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Abstract At the present time, we are immersed in the convergence between
Big Data, High-Performance Computing and Artificial Intelligence. Technological
progress in these three areas has accelerated in recent years, forcing different
players like software companies and stakeholders to move quickly. The European
Union is dedicating a lot of resources to maintain its relevant position in this
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scenario, funding projects to implement large-scale pilot testbeds that combine
the latest advances in Artificial Intelligence, High-Performance Computing, Cloud
and Big Data technologies. The DeepHealth project is an example focused on the
health sector whose main outcome is the DeepHealth toolkit, a European unified
framework that offers deep learning and computer vision capabilities, completely
adapted to exploit underlying heterogeneous High-Performance Computing, Big
Data and cloud architectures, and ready to be integrated into any software platform
to facilitate the development and deployment of new applications for specific
problems in any sector. This toolkit is intended to be one of the European
contributions to the field of AI. This chapter introduces the toolkit with its main
components and complementary tools, providing a clear view to facilitate and
encourage its adoption and wide use by the European community of developers
of AI-based solutions and data scientists working in the healthcare sector and
others.

Keywords Hybrid big data HPC architectures · High performance data
analytics · Hardware-specific capabilities for big data GPUs FPGAs ·
Performance for large-scale processing

1 Context: The European AI and HPC Landscape
and the DeepHealth Project

The rapid progress of different technologies is taking place within a virtuous circle
that emerged thanks to the synergies between such technologies and has brought us
three important advances in recent years, namely, the increase in storage capacity
at a reduced price, the increase in data transmission speed and the increase in
computing power provided by High-Performance Computing (HPC) and hardware
accelerators. These three advances, in combination with the availability of large-
enough volumes of data, have considerably boosted the growth and development
of Artificial Intelligence (AI) in recent years. Mainly, thanks to the fact that the
techniques of Machine Learning (ML), able to learn from data, have reached
a good level of maturity and are improving the best results obtained by expert
systems at the core of knowledge-based solutions in most application domains.
Machine Learning is one of the most important areas of AI, which in turn includes
Deep Learning (DL). As such, descriptive/predictive/prescriptive models based on
AI/ML/DL techniques are becoming key components of applications and systems
deployed in real scenarios for solving problems in a wide variety of sectors (e.g.,
manufacturing, agriculture and food, Earth sciences, retail, fintech and smart cities,
among others). Nevertheless, its use in the health sector is still far from being widely
spread (see [1]).

In this scenario, the European Union (EU) is fostering strategic actions to
position the EU as a big worldwide player in AI, HPC and Big Data, capable
of creating and deploying solutions based on cutting-edge technologies. The
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DeepHealth project whose title is “Deep-Learning and HPC to Boost Biomedical
Applications for Health” [2], funded by the EC under the topic ICT-11-2018-2019
“HPC and Big Data enabled Large-scale Test-beds and Applications”, is one of
the innovation actions supported by the EU to boost AI and HPC leadership and
promote large-scale pilots. DeepHealth is a 3-year project, kicked off in January
2019 and scheduled to conclude in December 2021. DeepHealth aims to foster the
use of technology in the Healthcare sector by reducing the current gap between
the availability of mature-enough AI-based medical imaging solutions and their
deployment in real scenarios. The main goal of the DeepHealth project is to put
HPC power at the service of biomedical applications that require the analysis of
large and complex biomedical datasets and apply DL and Computer Vision (CV)
techniques to support new and more efficient ways of diagnosis, monitoring and
treatment of diseases.

Following this aim, one of the main outcomes of DeepHealth addressing industry
needs is the DeepHealth toolkit, a free and open-source software designed to
be a European unified framework to offer DL and CV capabilities completely
adapted to exploit underlying heterogeneous HPC, Big Data and cloud architec-
tures. The DeepHealth toolkit is aimed at computer and data scientists as well
as to developers of AI-based solutions working in any sector. It is a piece of
software ready to be integrated into any software platform, designed to facili-
tate the development and deployment of new applications for specific problems.
Within the framework of the DeepHealth project, the toolkit is being developed,
tested and validated by using it to implement descriptive/predictive models for 14
healthcare use cases; nevertheless, its usefulness goes beyond the health sector,
being applicable, as said, to any application domain or industrial sector. Thanks
to all its features, which will be detailed throughout this chapter, the DeepHealth
toolkit is technology made in EU that contributes to the development of AI in
Europe.

This chapter is aligned with the technical priorities of Data Processing
Architectures and Data Analytics of the European Big Data Value Strategic
Research and Innovation Agenda [3]. It addresses the vertical concern
Engineering and DevOps of the BDV Technical Reference Model, and
the horizontal concerns Data Analytics and Data Processing Architectures
focusing on the Cloud and HPC. And this chapter also relates to the Systems,
Methodologies, Hardware and Tools cross-sectorial technology enablers of the
AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda
[4].

This chapter also introduces the toolkit, its functionalities and its enabling
capabilities with the objective to bring it closer to potential users in both industry
and academia. To do so, the authors present the toolkit, its components, the
adaptations that allow exploiting HPC and cloud computing infrastructures thanks
to complementary HPC frameworks, and describe practical aspects to guide on its
use and how to effectively integrate it for the development of AI-based applications.
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2 A General Overview of the DeepHealth Toolkit

The DeepHealth toolkit is a general-purpose deep learning framework, including
image processing and computer vision functionalities, enabled to exploit HPC
and cloud infrastructures for running parallel/distributed training and inference
processes. All the components of the toolkit are available as free and open-source
software under the MIT license [5]. This framework enables data scientists to design
and train predictive models based on deep neural networks, and developers to easily
integrate the predictivemodels into existing software applications/platforms in order
to quickly build and deploy AI-based solutions (e.g., support decision tools for
diagnosis).

The toolkit is specifically designed to cope with big and constantly growing
datasets (e.g., medical imaging datasets). Large-enough datasets enable the use
of more complex neural networks and drive to improve both the accuracy and
robustness of predictive models, but at the cost of dramatically increasing the
demand of computing power. To do so, the DeepHealth toolkit incorporates, in
a transparent manner, the most advanced parallel programming models to exploit
the parallel performance capabilities of HPC and cloud infrastructures, featuring
different acceleration technologies such as symmetric multi-processors (SMPs),
graphic processing units (GPUs) and field-programmable gate arrays (FPGAs). It
also integrates additional frameworks (i.e., COMPSs [6] and StreamFlow [7]) that
allow to exploit specialized infrastructures, enabling parallelization mechanisms at
different levels. Moreover, the toolkit provides functionalities to be used for both
training and inference, addressing the complexity of the different available compu-
tational resources and target architectures at both the training and inference stages.
Training is performed by AI experts, commonly in research-focused environments,
using specialized HPC architectures equipped with FPGAs and GPUs; the goal
is to maximize the number of samples processed per second keeping the overall
accuracy. Inference is done with trained models in production environments (even
using small devices in the edge), where the response time for predicting single
samples is crucial.

The core of the toolkit consists of two libraries, namely the European Computer
Vision Library (ECVL) and the European Distributed Deep Learning Library
(EDDL), that are accompanied by the back end and the front end, two components
to allow and facilitate the use of the libraries. The back end is a software-as-a-
service module that offers a RESTful API to give access to all the functionalities
of both libraries and provides independency from the programming language. The
front end is a web-based graphical user interface, mainly oriented to be used by data
scientists, for designing, training and testing deep neural networks. Both libraries
are implemented in C++ and include a Python API to facilitate the development
of client applications and integration with the wide array of Python-based data
analysis libraries. Figure 1 depicts the components of the toolkit and highlights the
two possible alternatives for developers of domain-specific applications to use the
functionalities provided by both libraries: (1) the use of a RESTful API provided
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Fig. 1 Components of the
DeepHealth toolkit and the
two possible alternatives of
interacting with the libraries.
One through the back end
using a RESTful API, and
another using the API of both
libraries. The execution of
training and inference
procedures over HPC + cloud
infrastructures is performed
by the runtime. The runtime
includes adaptations to HPC
frameworks ready to be
executed under the control of
resource managers
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by the back end (represented in Fig. 1 by the arrows labelled 1) or (2) the use
of the specific APIs (C++ or Python) of each library (represented in Fig. 1 by
the arrows labelled 2). This second option is not independent of the programming
language, yet it provides more control and flexibility over the software at the cost
of additional programming complexity. The former option requires less effort from
platform developers and makes applications independent of specific versions of the
libraries. Only versions including changes in the RESTful API will require updating
and recompiling applications. It can also be observed from Fig. 1 that all the DL
and CV functionalities can be thoroughly used via the front end or via a software
application/platform, in this last case with or without the back end. Additionally,
Fig. 1 shows the runtime of both libraries, which can be used to launch distributed
learning processes to train models on HPC and cloud architectures. Both libraries
are designed to run under the control of HPC-specific workflow managers such as
COMPSs [6] and StreamFlow [7], presented in Sect. 6. Once the trained models
are tested and validated, they are ready to be used in production environments to
perform inference from new samples by using the software applications/platforms
in which libraries are integrated.

The following describes the typical workflow of the usage of the toolkit by a
development team who is requested to address a new use case in a real scenario,
considering that the libraries of the DeepHealth toolkit are already integrated in the
platform any company developed to deploy AI-based solutions in the health sector.
First, (i) data scientists, members of the team, prepare the dataset by splitting it into
three subsets, namely training, validation and testing subsets. Next, (ii) the team
designs several artificial neural networks and (iii) launches the training processes on
HPC and cloud architectures by means of the runtime of the toolkit adapted to HPC
frameworks like the ones described in Sect. 6. (iv) The team evaluates the models
using the validation subset, and goes back to step (ii) to redesign some models if
necessary. Sometimes, the team should come back to step (i) to consider the dataset
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itself with the knowledge gained from previous iterations. (v) The model that gets
the best accuracy using the testing subset is selected; then (vi) computer scientists,
members of the same team, configure an instance of the application with the best
model and deploy the solution in a production environment.

In itself, the DeepHealth toolkit provides the following features to AI-based
application developers, data scientists and ML practitioners in general:

• Increases the productivity of computer and data scientists by decreasing the time
needed to design, train and test predictive models throughout the parallelization
of the training operations on top of HPC and cloud infrastructures, and without
the need for combining numerous tools.

• Facilitates the easy and fast development and deployment of new AI-based
applications, providing in a single toolkit, ready to be integrated, the most
common DL and CV functionalities with support for different operating systems.
Furthermore, it allows to perform training processes outside the application/-
platform installed on production environments. To use the resulting predictive
models, applications/platforms only need to integrate the libraries following one
of the two possible alternatives presented.

• Relaxes the need of having highly skilled AI and HPC/cloud experts. Training
processes can be executed in a distributed manner in a transparent way for
data/computer scientists, and applications/platforms in production environments
do not need to be adapted to run distributed processes on HPC and cloud
infrastructures. Therefore, data scientists and developers do not need to have a
deep understanding of HPC, DL, CV, Big Data or cloud computing.

3 The European Distributed Deep Learning Library

EDDL is a general-purpose deep learning library initially developed to cover deep
learning needs in healthcare use cases within the DeepHealth project. As part of the
DeepHealth toolkit, EDDL is a free and open-source software available on a GitHub
public repository [5]. Currently, it supports most widely used deep neural network
topologies, including convolutional and sequence-to-sequence models, and is being
used in different tasks like classification, semantic segmentation of images, image
description, event prediction from time-series data, andmachine translation. In order
to be compatible with existing developments and other deep learning toolkits, the
EDDL uses ONNX [8], the standard format for neural network interchange, to
import and export neural networks, including both weights and topology.

EDDL provides hardware-agnostic tensor operations to facilitate the develop-
ment of hardware-accelerated deep learning functionalities and the implementation
of the necessary tensor operators, activation functions, regularization functions,
optimization methods and all layer types (dense, convolutional and recurrent) to
implement state-of-the-art neural network topologies. The EDDL exposes two APIs
(C++ and Python) with functionalities belonging to two main groups: neural
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network manipulation (models, layers, regularization functions, initializers) and
tensor operations (creation, serialization, I/O, mathematical transformations). The
neural networks section provides both high-level tools, such as fitting and evaluating
the whole model, and lower-level ones that allow developers to act on individual
epochs and batches, providing finer control albeit with a slight efficiency loss in the
case of using the Python API, since a larger part of the program needs to be written
in Python to handle loops.

EDDL is implemented in C++, and the Python API, called PyEDDL [5], has
been developed to enhance the value of EDDL to the scientific community. The
availability of a Python library allows to integrate EDDL functionalities with widely
used scientific programming tools such as NumPy/SciPy [9] and Pandas [10]. In
particular, PyEDDL supports converting between EDDL tensors and NumPy arrays,
which are key to enable interoperability with other Python scientific libraries.
Moreover, since PyEDDL is based on a native extension module that wraps
the C++ EDDL code, users can take advantage of the simplicity and speed of
development of Python without sacrificing performance, using Python as a “glue”
language that ties together computationally intensive native routines. PyEDDL
allows Python access to the EDDL API and, as mentioned above, adds NumPy
interoperability, allowing interaction with a wide array of data sources and tools.
Like the rest of the DeepHealth Toolkit, PyEDDL is released as free and open-
source software and its source code is available on GitHub [5].

In relation to hardware accelerators, EDDL is ready to run on single computers
using either all or a subset of the available cores, all or a subset of the available
GPU cards, and coordinating the computation flow on the FPGA cards connected
to a single computer. The C++ and Python APIs of the EDDL both include a
function to build neural networks that creates all the data structures according to
the network topology and allocates all the necessary memory; one of the parameters
of the build function is an object for describing the available hardware devices
the EDDL will use to run the training and inference processes. EDDL defines the
concept of Computing Service to describe hardware devices. Currently, three types
of computing services are defined, namely CPU, GPU and FPGA. The number of
CPU cores, GPU cards or FPGA cards to be used are indicated by the Computing
Service.

Any neural network topology is internally represented by means of two directed
and acyclic graphs (DAGs), one for the forward step and another one for the
backward step. Each DAG defines the sequence of tensor operations to perform
the computation corresponding to the entire network, so that the computations
corresponding to a given layer will be performed when all its input dependencies
according to the DAG have been satisfied, i.e., when the output of all the layers
used as input to a given one are ready. Tensor operations are performed using the
hardware devices specified bymeans of the Computing Service provided as a param-
eter to the build function. On manycore CPUs, tensor operations are performed by
using the Eigen library [11] and parallelized using OpenMP [12]. When using GPU
or FPGA cards, the forward and backward algorithms are designed to minimize
the number of memory transfers between the CPU and GPU/FPGA cards. In the
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particular case of GPUs, EDDL has three modes of memory management to address
the lack of memory when a given batch size does not fit in the memory of a GPU.
Themost efficient one tries to allocate the whole batch in the GPUmemory to reduce
memory transfers at the minimum, the intermediate and least-efficient modes allow
to work with larger batch sizes at the cost of increasing the number of memory
transfers to perform the forward and backward steps for a given batch of samples.

GPU support in EDDL is done by means of CUDA kernels developed as part
of the EDDL code. As mentioned above, the use of different hardware accelerators
is completely transparent to developers and programmers who use the EDDL; they
only need to create the corresponding Computing Service to use all or a subset of
the computational resources. Integrating NVIDIA cuDNN library in the EDDL as
an alternative to CUDA kernels is in the work plan of the DeepHealth project.

Table 1 shows the performance in terms of the accuracy obtained with the test
set and the time per epoch in seconds during training. The EDDL is compared
with TensorFlow [13] and PyTorch [14], the two most popular DL toolkits. The
Cifar10 dataset was used. It can be observed that EDDL performs similar to the other
toolkits, but EDDL still needs to improve the performance on both CPUs and GPUs
when using Batch Normalization and larger topologies like VGG16 and VGG19.

EDDL support for FPGA cards is quite similar to the support for GPU cards.
The developer or data scientist using the EDDL simply indicates the target device
to run training or inference processes by means of a Computing Service object.
Although FPGAs can also be used for training, they are more appealing for inference
processes, and, therefore, FPGA support has been optimized for the inference
process. Depending on the trained model, FPGA cards can be directly used. This

Table 1 Benchmark to compare EDDL with TensorFlow and PyTorch using Cifar10 with and
without Batch Normalization

TensorFlow PyTorch EDDL
Model Accuracy/time No BN BN No BN BN No BN BN

VGG16 Test accuracy 77.4% 71.7% 77.9% / 76.2% 74.6% 76.4%
GPU time per epoch 62 s 68 s 72 s 77 s 146 s 204 s
CPU time per epoch 1313 s 1375 s 887 s 956 s 3107 s 2846 s

VGG19 Test accuracy 66.0% 59.9% 65.5% 59.7% 68.2% 61.0 s
GPU time per epoch 76 s 81 s 120 s 126 s 190 s 260 s
CPU time per epoch 1703 s 1809 s 1262 s 1352 s 3872 s 3838 s

RestNet18 Test accuracy 67.6% 64.0% 66.4% 65.7% 67.3% 64.8%
GPU time per epoch 25 s 26 s 59 s 60 s 36 s 49 s
CPU time per epoch 1234 s 1244 s 456 s 485 s 932 s 1207 s

ResNet34 Test accuracy 66.6% 66.4% 67.8% 65.5% 66.1% 60.4%
GPU time per epoch 44 s 46 s 97 s 101 s 65 s 89 s
CPU time per epoch 2125 s 2140 s 834 s 895 s 1674 s 2119 s

ResNet50 Test accuracy 68.4% 61.3% 68.1% 63.1% 66.4% 61.9%
GPU time per epoch 47 s 52 s 84 s 92 s 75 s 132 s
CPU time per epoch 1995 s 2044 s 706 s 835 s 1684 s 2622 s
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is the case when the models fit on the typically lower memory resources available
on FPGA devices. If models do not fit, then two options can be used. The first one
is to iteratively use FPGA cards to run the complete inference process on the model,
performing operations on a step-by-step manner driven by the CPU. The FPGA
support has been provided to allow this operational mode. However, quantization
and compression strategies can be deployed once the model has been trained. In
the DeepHealth project, the FPGA kernels mostly used on the Medical sector use
cases are being optimized and adapted to quantized and compressed models. In
order to deploy a model on FPGAs targeting low resource constraints and high
energy efficiency, the EDDL incorporates a strategy to reduce the complexity of a
deep neural network. Many techniques have been proposed recently to reduce such
complexity [15–17]. These approaches include the so-called pruning techniques,
whose aim is to detect and remove the irrelevant parameters from a model [18].
Removing parameters from a model has a huge impact on the deployment of the
trained model on FPGA cards, since the overall size of the model reduces as well as
the number of operations to generate the outcome decreases and, for instance, the
power consumption. This is allowed by the typically high dimensionality of these
models, where sparser and more efficient solutions can be found [19]. Towards this
end, in order to deploy the model on FPGA cards targeting low resource constraints
and high energy efficiency, the approach used in the EDDL is to include a structured
sparsity step, where as many neurons as possible are removed from the model with
a negligible performance loss.

Regarding distributed learning on HPC/cloud/HPC + cloud architectures, the
EDDL includes specific functions to simplify the distribution of batches when
training and inference processes are run bymeans of HPC frameworks like COMPSs
or StreamFlow. Concretely, the COMPSs framework allows to accelerate the DL
training operations by dividing the training data sets across a large set of computing
nodes available on HPC and cloud infrastructures, and upon which partial training
operations can then be performed. To do so, EDDL allows to distribute the weights
of the network from the master node to worker nodes, and to report gradients from
worker nodes to the master node, both synchronously and asynchronously. The
EDDL serializes networks using ONNX to transfer weights and gradients between
the master node and worker nodes. The serialization includes the network topology,
the weights and the bias. To facilitate distributed learning, the serialization functions
implemented in the EDDL allow to select whether to include weights or gradients.

EDDL and PyEDDL code is covered by an extensive test suite and complemented
by numerous usage examples in Python and C++, including network training and
evaluation with different models, ONNX serialization and NumPy compatibility. To
facilitate their adoption, EDDL and PyEDDL also provide extensive documentation
on installation, tensor and neural network manipulation, API usage and examples
[5]. The “getting started” section contains simple examples; the most advanced ones
show the use of topologies like VGG16/VGG19 [20] and U-Net [21]. Concerning
installation, developers can choose between installing from source code, via conda
[22], and via Homebrew for Mac OS X [23]. Additionally, pre-built Docker
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images with the DeepHealth toolkit components ready to be used are available on
DockerHub [24] (see Sect. 6.1).

4 The European Computer Vision Library

ECVL is a general-purpose computer vision library developed to support healthcare
use cases within the DeepHealth project, with the aim of facilitating the integration
of existing state-of-the-art libraries such as OpenCV [25]. ECVL currently includes
high-level computer vision functionalities implementing specialized and accelerated
versions of algorithms commonly employed in conjunction with deep learning;
functionalities that are useful for image processing tasks in any sector beyond health.

The design of ECVL is based on the concept of Image, which represents
the core element of the entire library. It allows to store raw data, images, and
videos in a multi-dimensional dense numerical single- or multi-channel tensor.
Multiple types of scientific imaging data and data formats (e.g., jpeg, png, bpm,
ppm, pgm, etc.) are natively supported by ECVL. Moreover, the library provides
specific functionalities to handling medical data, such as DICOM, NIfTI and many
proprietary Virtual Slides (VS) formats. In the case of VS, the Image object allows
to choose the area and the resolution to be extracted from the file. The availability
of a common software architecture provided by the ECVL Hardware Abstraction
Layer (HAL) allows great flexibility for device differentiation (SMPs, GPUs, and
FPGAs) while keeping the same user interface. This hardware-agnostic API ensures
versatility, flexibility, and extensibility, simplifying the library usage and facilitating
the development of distributed image analysis tasks.

The Image class has been designed for representing and manipulating different
types of images with diverse channel configurations, providing both reading
and writing functionalities for all the aforementioned data formats. Arithmetic
operations between images and scalars are performed through the Image class.
Obviously, all the classic operations for image manipulation such as rotation,
resizing, mirroring and colour space change are available. Extremely optimized
processing functions, like noising, blurring, contour finding [26], image skeletoniza-
tion [27] and connected components labelling [28] are implemented as well. ECVL
image-processing operations can be applied on-the-fly during deep neural networks
training to implement data augmentation. Given the relevance of data augmentation,
ECVL provides with a simple Domain-Specific Language (DSL) to facilitate the
definition of transformations to be applied and their configuration parameters. A set
of transformations can thus be defined for each split of a dataset (train, validation
and test subsets). Augmentation can be either provided in compiled code or through
the DSL and thus read from file at runtime. More details are available in [29].

Optional modules are supplied with the library and can be activated to enable
additional functionalities, such as the cross-platformGUI based on wxWidgets [30],
which provides simple exploration and visualization of images contained in ECVL
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Image objects, and a 3D volumes visualizer to observe different slices of a CT scan
from different views.

In order to ensure an efficient and straightforward mechanism to perform
distributed model training, ECVL defines the DeepHealth Dataset Format (DDF):
a simple and flexible YAML-based syntax [31] that allows to describe a dataset.
Regardless of the task being analysed, a DDF file provides all the information
required to characterize the dataset and thus performing data loading, image pre-
and post-processing and model training. A detailed description of such a format
can be found in [29]. Moreover, a specific module to load and parse DDF-defined
datasets is implemented and exposed by the library interface.

Like EDDL, ECVL is complemented by a Python API called PyECVL [5]. In
addition to simplified programming, its main advantage is the ability to integrate
with other scientific programming tools, which are abundant in the Python ecosys-
tem. This interoperability is enabled by supporting the conversion between ECVL
images and NumPy arrays. Like PyEDDL, PyECVL is based on a wrapper extension
module that reroutes calls to the C++ code, allowing to reap the benefits of Python
development without taking a big hit on performance. PyECVL exposes ECVL
functionalities to Python, including Image objects, data and colour types, arithmetic
operations, image processing, image I/O, augmentations, the DeepHealth dataset
parser and the ECVL-EDDL interaction layer. As discussed earlier, its support for
to/from array conversion allows to process data with NumPy as well as many other
scientific tools based on it.

Regarding hardware accelerators, the ECVL supports the use of GPU and FPGA
cards to run the computer vision algorithms needed in training and inference
processes. The implementation for GPUs has been done using CUDA kernels, while
for FPGA cards it is somewhat more complicated as FPGA cards are reconfigurable
devices which allow the designer to fully customize their design and to adapt it
to the algorithm they need to run. This enables, for specific application domains,
more power- and energy-efficient solutions than, for instance, CPUs and GPUs.
The DeepHealth project advocates for the use of FPGAs as accelerator devices
for the inference process. In particular, the trained models ready for production
can be launched to an FPGA card by using the FPGA support provided in both
the ECVL and the EDDL libraries. The use of FPGA cards is totally transparent
to data scientists who use the DeepHealth toolkit. Indeed, both libraries enable the
developerswho use them just to indicate which type of device the application should
be using. For the specificities of the ECVL library, the use of FPGAs is appealing
as most computer vision algorithms (e.g., image resize, mirror) deal with pixels
rather than floating point values. FPGA devices excel at integer operations and offer
massive parallelism possibilities within the device.

Like other software packages of the toolkit, ECVL and PyECVL are available
as free and open-source software on a public GitHub repository, including doc-
umentation, comprehensive tests, and several usage examples of both the C++
and Python APIs [5]. Examples include data augmentation usage, handling of
DeepHealth datasets, interaction with EDDL/PyEDDL, image processing and I/O.
The documentation includes detailed instructions to install ECVL and PyECVL
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from different options as in the case of EDDL and PyEDDL. As mentioned in the
EDDL section, a set of pre-built Docker images including the components of the
DeepHealth toolkit are available in the Docker hub for the DeepHealth project [24].

5 The Back End and the Front End

The four components of the DeepHealth toolkit are the ECVL, the EDDL, the
back end and the front end. Figure 1 shows how the back end and the front end
are interconnected with the libraries. The back end is a software module where
ECVL and EDDL are fully integrated, which offers a RESTful API to allow
any software application or platform to access all the functionalities provided by
both libraries without the need to use the C++ or Python API. Ready-to-use
pre-built Docker images (see Sect. 6.1) are available, including the back end and
all the other components of the toolkit, in such a way that the developers of
applications/platforms do not have to worry about the installation and configuration
of the DeepHealth toolkit, they only need to provision Docker containers and,
obviously, programming, using their preferred programming language, the module
for their application/platform that will interact with the RESTful API offered by
the back end. This way, the back end enables managed service usage scenarios,
where a potentially complex and powerful computing infrastructure (e.g., high-
performance computing, cloud computing or even heterogeneous hardware) could
be transparently used to run deep learning jobs without the users needing to directly
interface with it.

The front end is a web-based graphical user interface that facilitates the use of
all the functionalities of the libraries by interacting with the back end through the
RESTful API. The front end is the component of the toolkit visible to any type
of user, but it has been mainly designed for data scientists. Without going into
implementation details, the main functionalities provided by the front end are: (1)
creation/edition of user profiles; (2) creation/edition of projects; (3) dataset upload-
ing; (4) dataset selection; (5) model creation/import/export/edition/selection; (6)
definition of tasks (currently supported types are classification and segmentation);
(7) definition of data augmentation transformations; (8) launching training/inference
processes; (9) monitoring of training processes, including visualization of the
evolution of different neural network related KPIs (e.g., accuracy and loss) with
respect to both training and validation data subsets; and (10) model evaluation.

In the common usage of the front end, users have the option of loading from the
back end any one of the available models in the set of pre-designed models, which
can be already trained. Trained models can be used to perform transfer learning
tasks or just to reuse the topology by resetting weights and bias before launching a
new training process.
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6 Complements to Leverage HPC/Cloud Infrastructures

EDDL, ECVL and the back end are designed to be deployed on HPC and cloud
infrastructures to distribute the workload of training and inference processes by
following the data parallelization programming paradigm. Both libraries include
specific functions to enable distributed learning. The distribution of the workload
on multiple worker nodes is not directly performed by ECVL and EDDL. Instead,
the libraries are complemented with workflow managers like COMPSs [6] and
StreamFlow [7], specially designed for HPC/cloud environments, that manage the
workload distribution of training and inference processes in combination with
resource managers like SLURM [32]. To leverage hybrid HPC + cloud architec-
tures, pre-built Docker images with all the components of the DeepHealth toolkit
are ready to be deployed in scalable environments orchestrated by Kubernetes [33].

The DeepHealth toolkit is being tested on multiple HPC, cloud and hybrid
HPC + cloud infrastructures to validate its ability to exploit a wide variety of
architectures. The infrastructures considered in the DeepHealth project are:

• The Marenostrum supercomputer, composed of 3456 computed nodes based on
Intel Xeon Platinum chips, hosted at the Barcelona Supercomputing Center.

• The MANGO cluster, composed of eight interconnected FPGAs, hosted by the
Technical University of Valencia (UPV).

• TheOpenDeepHealth (ODH) platform, implemented by the University of Torino
on top of a hybrid HPC + cloud infrastructure. The HPC component is a
C3S OCCAM cluster composed of 46 heterogeneous nodes, also including
GPU nodes (K40 or V100). The cloud component, serving multi-tenant private
Kubernetes instances, is HPC4AI [34], comprising Intel Xeon Gold 80-cores
computing nodes (+2000 CPU cores) with 4 GPUs per node (80 CPU cores
+ V100 or T4 GPUs).

• The hybrid cloud platform, composed of a Kubernetes cluster on premise (private
cloud) and another cluster running in Amazon Web Services (public cloud),
provided by the company TREE Technology.

The Marenostrum supercomputer and the ODH platform are similar in terms of
use; both are HPC infrastructures and both are ready to hold private clouds. The
hybrid cloud facilitates vertical and horizontal scalability, providing good adapt-
ability to different situations and uses, the possibility of deploying applications and
work with data that can be shared between clouds, improving the performance of the
workload. The private part of the hybrid cloud can be deployed on Marenostrum and
ODH, as well as in the on-premise computer cluster of any SME. On the other hand,
theMANGO cluster is an FPGA-specific computing infrastructure that is being used
to evaluate some use cases of the DeepHealth project.

It is worth noting that these infrastructures offer a wide range of computing
environments at different levels:

• High number of CPU computing nodes on Marenostrum, multi-GPUs nodes on
the ODH platform and FPGAs in the MANGO cluster.



196 M. Aldinucci et al.

• The private OpenStack cloud implemented in ODH (HPC4AI), and the hybrid
private+public cloud provided by TREE Technology.

• Docker containers technology used on top of bare metal layer in ODH (C3S)
and in cloud platforms, using orchestration tools like Kubernetes, in TREE
Technology platform and ODH (HPC4AI), and StreamFlow, which is described
in Sect. 6.3.

6.1 Use of Docker Images Orchestrated by Kubernetes

The hybrid cloud platform provided by TREE Technology is a computing environ-
ment that offers the possibility of combining public and private clouds, allowing the
deployment of applications and work with data that can be shared between them.
This solution was built using Kubernetes technology [33], a distributed container
and microservice platform that orchestrates computing, networking and storage
infrastructure to support user workloads.

Software containers demonstrated to provide a good way to bundle and
deploy applications. However, as system complexity increases (e.g., complex
multi-component software applications, multi-node clusters) running deployments
become increasingly difficult. Kubernetes supports the automation of much of
the work required to maintain and operate such complex services in a distributed
environment. The objective of this hybrid environment is to dynamically operate
in different Kubernetes clusters running on several public clouds and on-
premise infrastructures. Different Kubernetes clusters can have different hardware
configurations, that is, they can have different memory and CPU settings, with or
without GPUs. Once the different clusters are deployed, both in public and private
clouds, it is necessary to orchestrate all the resources. For this ecosystem to work
properly and be able to be coupled in the global scheme, two stages must be taken
into account:

• Within a multi-cloud or hybrid-cloud context, a tool is needed to facilitate
management and security tasks, as this can become a highly error prone and
tedious task, while resources and Kubernetes clusters grow.

• A high-level RESTful API helps to abstract the user from the infrastructure itself,
simplifying and speeding up the deployment and management of the workflows.
It provides functions of varying complexity, which implements functionality
abstracting the user from the potentially complex configuration of the clusters
(e.g., multi-cloud, hybrid cloud, etc.). The API itself can support the addition
of new Kubernetes clusters both on-premise and in the cloud from any provider
with the limitation of having a minimum Kubernetes version.

The proposed hybrid cloud based on Kubernetes is a complex system, and its
scalability is determined by several factors, like the number and type of nodes in
a pool of nodes, the number of Pods available (Pods are the minimum deployable
computer units that can be created and managed in Kubernetes), the number of
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services or back ends behind a service and how resources are allocated. Usually, in
a public cloud, the concept of autoscaling is available, which refers to the possibility
of scaling the resources of a cluster in a self-managed manner. In the DeepHealth
project, the public cloud has been configured with this autoscaling option, while for
the private cloud there is no scaling policy in relation to machines.

Concerning the automatic deployment of the DeepHealth toolkit in any cloud
configuration, and regardless of the complexity level of the computing infras-
tructures that any development team of AI-based solutions may have on hand,
a set of pre-built CUDA-enabled DeepHealth Docker images, including all the
components of the toolkit, are ready to be used on GPU-enabled computing
resources to accelerate compute-intensive operations. All the DeepHealth Docker
images available in the DockerHub [24] are CUDA-enabled and provide pre-
built binaries of the libraries along with all their dependencies, such that these
images can be used to create Docker-ready applications. In addition, a toolkit image
flavour is also provided to support the developers of applications/platforms directly
integrating the EDDL and the ECVL, who may prefer the C++ or Python API.
These Docker images are built on the devel flavour of the NVIDIA/CUDA images,
and add a full DeepHealth build configuration to provide a ready-to-use compilation
environment for applications.

For simplified scalable deployments on cloud computing resources, a Kubernetes
[33] deployment of the DeepHealth toolkit, with the web service configured, has
been created and made available. The deployment automatically configures a server
for the DeepHealth front end and all the back-end components (i.e., web service,
worker, database, job queue, and static content server) in a flexible and scalable
way. In fact, once a deployment is created, the available processing capacity can
be dynamically scaled using some of the standard features of Kubernetes, such
as configuring the required number of worker replicas to achieve the required
throughput. The Kubernetes deployment of the DeepHealth toolkit is packaged
as a Helm chart for easy deployment [35]. For simpler use cases that do not
have particular scalability requirements, a Docker-compose deployment is also
available. This configuration cannot distribute work over multiple nodes, but it can
be trivially deployed on a single node and thus is well suited for small workloads
and exploratory or development work.

6.2 COMPSs

COMPSs [6] offers a portable programming environment based on a task model,
whose main objective is to facilitate the parallelization of sequential source code,
written in Java or Python programming languages, to run in a distributed and
heterogeneous computing environment. In COMPSs, the programmer is responsible
for identifying the units of parallelism (named COMPSs tasks) and the synchroniza-
tion data dependencies existing among them by annotating the sequential source
code. The task-based programming model of COMPSs is then supported by its
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runtime system, which manages several aspects of the application execution and
keeps the underlying infrastructure transparent to the programmer. This is a key
feature to guarantee the portability of COMPSs applications across a wide range
of computing platforms. This will allow the DeepHealth toolkit to be tested and
validated within the DeepHealth project in the infrastructures enumerated above.
Regarding cloud configurations, the COMPSs runtime is being adapted within the
DeepHealth project to support the hybrid cloud infrastructure. COMPSs runtime
interacts with the API developed by TREE Technology to deploy workers and
distribute the workload on hybrid cloud architectures. The COMPSs runtime is
organized as a master-worker structure:

• The Master, executed in the computing resource where the application is
launched, is responsible for steering the distribution of the application and data
management.

• The worker(s), co-located with the Master or in remote computing resources, are
in charge of responding to task execution requests coming from the Master.

One key aspect is that the master maintains the internal representation of a
COMPSs application as a Directed Acyclic Graph (DAG) to express the parallelism.
Each node corresponds to a COMPSs task and edges represent data dependencies
(and so potential data transfers). Based on this DAG, the runtime can automatically
detect data dependencies between COMPSs tasks: as soon as a task becomes
ready (i.e., when all its data dependencies are resolved), the master is in charge
of distributing it among the available workers, transferring the input parameters
before starting the execution. When the COMPSs task is completed, the result is
either transferred to the worker in which the destination COMPSs task executes
(as indicated in the DAG), or transferred to the master if a barrier synchronization
call is invoked. The parallelization of the EDDL training operation has been
developed with the COMPSs tasking programming model. Due to the fine grain
data dependency synchronization mechanisms supported by COMPSs, two parallel
training paradigms are supported: synchronous, in which weights are collected
and aggregated at the end of each epoch, and asynchronous, in which weights
are increasingly aggregated as soon as a partial training is completed on the
corresponding data set.

