Skip to main content

Mechanical and Functional Interdependence Between the RV and LV

  • Chapter
  • First Online:
The Right Heart
  • 954 Accesses

Abstract

The function and mechanics of the left and right ventricles are closely intertwined. In normal physiology, the left ventricle (LV) substantially contributes to right ventricular (RV) pressure development and output. Thus, it can be expected that when LV function is impaired, RV function will be impacted. In normal physiology, the RV has a much lesser effect on the LV. However, the pressure-loaded, volume-loaded, or dyssynchronous RV can profoundly impact LV systolic and diastolic function. These interactions have important clinical implications and the presence of RV dysfunction in “left-heart” disease impacts outcomes. Likewise, concomitant LV dysfunction in “right-heart” disease worsens prognosis. Thus RV-LV interactions are important to understand. Moreover, leveraging of these interactions can be used to treat various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appleyard RF, Glantz SA. Pulmonary model to predict the effects of series ventricular interaction. Circ Res. 1990;67(5):1225–37.

    Article  CAS  PubMed  Google Scholar 

  2. Slinker BK, Glantz SA. End-systolic and end-diastolic ventricular interaction. Am J Physiol. 1986;251(5 Pt 2):H1062–75.

    CAS  PubMed  Google Scholar 

  3. Davlouros PA, Kilner PJ, Hornung TS, Li W, Francis JM, Moon JC, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40(11):2044–52.

    Article  PubMed  Google Scholar 

  4. Kempny A, Diller GP, Orwat S, Kaleschke G, Kerckhoff G, Bunck A, et al. Right ventricular-left ventricular interaction in adults with tetralogy of Fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol. 2012;154(3):259–64.

    Article  PubMed  Google Scholar 

  5. Ghai A, Silversides C, Harris L, Webb GD, Siu SC, Therrien J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40(9):1675–80.

    Article  PubMed  Google Scholar 

  6. Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128(15):1623–33.

    Article  PubMed  Google Scholar 

  7. Alhamshari YS, Alnabelsi T, Mulki R, Cepeda-Valery B, Figueredo VM, Romero-Corral A. Right ventricular function measured by TAPSE in obese subjects at the time of acute myocardial infarction and 2 year outcomes. Int J Cardiol. 2017;232:181–5.

    Article  PubMed  Google Scholar 

  8. Damiano RJ Jr, La Follette P Jr, Cox JL, Lowe JE, Santamore WP. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol. 1991;261(5 Pt 2):H1514–24.

    PubMed  Google Scholar 

  9. Santamore WP, Lynch PR, Heckman JL, Bove AA, Meier GD. Left ventricular effects on right ventricular developed pressure. J Appl Physiol. 1976;41(6):925–30.

    Article  CAS  PubMed  Google Scholar 

  10. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71(3):473–80.

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman D, Sisto D, Frater RW, Nikolic SD. Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg. 1994;107(6):1496–502.

    Article  CAS  PubMed  Google Scholar 

  12. Li KS, Santamore WP. Contribution of each wall to biventricular function. Cardiovasc Res. 1993;27(5):792–800.

    Article  CAS  PubMed  Google Scholar 

  13. Schertz C, Pinsky MR. Effect of the pericardium on systolic ventricular interdependence in the dog. J Crit Care. 1993;8(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  14. Danton MH, Byrne JG, Flores KQ, Hsin M, Martin JS, Laurence RG, et al. Modified Glenn connection for acutely ischemic right ventricular failure reverses secondary left ventricular dysfunction. J Thorac Cardiovasc Surg. 2001;122(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell JR, Whitelaw WA, Sas R, Smith ER, Tyberg JV, Belenkie I. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289(2):H549–57.

    Article  CAS  PubMed  Google Scholar 

  16. Brookes C, Ravn H, White P, Moeldrup U, Oldershaw P, Redington A. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100(7):761–7.

