skewness of the univariate
distributions, see Hubert et al. (2015b) for an exact definition of these two functions.

To obtain a measure of outlyingness in the FDA case, e.g. for the data (f :
[t1, tN ] → R

p) ∼ PF, Hubert et al. (2015b) propose to use the functional adjusted
outlyingness of a FDA point f :

FAO(f, PF) :=
∫ tN

t1

AO( f (t), PF(t))dt,

where Pf (t) denotes the marginal distribution of F for fixed t .
In a compositional functional data context, where the compositions are functions

of the form u : [t1, tN ] → SD , with distribution PU, we propose to define the com-
positional functional adjusted outlyingness as

CFAO(u, PU) : =
∫ tN

t1

AO(ilrV(u(t)), PilrV(U(t)))dt. (12.13)

For Definition (12.13) to be a valid measure of outlyingness it needs to be checked
that it is well defined, i.e., this measure needs to be independent of the choice
of the basis matrix V. As V ilrV(x) = clr(x) holds by definition for a matrix
with orthonormal columns V, we have for a different matrix Ṽ with orthonormal
columns ilrV(x) = V′ clr(x) = V′Ṽ ilrṼ(x), seeFilzmoser et al. (2018).As thematrix
V′Ṽ ∈ R

(D−1)×(D−1) is of full rank D − 1, we get, for any fixed t
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AO(ilrV(u(t)), PilrV(U (t))) = AO(V′Ṽ ilrṼ(u(t)), PV′Ṽ ilrṼ(U (t))) (12.14)

= AO((V′Ṽ)(ilrṼ(u(t))), P(V′Ṽ)(ilrṼ(U (t)))) (12.15)

= AO(ilrṼ(u(t)), PilrṼ(U (t))) (12.16)

where the last equality follows from the affine invariance property of AO, see Hubert
and Van der Veeken (2008); affine invariance means that AO(x, PX) = AO(Ax +
b, PAX+b) holds for any regular matrix A ∈ R

p×p and b ∈ R
p for x ∈ R

p with x ∼
PX. As CFAO is defined as an integral over (12.16) it follows that the latter is equally
invariant and thus well defined.

To visually find outliers in the FDA setting, Hubert et al. (2015a) introduced a
functional outlier map (FOM). Assume that the evaluation of K multivariate func-
tional data points f1, . . . , fK is given at time points t1, . . . , tn , and denote PK the
sample distribution of the functional data points, and Pti the sample distribution of
the evaluations at time point ti . The FOM is defined as a two dimensional graph,
plotting FAO(fk, PK ) on the horizontal axis against

σi=1,...,N ((AO(fk(ti ), Pti ))i )
(1 + FAO(fk, PK ))

(12.17)

on the vertical axis, for k = 1, . . . , K , where σ denotes the standard deviation. The
motivation behind this map is that when a data point fk is a shift outlier, its according
point in the FOM plot will be higher on the horizontal axis. If a data point fk displays
an outlying high variability in time, this will result in a high value on the vertical axis
in the FOM plot. The denominator in (12.17) is necessary to correct for the effect
that when a data point is shifted further, this is reflected in the standard deviation
accordingly, see Hubert et al. (2015a).

Given the evaluation of the compositional functional data u1, . . . ,uK , k =
1, . . . , K , at time points t1, . . . , tN , we suggest equivalently to plot CFAO(uk, PK )

on the horizontal axis, against

σi=1,...,N ((AO(ilrV(uk(ti )), Pti ))i )
(1 + CFAO(uk, PK ))

(12.18)

on the vertical axis. Again, the latter is independent of the choice ofV, because AO as
well as CFAO are affine invariant, see the reasoning for (12.16) and its conclusion.

12.4 Application to COVID-19 Data

In this section we use data from https://covid.ourworldindata.org,
which are publicly available. This page contains for most countries of the world
daily information related to the COVID-19 pandemic. Here we focus on European
countries only, and on the following information:
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Fig. 12.1 COVID-19 data from Austria in the period April 1 until December 31, 2020. The plots
show daily data for the 5 variables used for the analysis

• Total number of COVID-19 infections per million inhabitants.
• Total number of COVID-19 deaths per million inhabitants.
• Total number of COVID-19 tests per million inhabitants.
• Positive rate, i.e. share of total COVID-19 tests that were positive.
• Reproduction rate, referring to the expected number of cases directly generated
by one case.

We select the time period from April 1 until December 31, 2020, because from April
onwards the information was consistently collected in the data base. However, for
some of the European countries the information on some of the variables was not
available, so that finally only 35 European countries could be used. Still, for some
countries there were missing values (or shorter time periods with missings), which
have been imputed by a weighted moving average imputation method, implemented
as function na_ma() in the R package imputeTS (Moritz and Bartz-Beielstein
2017).

As an example, Fig. 12.1 shows the data for Austria, and the data structure is
similar in many of the other countries. Still, there might be countries with deviations
in the multivariate data structure, and the task is to identify such countries. The focus
here is on relative information in terms of log-ratios between the different variables.

Figure12.1 reveals that the total number of cases starts to grow quickly in October
2020, and the same is true for the total number of deaths (per million). The number of
tests grows steadily over the time period. The positive rate decreases at the beginning
of this selected time period, but it increases drastically in October, followed by
a decline in November/December. The reproduction rate fluctuates more, and has
higher values than one in the summer and fall.

Multivariate functional outlier detection is here first applied to the data expressed
in relative information, i.e. as ilr coordinates. In a second stage we also compare
with an analysis based on absolute information, as reported in Fig. 12.1 for Austria.
Naturally, the different treatment of the data will very likely lead to different results.
As an example for relative versus absolute information, we may consider just the
number of cases and the number of deaths (per million). For most countries, an
increase of cases also implies an increase of deaths, probably with a different time
delay. If one looks at relative information in terms of a log-ratio, however, differences
between the countries might get more clearly pronounced. We will come back to this
issue later.



260 C. Rieser and P. Filzmoser

z1 z2 z3 z4

Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
−4

−3

−2

−1

2

3

4

5

6

3.0

3.5

4.0

4.5

6.0

6.5

7.0

ilr
 c

oo
rd

in
at

e
Austria

Fig. 12.2 Ilr coordinates of the data from Austria, together with the lines after smoothing. The
smoothed lines (for every country) are the input for compositional functional outlier detection

For every country, the data are first ilr-transformed, resulting in time series of the
ilr coordinates. Since the specific choice of the ilr coordinates is not relevant here,
we use so-called pivot coordinates, where the first coordinate expresses all relative
information of the first part to the remaining parts in the composition, see Filzmoser
et al. (2018). Figure12.2 shows the resulting ilr coordinates for the Austrian data;
since there are 5 variables available, see Fig. 12.1, we end up with 4 ilr coordinates.
Figure12.2 also shows the lines after smoothing the data in ilr coordinates, thus
after solving Problem (12.11). The information of these lines form the compositional
functional data as they are used formultivariate outlier detection. Since we used pivot
coordinates, only the first coordinate (denoted here by z1) has a clear interpretation
in terms of all relative information of the total cases to the remaining variables. This
coordinate is in fact proportional to the first clr coefficient (Filzmoser et al. 2018).
We will show and discuss the corresponding clr coefficients later in Fig. 12.5.

Once the smooth functions are estimated for every country, compositional func-
tional outlier detection can be performed. Figure12.3 shows the compositional func-
tional outlier map (CFOM). Every point in the plot corresponds to a country, and the
line indicates the outlier cutoff. It can be seen that one (red) point (Iceland) slightly
exceeds the cutoff, and another point (Belarus) is just below the cutoff. The sorted
compositional functional adjusted outlyingness is again shown in Fig. 12.4 (left),
with the corresponding country names added. The values for Iceland and Belarus
clearly stick out, and the next biggest value originates from the data from Luxem-
bourg. These countries are not particularly outlying in their variability in time, since
their values in Fig. 12.4 (right) are not unusual.

Figure12.5 is an attempt to identify the reason for outlyingness. The plots show
the smoothed functional data in clr coefficients, which are simply obtained by a
transformation from the functions in ilr coordinates, see Eq. (12.5). The function for
Iceland is shown in red, and that for Belarus in blue. For example, the clr coefficients
for the total cases (left plot) mainly show a strongly increasing trend at the beginning,
and again at the end of the considered time period. This means that the cases have
grown rapidly, relative to the remaining variables (on average). The function for
Belarus (blue) shows a quite different behaviour, with very high values especially
around May. This means that the total cases are very much dominating over the
values of the other variables. The reason for this is not because of high values of
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the outlier cutoff. Iceland exceeds the cutoff value, Belarus is just below the cutoff, see also Fig. 12.4
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Fig. 12.4 Sorted compositional functional adjusted outlyingness (left), and sorted values from the
vertical axis in Fig. 12.3 (right)

cases, but because of exceptionally low (reported) values of the remaining variables.
Also the values for Iceland (red curves) are seen as atypical. For example, the clr
coefficients of the total cases started to be the lowest in April, but then increased to
be the highest in August. In a ratio, it can either be the change in the numerator or in
the denominator, or in both, to get this behaviour, but in any case it turns out to be
quite different compared to the other countries.

As a comparison, the following analysis is based on absolute information. Thus,
the smoothed curves are directly estimated from the raw input data without any trans-
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Fig. 12.5 Functional data represented in clr coefficients. Every function represents the time series
of one country; Iceland is shown in red, Belarus in blue
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Fig. 12.6 Functional outlier map (FOM) as a result of using the untransformed absolute data
information

formation, see Eq. (12.6). Then multivariate functional outlier detection is applied,
which results in the functional outlier map presented in Fig. 12.6. Here, one point
clearly exceeds the outlier cutoff value, and this point is Luxembourg.

Details are presented in Fig. 12.7, where the left plot are the sorted values from
the horizontal axis, and the right plot the sorted values of the vertical axis from the
FOM of Fig. 12.6. Indeed, Luxembourg appears with an exceptionally high value of
FAO, and neither Iceland nor Belarus are atypical in any of these plots.

Finally, Fig. 12.8 shows the raw functional data. The outlier Luxembourg is shown
by green curves, Iceland in red, and Belarus in blue. Luxembourg shows a very
clear difference in the total tests, which might be the reason for the multivariate
outlyingness. The countries Iceland and Belarus, which were clearly different in the
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Fig. 12.8 Smoothed curves for the untransformed (absolute) data, with Luxembourg in green,
Iceland in red, and Belarus in blue

compositional analysis, follow the main data structure well and do no longer appear
as atypical. This shows that both types of analysis indeed focus on different data
aspects, and it will be based on the task and research question to determine which of
the analysis is more appropriate.

12.5 Summary and Conclusions

Outlier detection has been a relevant task in data analysis already since the beginning
of data collection, and it continues being important also for more complex data
structures. The identified outliers may point at atypical events, and depending on the
context even at possible cases of fraud; see, e.g., van Capelleveen et al. (2016) or
Nian et al. (2016). Outlier detection methods are also useful for pandemic-related
data, as they may guide policy makers to draw appropriate conclusions.

Here we have used publicly available time series data related to COVID-19, as
they are reported from different countries. The multivariate information, here in
terms of the number of cases, deaths, tests, the positive rate, and the reproduction
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rate, has been treated as compositional data, where relative rather than absolute
values are processed in the analysis. Absolute values would refer to the data as they
are reported, while relative information refers to the log-ratios between the values
of the different variables. An outlier detection method which makes use of relative
information thus will focus more on the differences of the developments over time
between the variables, and not necessarily on extreme values in single variables. In
fact, if there is a peak in one variable in a certain time period, and the peak also
appears in another variable in the same period, the log-ratio would not show up as
unusual. A temporal shift of the peaks, however, creates big log-ratios, and if the
position ormagnitude is different for one country compared to the others, this country
will appear as a potential outlier.

The time trends of the COVID-19 data have been treated here as functional data.
Functional data which are processed with tools from compositional data analysis
commonly have a constant sum constraint, such as probability density functions or
particle-size curves, see van den Boogaart et al. (2014) or Menafoglio et al. (2014).
Here we considered the single variables of the multivariate data information as parts
of a composition, and since the information is derived continuously over a domain
(here time), such data are regarded as multivariate compositional functional data.
As functional data are supposed to be smooth functions, the concepts from com-
positional data analysis already need to be taken into account when generating the
compositional functional data. Thus, the original data information, which usually
needs to be smoothed in order to represent functions, has to be presented in the
appropriate geometry. Since we deal with multivariate information, smoothing also
needs to be done in a multivariate context. Here we have used isometric log-ratio
coordinates to move the data from the simplex to the standard Euclidean geometry,
and we have shown that the specific choice of these coordinates is not relevant for
obtaining the smooth functions.

Once themultivariate compositional functional data are available and expressed in
the appropriate geometry, standard tools for multivariate functional outlier detection
can be used. The application of the methodology to the COVID-19 data revealed
that the outlyingness values for the two countries Iceland and Belarus were clearly
higher compared to the other investigated countries. Diagnostics in clr coefficients,
again referring to relative information, has shown that some of the functions for
these countries indeed deviated clearly, at least in certain time periods. Because clr
coefficients refer to log-ratios of a specific variable to the geometric mean, deviations
can be caused either by atypical values of this variable, or by atypical values of the
geometric mean, representing an “average behaviour” of all analysed variables. The
analyst would then have to compare this information to that from the other countries,
or even go back to the original data source for such a comparison. There could be
many reasons for outlyingness: data reporting is done differently (probably only for
some of the variables), the policy of the restrictions in the context of the pandemic is
very different, the behaviour of the people to deal with the pandemic is very different,
etc.

Wehave also compared such an analysiswithmultivariate functional outlier detec-
tion using the absolute information, where outliers are, for example, countries with
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extreme values of a function in a certain time period. This analysis led to different
outliers, and it finally will depend on the underlying task and research questionwhich
type of analysis is most appropriate.

There are many further methodological challenges, which are revealed when con-
sidering real data applications as, for instance, the full COVID-19 data set provided
from the source mentioned in the paper: zero values, missings, poor data quality,
some countries do not provide information for some of the characteristics, etc. These
issues are relevant already for estimating the multivariate smooth functions, and
subsequently also for the purpose of outlier detection. Our future research will be
devoted to such tasks.
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