COMPSs is perfectly adapted to run in environments managed by SLURM [32],
an open-source resource manager widely used in High-Performance Computing
data centres to manage job queues and job allocation of incoming tasks to servers.
The Ecole Polytechnique Fédérale de Lausanne (EPFL) has enhanced the core
version of the SLURM resource manager with novel plugins that enable energy- and
performance-aware task allocation for CPU- and memory-intensive tasks in order
to increase the efficiency (in terms of performance per watt) of multiple tasks when
running simultaneously on the same server and cluster. EPFL do so by proposing the
use of graph-based techniques and reinforcement learning, which are low overhead
and do not impact the execution time of applications. SLURM can interact with
COMPSs in order to launch multiple instances of applications in a coordinated
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way in an HPC infrastructure, creating a separation of concerns between resource
managers, while still working in a coordinated way.

6.3 StreamFlow

StreamFlow is a novel Workflow Management System (WMS) explicitly designed
in the DeepHealth project, supporting AI pipeline design and execution in different
execution environments, including hybrid HPC+ cloud and multi-cloud infrastruc-
tures. The portability of AI pipelines on critical data across different infrastructures
is crucial for the sustainability of DeepHealth foreground technologies. To address
this issue, OpenDeepHealth embraces StreamFlow. The ability of StreamFlow to
handle sequences of computational steps makes it possible to describe a complex
application as a workflow and annotate each step with an execution plan potentially
targeting different nodes, e.g., selecting GPU nodes when needed, spawning across
multiple sites—e.g., allowing transparent access to OCCAM and HPC4AI clusters.
The idea behind this approach is that the ability to deal with hybrid workflows (i.e.,
to coordinate tasks running on different execution environments) can be a crucial
aspect for performance optimization when working with massive amounts of input
data and different needs in computational steps. Accelerators like GPUs and, in
turn, different infrastructures like HPC and clouds, can be used more efficiently by
selecting the execution plan that best suits the specific computational needs of each
ML application developed in the project.

The StreamFlow framework is a container-native WMS written in Python. It has
been designed to explore the potential benefits deriving from waiving two common
properties of existing WMSs that can prevent them from fully exploiting the
potential of containerization technologies. Instead of forcing a one-to-one mapping
between workflow steps and Docker containers, StreamFlow allows the execution of
tasks in potentially complex, multi-container environments. This allows support for
concurrent execution of multiple communicating tasks in a multi-agent ecosystem,
e.g., a SPMD application implemented with MPI or a COMPSs-based distributed
training. StreamFlow relaxes the requirement of a single shared data space among
all the worker nodes, allowing to spread different steps of a single workflow on
multiple, potentially federated architectures without forcing direct communication
channels among them. Moreover, StreamFlow clearly separates the definition of
the AI pipeline, described as a declarative workflow, from the description of the
runtime environment in charge of executing it, enforcing a separation of concerns.
This allows taking advantage of using the most efficient infrastructures for the
specific purpose of complex AI pipelines without burdening the AI experts with
the configuration and management complexity of such infrastructures. At a very
high level, an AI pipeline can comprise a training step, which usually requires very
high computational power and distributed programming techniques to handle huge
datasets, and an inference step, in which a fully trained model should be directly
reachable from one or more user applications. StreamFlow can orchestrate the
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execution of the AI pipeline, targeting the training step on HPC facilities, e.g., by
using EDDL with COMPSs distributed runtime, and the inference step on the cloud
cluster, e.g., by leveraging EDDL Docker containers deployed on a Kubernetes
infrastructure.

7 Conclusions

The DeepHealth toolkit is presented here as a new and emerging software frame-
work that provides European industry and research institutions with deep learning
and computer vision functionalities. To cope with huge and constantly growing
data sets, the toolkit has been designed to leverage hybrid and heterogeneous
HPC + cloud architectures in which either all or some of the worker nodes
are equipped with hardware accelerators (e.g., GPUs, FPGAs). The distributed
execution of learning and inference processes is done by the runtime of the
DeepHealth toolkit in a transparent manner to the common user, i.e., computer and
data scientists who do not need a deep understanding of parallel programming,HPC,
deep learning or cloud architectures.

The two libraries at the core of the toolkit can be easily integrated into
existing software applications/platforms that European companies (SMEs and large
industry) have developed to deploy AI-based solutions in any sector (e.g., decision
support systems that clinicians can use to diagnose), and can be used to boost the
development of new platforms and solutions. All the components of the toolkit are
free and open-source software available on public repositories.

In order to foster the use of the DeepHealth toolkit, the authors have introduced
the potential user to all the toolkit components and how to integrate the libraries
in existing or new software applications. It is worth mentioning that, thanks to pre-
built Docker images including all components with all dependencies satisfied, data
scientists only need to provision Docker containers according to their needs.

The toolkit constitutes a contribution from Europe in Artificial Intelligence and
smart big data analytics. Besides all the features introduced in this chapter (free
and open-source framework, easy to use, portable to different architectures, wide
application scope), it contributes to reducing the bottlenecks in turning AI into an
enabling technology for Science (e.g., provides a way to reduce the complexity of
numerical methods used in scientific environments), bringing closer the separate
worlds of AI and HPC. Furthermore, it is expected to boost the adoption of AI and
HPC technologies by the industry. The toolkit paves the way towards the offering of
AI coupled with HPC as a service, which could be a game changer aspect in order
to reach a greater number of companies. On the one hand, it offers improvements
for companies that only have temporary needs for high-performance computing
resources, which will be able to improve their productivity by developing their
own AI solutions, and on the other hand, it could unlock the development of novel
applications that need to run computationally intensive processes regularly.
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