    Article  CAS  PubMed  Google Scholar 

  17. Friedberg MK. Imaging right-left ventricular interactions. JACC Cardiovasc Imaging. 2018;11(5):755–71.

    Article  PubMed  Google Scholar 

  18. Moulopoulos SD, Sarcas A, Stamatelopoulos S, Arealis E. Left ventricular performance during by-pass or distension of the right ventricle. Circ Res. 1965;17(6):484–91.

    Article  CAS  PubMed  Google Scholar 

  19. Gan C, Lankhaar JW, Marcus JT, Westerhof N, Marques KM, Bronzwaer JG, et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290(4):H1528–33.

    Article  CAS  PubMed  Google Scholar 

  20. Marcus JT, Vonk Noordegraaf A, Roeleveld RJ, Postmus PE, Heethaar RM, Van Rossum AC, et al. Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension: noninvasive monitoring using MRI. Chest. 2001;119(6):1761–5.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson GS, Sayed-Ahmed EY, Kroeker CA, Sun YH, Keurs HE, Shrive NG, et al. Compression of interventricular septum during right ventricular pressure loading. Am J Physiol Heart Circ Physiol. 2001;280(6):H2639–48.

    Article  CAS  PubMed  Google Scholar 

  22. Roeleveld RJ, Marcus JT, Faes TJ, Gan TJ, Boonstra A, Postmus PE, et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–7.

    Article  PubMed  Google Scholar 

  23. Visner MC, Arentzen CE, O’Connor MJ, Larson EV, Anderson RW. Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation. 1983;67(2):353–65.

    Article  CAS  PubMed  Google Scholar 

  24. Burkett DA, Patel SS, Mertens L, Friedberg MK, Ivy DD. Relationship between left ventricular geometry and invasive hemodynamics in pediatric pulmonary hypertension. Circ Cardiovasc Imaging. 2020;13(5):e009825.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kassem E, Humpl T, Friedberg MK. Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J. 2013;165(6):1024–31.

    Article  PubMed  Google Scholar 

  26. Burkett DA, Slorach C, Patel SS, Redington AN, Ivy DD, Mertens L, et al. Impact of pulmonary hemodynamics and ventricular interdependence on left ventricular diastolic function in children with pulmonary hypertension. Circ Cardiovasc Imaging. 2016;9(9):e004612.

    Article  PubMed  Google Scholar 

  27. Jone PN, Hinzman J, Wagner BD, Ivy DD, Younoszai A. Right ventricular to left ventricular diameter ratio at end-systole in evaluating outcomes in children with pulmonary hypertension. J Am Soc Echocardiogr. 2014;27(2):172–8.

    Article  PubMed  Google Scholar 

  28. Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, et al. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J. 2009;30(18):2266–74.

    Article  PubMed  Google Scholar 

  29. Alkon J, Humpl T, Manlhiot C, McCrindle BW, Reyes JT, Friedberg MK. Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am J Cardiol. 2010;106(3):430–6.

    Article  PubMed  Google Scholar 

  30. Driessen MM, Hui W, Bijnens BH, Dragulescu A, Mertens L, Meijboom FJ, et al. Adverse ventricular-ventricular interactions in right ventricular pressure load: insights from pediatric pulmonary hypertension versus pulmonary stenosis. Physiol Rep. 2016;4(11):e12833.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hui W, Slorach C, Iori S, Dragulescu A, Mertens L, Friedberg MK. The right ventricular myocardial systolic-to-diastolic duration ratio in children after surgical repair of tetralogy of Fallot. J Appl Physiol (1985). 2020;128(6):1677–83.

    Article  Google Scholar 

  32. Taylor RR, Covell JW, Sonnenblick EH, Ross J Jr. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol. 1967;213(3):711–8.

    Article  CAS  PubMed  Google Scholar 

  33. Duffels MG, Hardziyenka M, Surie S, de Bruin-Bon RH, Hoendermis ES, van Dijk AP, et al. Duration of right ventricular contraction predicts the efficacy of bosentan treatment in patients with pulmonary hypertension. Eur J Echocardiogr. 2009;10(3):433–8.

    Article  PubMed  Google Scholar 

  34. Gurudevan SV, Malouf PJ, Auger WR, Waltman TJ, Madani M, Raisinghani AB, et al. