
Trade-Offs and Challenges of Serverless
Data Analytics

Pedro García-López, Marc Sánchez-Artigas, Simon Shillaker, Peter Pietzuch,
David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, Ana Juan-Ferrer,
and Gerard París

Abstract Serverless computing has become very popular today since it largely
simplifies cloud programming. Developers do no longer need to worry about
provisioning or operating servers, and they have to pay only for the compute
resources used when their code is run. This new cloud paradigm suits well for many
applications, and researchers have already begun investigating the feasibility of
serverless computing for data analytics. Unfortunately, today’s serverless computing
presents important limitations that make it really difficult to support all sorts
of analytics workloads. This chapter first starts by analyzing three fundamen-
tal trade-offs of today’s serverless computing model and their relationship with
data analytics. It studies how by relaxing disaggregation, isolation, and simple
scheduling, it is possible to increase the overall computing performance, but at the
expense of essential aspects of the model such as elasticity, security, or sub-second
activations, respectively. The consequence of these trade-offs is that analytics

P. García-López (�) · M. Sánchez-Artigas · G. París
Universitat Rovira i Virgili, Tarragona, Spain
e-mail: pedro.garcia@urv.cat; marc.sanchez@urv.cat; gerard.paris@urv.cat

S. Shillaker · P. Pietzuch
Large Scale Data and Systems Group, Imperial College London, London, England
e-mail: s.shillaker17@imperial.ac.uk; prp@imperial.ac.uk

D. Breitgand · G. Vernik
Cloud Platforms, IBM Research Haifa, Haifa, Israel
e-mail: davidbr@il.ibm.com; gilv@il.ibm.com

P. Sutra
CNRS, Université Paris Saclay, Évry, France
e-mail: pierre.sutra@telecom-sudparis.eu

T. Tarrant
Red Hat, Cork, Ireland
e-mail: ttarrant@redhat.com

A. Juan-Ferrer
ATOS, Barcelona, Spain
e-mail: ana.juanf@atos.net

© The Author(s) 2022
E. Curry et al. (eds.), Technologies and Applications for Big Data Value,
https://doi.org/10.1007/978-3-030-78307-5_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78307-5_3&domain=pdf
mailto:pedro.garcia@urv.cat
mailto:marc.sanchez@urv.cat
mailto:gerard.paris@urv.cat
mailto:s.shillaker17@imperial.ac.uk
mailto:prp@imperial.ac.uk
mailto:davidbr@il.ibm.com
mailto:gilv@il.ibm.com
mailto:pierre.sutra@telecom-sudparis.eu
mailto:ttarrant@redhat.com
mailto:ana.juanf@atos.net
https://doi.org/10.1007/978-3-030-78307-5_3


42 P. García-López et al.

applications may well end up embracing hybrid systems composed of serverless
and serverful components, which we call ServerMix in this chapter. We will review
the existing related work to show that most applications can be actually categorized
as ServerMix.

Keywords Serverless computing · Data analytics · Cloud computing

1 Introduction

The chapter relates to the technical priority Data Processing Architectures of the
EuropeanBig Data Value Strategic Research & InnovationAgenda [36]. It addresses
the horizontal concerns Data Analytics and The Cloud and HPC of the BDV
Technical Reference Model. The chapter relates to the Systems, Methodologies,
Hardware and Tools cross-sectorial technology enablers of the AI, Data and
Robotics Strategic Research, Innovation & Deployment Agenda [37].

With the emergence of serverless computing, the cloud has found a new
paradigm that removes much of the complexity of its usage by abstracting away the
provisioning of compute resources. This fairly new model was culminated in 2015
by Amazon in its Lambda service. This service offered cloud functions, marketed as
FaaS (Function as a Service), and rapidly became the core of serverless computing.
We say “core,” because cloud platforms usually provide specialized serverless
services to meet specific application requirements, packaged as BaaS (Backend as
a Service). However, the focus of this chapter will be on the FaaS model, and very
often, the words “serverless computing” and “FaaS” will be used interchangeably.
The reason why FaaS drew widespread attention is because with FaaS platforms,
a user-defined function and its dependencies are deployed to the cloud, where they
are managed by the cloud provider and executed on demand. Simply put, users just
write cloud functions in a high-level language and the serverless systems manage
everything else: instance selection, auto-scaling, deployment, sub-second billing,
fault tolerance, and so on. The programming simplicity of functions paves the way
to soften the transition to the cloud ecosystem for end users.

Current practice shows that the FaaS model is well suited for many types of
applications, provided that they require a small amount of storage and memory
(see, for instance, AWS Lambda operational limits [3]). Indeed, this model was
originally designed to execute event-driven, stateless functions in response to user
actions or changes in the storage tier (e.g., uploading a photo to Amazon S3),
which encompasses many common tasks in cloud applications. What was unclear
is whether or not this new computing model could also be useful to execute
data analytics applications. This question was answered partially in 2017 with
the appearance of two relevant research articles: ExCamera [10] and “Occupy the
Cloud” [19]. We say “partially,” because the workloads that both works handled
mostly consisted of “map”-only jobs, just exploiting embarrassingly massive paral-
lelism. In particular, ExCamera proved to be 60% faster and 6x cheaper than using
VM instances when encoding videos on the fly over thousands of Lambda functions.



Trade-Offs and Challenges of Serverless Data Analytics 43

The “Occupy the Cloud” paper showcased simple MapReduce jobs executed over
Lambda Functions in their PyWren prototype. In this case, PyWren was 17% slower
than PySpark running on r3.xlarge VM instances. The authors claimed that the
simplicity of configuration and inherent elasticity of Lambda functions outbalanced
the performance penalty. They, however, did not compare the costs between their
Lambda experiments against an equivalent execution with virtual machines (VMs).

While both research works showed the enormous potential of serverless data
analytics, today’s serverless computing offerings importantly restrict the ability
to work efficiently with data. In simpler terms, serverless data analytics are way
more expensive and less performant than cluster computing systems or even
VMs running analytics engines such as Spark. Two recent articles [17, 20] have
outlined the major limitations of the serverless model in general. Remarkably,
[20] reviews the performance and cost of several data analytics applications and
shows that: a MapReduce-like sort of 100TB was 1% faster than using VMs, but
costing 15% higher; linear algebra computations [33] were 3x slower than an MPI
implementation in a dedicated cluster, but only valid for large problem sizes; and
machine learning (ML) pipelines were 3–5x faster than VM instances, but up to 7x
higher total cost.

Furthermore, existing approaches must rely on auxiliary serverful services to cir-
cumvent the limitations of the stateless serverless model. For instance, PyWren [19]
uses Amazon S3 for storage, coordination, and as indirect communication channel.
Locus [28] uses Redis through the ElastiCache service, while ExCamera [10] relies
on an external VM-based rendezvous and communication service. Also, Cirrus [7]
relies on disaggregated in-memory servers.

The rest of the chapter is structured as follows. Section 1.1 presents the Server-
Mix model. Trade-offs of serverless architectures are analyzed in Sect. 2, while
related work is revisited in Sect. 3. The challenges and advances in CloudButton
project are presented in Sect. 4. Finally, Sect. 5 concludes the chapter.

1.1 On the Path to Serverless Data Analytics: The ServerMix
Model

In the absence of a fully fledged serverless model in today’s cloud platforms (e.g.,
there is no effective solution to the question of serverless storage in the market),
current incarnations of serverless data analytics systems are hybrid applications
combining serverless and serverful services. In this chapter, we identify them as
“ServerMix.” Actually, we will show how most related work can be classified under
the umbrella term of ServerMix. We will first describe the existing design trade-
offs involved in creating ServerMix data analytics systems. We will then show that
it is possible to relax core principles such as disaggregation, isolation, and simple
scheduling to increase performance, but also how this relaxation of the model may



44 P. García-López et al.

compromise the auto-scaling ability, security, and even the pricing model and fast
startup time of serverless functions. For example:

• Relaxation of disaggregation: Industry trends show a paradigm shift to dis-
aggregated datacenters [12]. By physically decoupling resources and services,
datacenter operators can easily customize their infrastructure to maximize the
performance-per-dollar ratio. One such example of this trend is serverless
computing. That is, FaaS offerings are of little value by themselves and need
a vast ecosystem of disaggregated services to build applications. In the case
of Amazon, this includes S3 (large object storage), DynamoDB (key-value
storage), SQS (queuing services), SNS (notification services), etc. Consequently,
departing from a serverless data-shipping model built around these services to
a hybrid model where computations can be delegated to the stateful storage tier
can easily achieve performance improvements [30]. However, disaggregation is
the fundamental pillar of improved performance and elasticity in the cloud.

• Relaxation of isolation: Serverless platforms leverage operating system con-
tainers such as Docker to deploy and execute cloud functions. In particular, each
cloud function is hosted in a separate container. However, functions of the same
application may not need such a strong isolation and be co-located in the same
container, which improves the performance of the application [1]. Further, cloud
functions are not directly network-addressable in any way. Thus, providing direct
communication between functions would reduce unnecessary latencies when
multiple functions interact with one another, such that one function’s output is
the input to another one. Leveraging lightweight containers [26], or even using
language-level constructs, would also reduce cold starts and boost inter-function
communication. However, strong isolation and sandboxing is the basis for multi-
tenancy, fault isolation, and security.

• Flexible QoS and scheduling: Current FaaS platforms only allow users to
provision some amount of RAM and a time slice of CPU resources. In the
case of Amazon Lambda, the first determines the other. Actually, there is no
way to access specialized hardware or other resources such as the number of
CPUs, GPUs, etc. To ensure service level objectives (SLOs), users should be
able to specify resource requirements. But, this would lead to implement complex
scheduling algorithms that were able to reserve such resources and even execute
cloud functions in specialized hardware such as GPUs with different isolation
levels. However, this would make it harder for cloud providers to achieve high
resource utilization, as more constraints are put on function scheduling. Simple
user-agnostic scheduling is the basis for short start-up times and high resource
utilization.

It is clear that these approaches would obtain significant performance improve-
ments. But, depending on the changes, such systems would be much closer to
a serverful model based on VMs and dedicated resources than to the essence
of serverless computing. In fact, we claim in this chapter that the so-called
limitations of the serverless model are indeed its defining traits. When applications
should require less disaggregation (computation close to the data), relaxation of



Trade-Offs and Challenges of Serverless Data Analytics 45

isolation (co-location, direct communication), or tunable scheduling (predictable
performance, hardware acceleration), a suitable solution is to build a ServerMix
solution. At least for serverless data analytics, we project that in the near future
the dependency on serverful computing will increasingly “vanish,” for instance, by
the appearance of high-throughput, low-latency BaaS storage services, so that many
ServerMix systems will eventually become 100% serverless. Beyond some technical
challenges, we do not see any fundamental reason why pure serverless data analytics
would not flourish in the coming years.

In the meantime, we will scrutinize the ServerMix model to provide a simplified
programming environment, as much closer as possible to serverless, for data
analytics. To this aim, under the context of the H2020 CloudButton project, we
will work on the following three points: (i) Smart scheduling as a mechanism
for providing transparent provisioning to applications while optimizing the cost-
performance tuple in the cloud; (ii) fine-grained mutable state disaggregation built
upon consistent state services; and (iii) lightweight and polyglot serverful isolation-
novel lightweight serverful FaaS runtimes based on WebAssembly [15] as universal
multi-language substrate.

2 Fundamental Trade-Offs of Serverless Architectures

In this section, we will discuss three fundamental trade-offs underpinning cloud
functions architectures—packaged as FaaS offerings. Understand these trade-offs
are important, not just for serverless data analytics but to open the minds of
designers to a broader range of serverless applications. While prior works such
as [17, 20] have already hinted these trade-offs, the contribution of this section
is to explain in more detail that the incorrect navigation of these trade-offs can
compromise essential aspects of the FaaS model.

The first question to ask is which are the essential aspects of the serverless model.
For this endeavor, we will borrow the Amazon’s definition of serverless computing,
which is an unequivocal reference definition of this new technology. According to
Amazon, the four characteristic features of a serverless system are:

• No server management: implies that users do not need to provision or maintain
any servers

• Flexible scaling: entails that the application can be scaled automatically via units
of consumption (throughput, memory) rather than units of individual servers

• Pay for value: is to pay for the use of consumption units rather than server units
• Automated high availability: ensures that the system must provide built-in

availability and fault tolerance.

As we argue in this section, these four defining properties can be put in jeopardy
but relaxing the tensions among three important architectural aspects that support
them. These implementation aspects, which are disaggregation, isolation, and
simple scheduling, and their associated trade-offs, have major implications on the



46 P. García-López et al.

success of the FaaS model. In this sense, while a designer can decide to alter one or
more of these trade-offs, for example, to improve performance, an oversimplifying
or no comprehension of them can lead to hurt the four defining properties of the
serverless model. Let us see how the trade-offs affect them.

2.1 Disaggregation

Disaggregation is the idea of decoupling resources over high bandwidth networks,
giving us independent resource pools. Disaggregation has many benefits, but
importantly, it allows each component to (auto-)scale in an independent manner.
In serverless platforms, disaggregation is the standard rather than an option, where
applications are run using stateless functions that share state through disaggregated
storage (e.g., such Amazon S3) [17, 20, 33]. This concept is backed up by the
fact that modern high-speed networks allow for sub-millisecond latencies between
the compute and storage layers—even allowing memory disaggregation like in
InfiniSwap [14].

Despite the apparent small latencies, several works propose to relax disaggre-
gation to favor performance. The reason is that storage hierarchies, across various
storage layers and network delays, make disaggregation a bad design choice for
many latency and bandwidth-sensitive applications such as machine learning [7].
Indeed, [17] considers that one of the limitations of serverless computing is its
data-shipping architecture, where data and state are regularly shipped to functions.
To overcome this limitation, the same paper proposes the so-called fluid code
and data placement concept, where the infrastructure should be able to physically
co-locate code and data. In a similar fashion, [2] proposes the notion of fluid
multi-resource disaggregation, which consists of allowing movement (i.e., fluidity)
between physical resources to enhance proximity, and thus performance. Another
example of weakening disaggregation is [20]. In this paper, authors suggest to co-
locate related functions in the same VM instances for fast data sharing.

Unfortunately, while data locality reduces data movements, it can hinder the
elastic scale-out of compute and storage resources. In an effort to scale out wider
and more elastically, processing mechanisms near the data (e.g., active storage [29])
have not been put at the forefront of cloud computing, though recently numer-
ous proposals and solutions have emerged (see [18] for details). Further, recent
works such as [30] show that active storage computations can introduce resource
contention and interferences into the storage service. For example, computations
from one user can harm the storage service to other users, thereby increasing the
running cost of the application (pay for value). In any case, shipping code to data
will interfere with the flexible scaling of serverless architectures due to the lack of
fast and elastic datastore in the cloud [7].

Furthermore, ensuring locality for serverless functions would mean, for example,
placing related functions in the same server or VM instance, while enabling fast
shared memory between them. This would obviously improve performance in appli-



Trade-Offs and Challenges of Serverless Data Analytics 47

cations that require fast access to shared data such as machine learning and PRAM
algorithms, OpenMP-like implementations of parallel algorithms, etc. However, as
pinpointed in [20], besides going against the spirit of serverless computing, this
approach would reduce the flexibility of cloud providers to place functions and
consequently reduce the capacity to scale out while increasing the complexity of
function scheduling. Importantly, this approach would force developers to think
about low-level issues such as server management or whether function locality
might lead suboptimal load balancing among server resources.

2.2 Isolation

Isolation is another fundamental pillar of multi-tenant clouds services. Particularly,
perfect isolation enables a cloud operator to run many functions (and applications)
even on a single host, with low idle memory cost, and high resource efficiency.What
cloud providers seek is to reduce the overhead of multi-tenant function isolation and
provide high-performance (small startup times), for they leverage a wide variety of
isolation technologies such as containers, unikernels, library OSes, or VMs. For
instance, Amazon has recently released Firecracker microVMs for AWS Lambda,
and Google has adopted gVisor. Other examples of isolation technologies for
functions are CloudFlare Workers with WebAssembly or optimized containers such
as SOCK [26]. These isolation techniques reduce startup times to the millisecond
range, as compared to the second timescale of traditional VMs.

Beyond the list of sandboxing technologies for serverless computing, most of
them battled-tested in the industry (e.g., Amazon Firecracker VMs), several research
works have proposed to relax isolation in order to improve performance. For
instance, [2] proposes the abstraction of a process in serverless computing, with
the property that each process can be run across multiple servers. As a consequence
of this multi-server vision, the paper introduces a new form of isolation that ensures
multi-tenant isolation across multiple servers (where the functions of the same
tenant are run). This new concept of isolation is called coordinated isolation in the
paper. Further, [17] proposes two ways of relaxing isolation. The first one is based
on the fluid code and data placement approach, and the second way is by allowing
direct communication and network addressing between functions. In particular, the
paper claims that today’s serverless model stymies distributed computing due to
its lack of direct communication among functions and advocates for long-running,
addressable virtual agents instead.

Another technique to increase performance is to relax isolation and co-locate
functions in the same VMs or containers [1, 20]. Co-location may be achieved using
language-level constructs that reuse containers when possible. This can make sense
for functions belonging to the same tenant [1], since it would heavily reduce cold
starts and execution time for function compositions (or workflows). Unfortunately, it
is possible that independent sets of sandboxed functions compete for the same server
resources and interfere with each other’s performance. Or simply, that it becomes



48 P. García-López et al.

impossible to find a single host that have the necessary resources for running a
sandbox of multiple functions, affecting important defining properties of serverless
computing such as flexible scaling, pay for value, and no server management, among
others.

Experiencing similar issues as above, it could be also possible to enable direct
communication between functions of the same tenant. In this case, direct commu-
nication would permit a variety of distributed communication models, allowing, for
example, the construction of replicated shared memory between functions. To put it
baldly, each of these forms of relaxing isolation might in the end increase the attack
surface, for instance, by opening physical co-residency attacks and network attacks
not just to single functions but a collection of them.

2.3 Simple Scheduling

Simple scheduling is another essential pillar of serverless computing. Indeed, cloud
providers can ensure Quality of Service (QoS) and Service Level Agreements
(SLAs) to different tenants by appropriately scheduling the reserved resources and
bill them correspondingly. The goal of cloud scheduling algorithms is to maximize
the utilization of the cloud resources while matching the requirements of the
different tenants.

In today’s FaaS offerings, tenants only specify the cloud function’s memory
size, while the function execution time is severely limited—for instance, AWS
limits the execution time of functions to 15 min. This single constraint simplifies
the scheduling of cloud functions and makes it easy to achieve high resource
utilization through statistical multiplexing. For many developers, this lack of control
on specifying resources, such as the number of CPUs, GPUs, or other types of
hardware accelerators, is seen as an obstacle. To overcome this limitation, a clear
candidate would be to work on more sophisticated scheduling algorithms that
support more constraints on functions scheduling, such as hardware accelerators,
GPUs, or the data dependencies between the cloud functions, which can lead to
suboptimal function placement. For instance, it is not hard to figure out that a
suboptimal placement of functions can result in an excess of communication to
exchange data (e.g., for broadcast, aggregation, and shuffle patterns [20]) or in
suboptimal performance. Ideally, these constraints should be (semi-)automatically
inferred by the platform itself, for instance, from static code analysis, profiling, etc.,
to not break the property of “no server management,” that is, the core principle of
serverless. But even in this case, more constraints on function scheduling would
make it harder to guarantee flexible scaling.

The literature also proposes ideas to provide predictable performance in server-
less environments. For instance, [2] proposes the concept of “fine-grained live
orchestration,” which involves complex schedulers to allocate resources to server-
less processes that run across multiple servers in the datacenter. Hellerstein et al.
[17] advocates for heterogeneous hardware support for functions where developers



Trade-Offs and Challenges of Serverless Data Analytics 49

could specify their requirements in DSLs and the cloud providers would then
calculate the most cost-effective hardware to meet user SLOs. This would guarantee
the use of specialized hardware for functions. In [20], it is supported the claim
of harnessing hardware heterogeneity in serverless computing. In particular, it is
proposed that serverless systems could embrace multiple instance types (with prices
according to hardware specs) or that cloud providers may select the hardware
automatically depending on the code (like GPU hardware for CUDA code and TPU
hardware for TensorFlow code).

Overall, the general observation is that putting more constraints on function
scheduling for performance reasons could be disadvantageous in terms of flexible
scaling and elasticity and even hinder high resource utilization. Moreover, it would
complicate the pay per use model, as it would make it difficult to pay for the use of
consumption units, rather than server units, due to hardware heterogeneity.

2.4 Summary

As a summary, we refer to Fig. 1 as a global view of the overall trade-offs.
These trade-offs have serious implications on the serverless computing model and
require careful examination. As we have already seen, disaggregation, isolation,
and simplified scheduling are pivotal to ensure flexible scaling, multi-tenancy, and
millisecond startup times, respectively.

Weakening disaggregation to exploit function and data locality can be useful to
improve performance. However, it also means to decrease the scale-out capacity of
cloud functions and complicate function scheduling in order to meet user SLOs.
The more you move to the left, the closer you are to serverful computing or running
VMs or clusters in the datacenter.

With isolation the effect is similar. Since isolation is the key to multi-tenancy,
completely relaxing isolation leaves nothing but dedicated resources. In your
dedicated VMs, containers, or clusters (serverful), you can run functions very fast

Fig. 1 Trade-offs



50 P. García-López et al.

without caring about sandboxing and security. But this also entails more complex
scheduling and pricing models.

Finally, simple scheduling and agnostic function placement is also inherent to
serverless computing. But if you require QoS, SLAs, or specialized hardware,
the scheduling and resource allocation gets more complex. Again, moved to the
extreme, you end up in serverful settings that already exist (dedicated resources,
VMs, or clusters).

Perhaps, the most interesting conclusion of this figure is the region in the middle,
which we call ServerMix computing. The zone in the middle involves applications
that are built combining both serverless and serverful computing models. In fact, as
we will review in the related work, many existing serverless applications may be
considered ServerMix according to our definition.

3 Revisiting Related Work: The ServerMix Approach

3.1 Serverless Data Analytics

Despite the stringent constraints of the FaaS model, a number of works have
managed to show how this model can be exploited to process and transform
large amounts of data [19, 21, 31], encode videos [10], and run large-scale linear
algebra computations [33], among other applications. Surprisingly, and contrary to
intuition, most of these serverless data analytics systems are indeed good ServerMix
examples, as they combine both serverless and serverful components.

In general, most of these systems rely on an external, serverful provisioner
component [10, 19, 21, 31, 33]. This component is in charge of calling and
orchestrating serverless functions using the APIs of the chosen cloud provider.
Sometimes the provisioner is called “coordinator” (e.g., as in ExCamera [10]) or
“scheduler” (e.g., as in Flint [21]), but its role is the same: orchestrating functions
and providing some degree of fault tolerance. But the story does not end here.
Many of these systems require additional serverful components to overcome the
limitations of the FaaS model. For example, recent works such as [28] use
disaggregated in-memory systems such as ElastiCache Redis to overcome the
throughput and speed bottlenecks of slow disk-based storage services such as S3. Or
even external communication or coordination services to enable the communication
among functions through a disaggregated intermediary (e.g., ExCamera [10]).

To fully understand the different variants of ServerMix for data analytics, we
will review each of the systems one by one in what follows. Table 1 details which
components are serverful and serverless for each system.

PyWren [19] is a proof of concept that MapReduce tasks can be run as serverless
functions. More precisely, PyWren consists of a serverful function scheduler (i.e.,
a client Python application) that permits to execute “map” computations as AWS
Lambda functions through a simple API. The “map” code to be run in parallel is



Trade-Offs and Challenges of Serverless Data Analytics 51

Table 1 ServerMix applications

Components

Systems Serverful Serverless

PyWren [19] Scheduler AWS Lambda, Amazon S3

IBM PyWren [31] Scheduler IBM Cloud Functions, IBM COS,
RabbitMQ

ExCamera [10] Coordinator and rendezvous
servers (Amazon EC2 VMs)

AWS Lambda, Amazon S3

gg [11] Coordinator AW Lambda, Amazon S3, Redis

Flint [21] Scheduler (Spark context on client
machine)

AW Lambda, Amazon S3,
Amazon SQS

Numpywren [33] Provisioner, scheduler (client
process)

AWS Lambda, Amazon S3,
Amazon SQS

Cirrus [20] Scheduler, parameter servers
(large EC2 VM instances with
GPUs)

AWS Lambda, Amazon S3

Locus [28] Scheduler, Redis service (AWS
ElastiCache)

AWS Lambda, Amazon S3

first serialized and then stored in Amazon S3. Next, PyWren invokes a common
Lambda function that deserializes the “map” code and executes it on the relevant
datum, both extracted from S3. Finally, the results are placed back into S3. The
scheduler actively polls S3 to detect that all partial results have been uploaded to S3
before signaling the completion of the job.

IBM-PyWren [31] is a PyWren derived project which adapts and extends
PyWren for IBM Cloud services. It includes a number of new features, such as
broader MapReduce support, automatic data discovery and partitioning, integration
with Jupiter notebooks, and simple function composition, among others. For func-
tion coordination, IBM-PyWren uses RabbitMQ to avoid the unnecessary polling
to the object storage service (IBM COS), thereby improving job execution times
compared with PyWren.

ExCamera [10] performs digital video encoding by leveraging the parallelism
of thousands of Lambda functions. Again, ExCamera uses serverless components
(AWS Lambda, Amazon S3) and serverful ones (coordinator and rendezvous
servers). In this case, apart from a coordinator/scheduler component that starts and
coordinates functions, ExCamera also needs a rendezvous service, placed in an EC2
VM instance, to communicate functions among each other.

Stanford’s gg [11] is an orchestration framework for building and executing
burst-parallel applications over Cloud Functions. gg presents an intermediate
representation that abstracts the compute and storage platform, and it provides
dependency management and straggler mitigation. Again, gg relies on an external
coordinator component, and an external Queue for submitting jobs (gg’s thunks) to
the execution engine (functions, containers).

Flint [21] implements a serverless version of the PySpark MapReduce frame-
work. In particular, Flint replaces Spark executors by Lambda functions. It is similar



52 P. García-López et al.

to PyWren in two main aspects. On the one hand, it uses an external serverful
scheduler for function orchestration. On the other hand, it leverages S3 for input
and output data storage. In addition, Flint uses Amazon’s SQS service to store
intermediate data and perform the necessary data shuffling to implement many of
the PySpark’s transformations.

Numpywren [33] is a serverless system for executing large-scale dense linear
algebra programs. Once again, we observe the ServerMix pattern in numpywren.
As it is based on PyWren, it relies on an external scheduler and Amazon S3 for
input and output data storage. However, it adds an extra serverful component in the
system called provisioner. The role of the provisioner is to monitor the length of the
task queue and increase the number of Lambda functions (executors) to match the
dynamic parallelism during a job execution. The task queue is implemented using
Amazon SQS.

Cirrus machine learning (ML) project [20] is another example of a hybrid system
that combines serverful components (parameter servers, scheduler) with serverless
ones (AWS Lambda, Amazon S3). As with linear algebra algorithms, a fixed cluster
size can either lead to severe underutilization or slowdown, since each stage of a
workflow can demand significantly different amounts of resources. Cirrus addresses
this challenge by enabling every stage to scale to meet its resource demands by
using Lambda functions. The main problem with Cirrus is that manyML algorithms
require state to be shared between cloud functions, for it uses VM instances to share
and store intermediate state. This necessarily converts Cirrus into another example
of a ServerMix system.

Finally, the most recent example of ServerMix is Locus [28]. Locus targets one
of the main limitations of the serverless stateless model: data shuffling and sorting.
Due to the impossibility of function-to-function communication, shuffling is ill-
suited for serverless computing, leaving no other choice but to implement it through
an intermediary cloud service, which could be cost-prohibitive to deliver good
performance. Indeed, the first attempt to provide an efficient shuffling operation
was realized in PyWren [19] using 30 Redis ElastiCache servers, which proved to
be a very expensive solution. The major contribution of Locus was the development
of a hybrid solution that considers both cost and performance. To achieve an optimal
cost-performance trade-off, Locus combined a small number of expensive fast Redis
instances with the much cheaper S3 service, achieving comparable performance to
running Apache Spark on a provisioned cluster.

We did not include SAND [1] in the list of ServerMix systems. Rather, it proposes
a new FaaS runtime. In the article, the authors of SAND present it as an alter-
native high-performance serverless platform. To deliver high performance, SAND
introduces two relaxations in the standard serverless model: one in disaggregation,
via a hierarchical message bus that enables function-to-function communication,
and another in isolation, through application-level sandboxing that enables packing
multiple application-related functions together into the same container. Although
SAND was shown to deliver superior performance than Apache OpenWhisk, the
paper failed to evaluate how these relaxations can affect the scalability, elasticity,
and security of the standard FaaS model.



Trade-Offs and Challenges of Serverless Data Analytics 53

3.2 Serverless Container Services

Hybrid cloud technologies are also accelerating the combination of serverless and
serverful components. For instance, the recent deployment of Kubernetes (k8s) clus-
ters in the big cloud vendors can help overcome the existing application portability
issues in the cloud. There exists a plenty of hosted k8s services such as Amazon
Elastic Container Service (EKS), Google Kubernetes Engine (GKE), and Azure
Kubernetes Service (AKS), which confirm that this trend is gaining momentum.
However, none of these services can be considered 100% “serverless.” Rather, they
should be viewed as a middle ground between cluster computing and serverless
computing. That is, while these hosted services offload operational management of
k8s, they still require custom configuration by developers. The major similarity to
serverless computing is that k8s can provide short-lived computing environments
like in the customary FaaS model.

But a very interesting recent trend is the emergence of the so-called serverless
container services such as IBM Code Engine, AWS Fargate, Azure Container
Instances (ACI), and Google Cloud Run (GCR). These services reduce the complex-
ity of managing and deploying k8s clusters in the cloud. While they offer serverless
features such as flexible automated scaling and pay-per-use billing model, these
services still require some manual configuration of the right parameters for the
containers (e.g., compute, storage, and networking) as well as the scaling limits
for a successful deployment.

These alternatives are interesting for long-running jobs such as batch data
analytics, while they offer more control over the applications thanks to the use of
containers instead of functions. In any case, they can be very suitable for stateless,
scalable applications, where the services can scale out by easily adding or removing
container instances. In this case, the user establishes a simple CPU or memory
threshold and the service is responsible for monitoring, load balancing, and instance
creation and removal. It must be noted that if the service or application is more
complex (e.g., a stateful storage component), the utility of these approaches is rather
small, or they require important user intervention.

An important open source project related to serverless containers is CNCF’s
KNative. In short, KNative is backed by big vendors such as Google, IBM,
and RedHat, among others, and it simplifies the creation of serverless containers
over k8s clusters. Knative simplifies the complexity of k8s and Istio service
mesh components, and it creates a promising substrate for both PaaS and FaaS
applications.

As a final conclusion, we foresee that the simplicity of the serverless model
will gain traction among users, so many new offerings may emerge in the next few
years, thereby blurring the borders between both serverless and serverful models.
Further, container services may become an interesting architecture for ServerMix
deployments.



54 P. García-López et al.

4 CloudButton: Towards Serverless Data Analytics

Serverless technologies will become a key enabler for radically simpler, user-
friendly data analytics systems in the coming years. However, achieving this goal
requires a programmable framework that goes beyond the current FaaS model and
has user-adjustable settings to alter the IDS (Isolation-Disaggregation-Scheduling)
trade-off (see Sect. 2 for more details)—for example, by weakening function
isolation for better performance.

The EU CloudButton project [8] was born out of this need. It has been heavily
inspired by “Occupy the Cloud” paper [19] and the statement made by a professor
of computer graphics at UC Berkeley quoted in that paper:

“Why is there no cloud button?” He outlined how his students simply wish
they could easily “push a button” and have their code—existing, optimized,
single-machine code—running on the cloud.”

Consequently, our primary goal is to create a serverless data analytics platform,
which “democratizes Big Data” by overly simplifying the overall life cycle and
cloud programming models of data analytics. To this end, the 3-year CloudBut-
ton research project (2019–2021) will be undertaken as a collaboration between
key industrial partners such as IBM, RedHat, and Atos, and academic partners
such as Imperial College London, Institut Mines Télécom/Télécom SudParis, and
Universitat Rovira i Virgili. To demonstrate the impact of the project, we target
two settings with large data volumes: bioinformatics (genomics, metabolomics)
and geospatial data (LiDAR, satellital), through institutions and companies such
as EMBL, Pirbright Institute, Answare, and Fundación Matrix.

The project aims to provide full transparency [13] for applications which implies
that we will be able to run unmodified single-machine code over effectively unlim-
ited compute, storage, and memory resources thanks to serverless disaggregation
and auto-scaling.

As we can see in Fig. 2, the CloudButton′s Lithops toolkit [32] will realize this
vision of transparency relying on the next building blocks:

• A high-performance serverless compute engine for Big Data: The main goal
is to support stateful and highly performant execution of serverless tasks. It
will also provide efficient QoS management of containers that host serverless
functions and a serverless execution framework to support typical dataflow
models. As we can see in the Fig. 2, our design includes an extensible backend
architecture for compute and storage that covers the major Cloud providers and
Kubernetes cluster technologies.

• Mutable, shared data support in serverless computing: To simplify the
transitioning from sequential to (massively-)parallel code, CloudButton has
designed the Crucial [5] middleware on top of RedHat Infinispan that allows



Trade-Offs and Challenges of Serverless Data Analytics 55

CloudButton Toolkit

Orchestrator

module
analyzerserializer

Federated FaaS
Invoker

Storage Backend

Serverless Compute
Backend

Result
Worker

Runtime
Function

+
Modules

Data

Mutable Shared
Data

SLAQoSQoS

Triggers

Fig. 2 CloudButton architecture

the quickly spawning and easy sharing of mutable data structures in serverless
platforms. This goal will explore the disaggregation area of the IDS trade-off.

• Novel serverless cloud programming abstractions: The goal is to express
a wide range of existing data-intensive applications with minimal changes.
The programming model should at the same time preserve the benefits of a
serverless execution model and add explicit support for stateful functions in
applications. Thanks to Lithops [32] and FaaSM [34] the toolkit will support
almost unmodified data analytics applications in Python [32] but also C/C++
applications [34] using MPI and OpenMP programming models.



56 P. García-López et al.

In what follows, we will delve deeper into each of these goals, highlighting in
more detail the advance of each one with respect to the state of the art.

4.1 High-performance Serverless Runtime

In many real-life cloud scenarios, enterprise workloads cannot be straightforwardly
moved to a centralized public cloud due to the cost, regulation, latency and
bandwidth, or a combination of these factors. This forces enterprises to adopt a
hybrid cloud solution. However, current serverless frameworks are centralized and,
out-of-the-box, they are unable to leverage computational capacity available in
multiple locations.

Big Data analytics pipelines (a.k.a. analytics workflows) need to be efficiently
orchestrated. There exists many serverless workflows orchestration tools (Fission
flows, Argo, Apache Airflow), ephemeral serverless composition frameworks (IBM
Composer), and stateful composition engines (Amazon Step Functions, Azure
Durable Functions). To the best of our knowledge, workflow orchestration tools
treat FaaS runtimes as black boxes that are oblivious to the workflow structure. A
major issue with FaaS, which is exacerbated in a multi-stage workflow, is its data
shipment architecture. Usually, the data is located in a separate storage service, such
as Amazon S3 or IBM COS, and shipped for computation to the FaaS cluster. In
general, FaaS functions are not scheduled with data locality in mind, even though
data locality can be inferred from the workflow structure.

Further, and to the best of our knowledge, none of the existing workflow
orchestration tools is serverless in itself. That is, the orchestrator is usually a
stateful, always-on service. This is not necessarily the most cost-efficient approach
for long running big data analytics pipelines, which might have periods of very high
peakedness requiringmassive parallelism interleavedwith long periods of inactivity.

In CloudButton, we address the above challenges as follows:

• Federated FaaS Invoker: CloudButton exploits k8s federation architecture to
provide a structured multi-clustered FaaS run time to facilitate analytics pipelines
spanning multiple k8s clusters and Cloud Backends.

• SLA, QoS, and scheduling: programmerswill be enabled to specify desired QoS
levels for their functions. These QoS constraints will be enforced by a specialized
scheduler (implemented via the k8s custom scheduler framework).

• Serverless workflow orchestration: we have constructed a Trigger-based
orchestration framework [24] for ServerMix analytics pipelines. Tasks in the
supported workflows can include massively parallel serverless computations
carried out in Lithops.

• Operational efficiency: an operations cost-efficiency advisor will track the time
utilization of each ServerMix component and submit recommendations on its
appropriate usage.



Trade-Offs and Challenges of Serverless Data Analytics 57

4.2 Mutable Shared Data for Serverless Computing

In serverless Big Data applications, thousands of functions run in a short time. From
a storage perspective, this requires the ability to scale abruptly the system to be on
par with demand. To achieve this, it is necessary to decrease startup times (e.g., with
unikernels [25]) and consider new directions for data distribution (e.g., Pocket [22]).

Current serverless computing platforms outsource state management to a dedi-
cated storage tier (e.g., Amazon S3). This tier is agnostic of how data is mutated
by functions, requiring serialization. This is cumbersome for complex data types,
decreases code modularity and re-usability, and increases the cost of manipulating
large objects. In contrast, we advocate that the storage tier should support in-place
modifications. Additionally, storage requirements for serverless Big Data include:

• Fast access (sub-millisecond) to ephemeral mutable data: to support iterative and
stateful computations (e.g., ML algorithms)

• Fine-grained operations to coordinate concurrent function invocations
• Dependability: to transparently support failures in both storage and compute

tiers.

In CloudButton, we tackle these challenges by designing a novel storage layer
for stateful serverless computation called Crucial [5]. Our goal is to simplify the
transitioning from single-machine to massively parallel code. This requires new
advances on data storage and distributed algorithms, such as:

• Language support for mutable shared data. The programmer can declare
mutable shared data types in a piece of serverless code in a way transparently
integrated to the programming language (e.g., with annotations). The storage tier
knows the data types, allowing in-place mutations to in-memory shared data.

• Data consistency. Shared data objects are distributed and replicated across the
storage layer, while maintaining strong consistency. To improve performance,
developers can degrade data consistency [4, 35] on a per-object basis.

• Just-right synchronization. The implementation uses state machine replication
atop a consensus layer [23, 27]. This layer self-adjusts to each shared data item,
synchronizing replicas only when necessary, which improves performance.

4.3 Novel Serverless Cloud Programming Abstractions: The
CloudButton Toolkit

Containers are the foundation of serverless runtimes, but the abstractions and
isolation they offer can be restrictive for many applications. A hard barrier between
the memory of co-located functions means all data sharing must be done via
external storage, precluding data-intensive workloads and introducing an awkward
programming model. Instantiating a completely isolated runtime environment for



58 P. García-López et al.

each function is not only inefficient but at odds with how most language runtimes
were designed.

This isolation boundary and runtime environment have motivated much prior
work. A common theme is optimizing and modifying containers to better suit the
task, exemplified by SOCK [26], which makes low-level changes to improve start-
up times and efficiency. Others have partly sacrificed isolation to achieve better
performance, for example, by co-locating a tenant’s functions in the same container
[1]. Also, a few frameworks for building serverless applications have emerged [10,
19, 21]. But these systems still require a lot of engineering effort to port existing
applications.

Software fault isolation (SFI) has been proposed as an alternative isolation
approach, offering memory-safety at low cost [6]. Introducing an intermediate
representation (IR) to unify the spectrum of languages used in serverless has also
been advocated [17]. WebAssembly is perfectly suited on both counts. It is an IR
built on the principles of SFI, designed for executing multi-tenant code [16]. This
is evidenced by its use in proprietary serverless technologies such as CloudFlare
Workers and Fastly’s Terrarium [9].

With the CloudButton toolkit, we build on these ideas and re-examine the
serverless programming and execution environment. We have investigated new
approaches to isolation and abstraction, focusing on the following areas:

• Lightweight serverless isolation. In the Faasm Backend [34], we combine SFI,
WebAssembly, and existing OS tooling to build a new isolation mechanism,
delivering strong security guarantees at a fraction of the cost of containers.

• Efficient localized state. This new isolation approach allows sharing regions of
memory between co-located functions, enabling low-latency parallel processing
and new opportunities for inter-function communication.

• Stateful programming abstractions. To make CloudButton programming
seamless, we have created a new set of abstractions [5, 34], allowing users
to combine stateful middleware with efficient localized state to easily build
high-performance parallel applications.

• Polyglot libraries and tooling. By using a shared IR we can reuse abstractions
across multiple languages. In this manner we will build a suite of generic
tools to ease porting existing applications in multiple languages, including the
CloudButton genomics and geospatial use-cases.

5 Conclusions and Future Directions

In this chapter, we have first analyzed three important architectural trade-offs
of serverless computing: disaggregation, isolation, and simple scheduling. We
have explained that by relaxing those trade-offs, it is possible to achieve higher
performance, but also how that loosening can impoverish important serverless traits
such as elasticity, multi-tenancy support, and high resource utilization. Moving the



Trade-Offs and Challenges of Serverless Data Analytics 59

trade-offs to the extremes, we have distinguished between serverful and serverless
computing, and we have also introduced the new concept of ServerMix computing.

ServerMix systems combine serverless and serverful components to accomplish
an analytics task. An ideal ServerMix system should keep resource provisioning
transparent to the user and consider the cost-performance ratio as first citizen.

Finally, we have presented the CloudButton Serverless Data Analytics Platform
and explained how it addresses the aforementioned trade-offs. CloudButton has
demonstrated different levels of transparency for applications, enabling to run
unmodified single-machine code over effectively unlimited compute, storage, and
memory resources thanks to serverless disaggregation and auto-scaling. We predict
that next-generation Cloud systems will offer a fully Serverless experience to users
by combining both Serverless and Serverful infrastructures in a transparent way.

Acknowledgments This work has been partially supported by the EU project H2020 “Cloud-
Button: Serverless Data Analytics Platform” (825184) and by the Spanish government (PID2019-
106774RB-C22). Thanks also to the Serra Hunter programme from the Catalan government.

References

1. Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., Aditya, P., & Hilt, V. (2018).
SAND: Towards high-performance serverless computing. In 2018 USENIX annual technical
conference (ATC’18), (pp. 923–935).

2. Al-Ali, Z., Goodarzy, S., Hunter, E., Ha, S., Han, R., Keller, E., & Rozner, E. (2018).
Making serverless computing more serverless. In IEEE 11th international conference on cloud
computing (CLOUD’18), (pp. 456–459).

3. Amazon: AWS lambda limits (2019). https://docs.aws.amazon.com/lambda/latest/dg/limits.
html/

4. Attiya, H., & Welch, J. L. (1991). Sequential consistency versus linearizability (extended
abstract). In Proceedings of the third annual ACM symposium on parallel algorithms and
architectures (SPAA ’91), (pp. 304–315).

5. Barcelona-Pons, D., Sánchez-Artigas, M., París, G., Sutra, P., & García-López, P. (2019).
On the faas track: Building stateful distributed applications with serverless architectures. In
Proceedings of the 20th international middleware conference (pp. 41–54).

6. Boucher, S., Kalia, A., Andersen, D. G., & Kaminsky, M. (2018). Putting the micro back in
microservice. In 2018 USENIX annual technical conference (ATC ’18) (pp. 645–650).

7. Carreira, J., Fonseca, P., Tumanov, A., Zhang, A. M., & Katz, R. (2018). A case for serverless
machine learning. In: Workshop on systems for ML and open source software at NeurIPS.

8. H2020 CloudButton (2019) Serverless data analytics. http://cloudbutton.eu
9. Fastly: Fastly Labs—Terrarium (2019). https://www.fastlylabs.com/
10. Fouladi, S., Wahby, R. S., Shacklett, B., Balasubramaniam, K. V., Zeng, W., Bhalerao, R.,

Sivaraman, A., Porter, G., & Winstein, K. (2017). Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads. In Proceedings of the 14th USENIX symposium
on networked systems design and implementation (NSDI’17) (pp. 363–376).

11. Fouladi, S., Romero, F., Iter, D., Li, Q., Chatterjee, S., Kozyrakis, C., Zaharia, M., & Winstein,
K. (2019). From laptop to lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In 2019 USENIX Annual Technical Conference (ATC’19) (pp. 475–
488).

https://docs.aws.amazon.com/lambda/latest/dg/limits.html/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html/
http://cloudbutton.eu
https://www.fastlylabs.com/


60 P. García-López et al.

12. Gao, P. X., Narayan, A., Karandikar, S., Carreira, J., Han, S., Agarwal, R., Ratnasamy, S., &
Shenker, S. (2016). Network requirements for resource disaggregation. In Proceedings of the
12th USENIX conference on operating systems design and implementation (OSDI’16) (pp.
249–264).

13. García-López, P., Slominski, A., Shillaker, S., Behrendt, M., & Metzler, B. (2020). Serverless
end game: Disaggregation enabling transparency. arXiv preprint arXiv:2006.01251.

14. Gu, J., Lee, Y., Zhang, Y., Chowdhury, M., & Shin, K.G. (2017). Efficient memory disag-
gregation with infiniswap. In 14th USENIX conference on networked systems design and
implementation (NSDI’17) (pp. 649–667).

15. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner,
L., Zakai, A., & Bastien, J. (2017). Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN conference on programming language design and
implementation (PLDI’17) (pp. 185–200).

16. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner,
L., Zakai, A., & Bastien, J. (2017). Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN conference on programming language design and
implementation (PLDI’17) (pp. 185–200).

17. Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A.,
& Wu, C. (2019). Serverless computing: One step forward, two steps back. In Conference on
innovative data systems research (CIDR’19).

18. Istvan, Z., Sidler, D., & Alonso, G. (2018). Active pages 20 years later: Active storage for the
cloud. IEEE Internet Computing, 22(4), 6–14.

19. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., & Recht, B. (2017). Occupy the cloud:
Distributed computing for the 99%. In Proceedings of the 2017 symposium on cloud computing
(SoCC’17) (pp. 445–451).

20. Jonas, E., et al. (2019). Cloud programming simplified: A Berkeley view on serverless
computing. https://arxiv.org/abs/1902.03383

21. Kim, Y., & Lin, J. (2018). Serverless data analytics with Flint. CoRR abs/1803.06354. http://
arxiv.org/abs/1803.06354

22. Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., & Kozyrakis, C. (2018). Pocket:
Elastic ephemeral storage for serverless analytics. In Proceedings of the 13th USENIX
symposium on operating systems design and implementation (OSDI’18) (pp. 427–444).

23. Lamport, L. (1998). The part-time parliament. ACM Transactions on Computer Systems, 16(2),
133–169. doi:http://doi.acm.org/10.1145/279227.279229

24. López, P. G., Arjona, A., Sampé, J., Slominski, A., Villard, L. (2020). Triggerflow: Trigger-
based orchestration of serverless workflows. In: Proceedings of the 14th ACM international
conference on distributed and event-based systems (pp. 3–14).

25. Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., Yasukata, K., Raiciu, C., &
Huici, F. (2017). My VM is lighter (and safer) than your container. In Proceedings of the 26th
symposium on operating systems principles (SOSP ’17) (pp. 218–233).

26. Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau, A., & Arpaci-Dusseau,
R. (2018). SOCK: Rapid task provisioning with serverless-optimized containers. In: 2018
USENIX annual technical conference (ATC’18) (pp. 57–70).

27. Ongaro, D., & Ousterhout, J.K. (2014). In search of an understandable consensus algorithm. In
2014 USENIX conference on USENIX annual technical conference (ATC’14) (pp. 305–319).

28. Pu, Q., Venkataraman, S., & Stoica, I. (2019). Shuffling, fast and slow: Scalable analytics
on serverless infrastructure. In: Proceedings of the 16th USENIX symposium on networked
systems design and implementation (NSDI’19) (pp. 193–206).

29. Riedel, E., Gibson, G. A., Faloutsos, C. (1998). Active storage for large-scale data mining
and multimedia. In Proceedings of the 24rd international conference on very large data bases
(VLDB’98) (pp. 62–73).

30. Sampé, J., Sánchez-Artigas, M., García-López, P., & París, G. (2017). Data-driven serverless
functions for object storage. In Proceedings of the 18th ACM/IFIP/USENIX middleware
conference (pp. 121–133). ACM, New York.

https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1803.06354
http://arxiv.org/abs/1803.06354
http://dx.doi.org/http://doi.acm.org/10.1145/279227.279229


Trade-Offs and Challenges of Serverless Data Analytics 61

31. Sampé, J., Vernik, G., Sánchez-Artigas, M., & García-López, P. (2018). Serverless data
analytics in the IBM Cloud. In Proceedings of the 19th international middleware conference
industry, Middleware ’18 (pp. 1–8). ACM, New York.

32. Sampé, J., García-López, P., Sánchez-Artigas, M., Vernik, G., Roca-Llaberia, P., & Arjona, A.
(2021). Toward multicloud access transparency in serverless computing. IEEE Software, 38,
68–74.

33. Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S., Stoica, I., Recht, B., & Ragan-
Kelley, J. (2018). Numpywren: Serverless linear algebra. CoRR abs/1810.09679.

34. Shillaker, S., & Pietzuch, P. (2020). Faasm: Lightweight isolation for efficient stateful
serverless computing. arXiv preprint arXiv:2002.09344.

35. Wada, H., Fekete, A., Zhao, L., Lee, K., & Liu, A. (2011). Data consistency properties and
the trade-offs in commercial cloud storage: the consumers’ perspective. In Fifth Biennial
conference on innovative data systems research (CIDR’11) (pp. 134–143).

36. Zillner, S., Curry, E., Metzger, A., Auer, S., & Seidl, R. (Eds.) (2017). European big data value
strategic research & innovation agenda. Big data value association

37. Zillner, S., et al. (Eds.) (2020). Strategic research, innovation and deployment Agenda—AI,
data and robotics partnership. Third Release. BDVA, euRobotics, ELLIS, EurAI and CLAIRE.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Trade-Offs and Challenges of Serverless Data Analytics
	1 Introduction
	1.1 On the Path to Serverless Data Analytics: The ServerMix Model

	2 Fundamental Trade-Offs of Serverless Architectures
	2.1 Disaggregation
	2.2 Isolation
	2.3 Simple Scheduling
	2.4 Summary

	3 Revisiting Related Work: The ServerMix Approach
	3.1 Serverless Data Analytics
	3.2 Serverless Container Services

	4 CloudButton: Towards Serverless Data Analytics 
	4.1 High-performance Serverless Runtime
	4.2 Mutable Shared Data for Serverless Computing
	4.3 Novel Serverless Cloud Programming Abstractions: The CloudButton Toolkit

	5 Conclusions and Future Directions
	References


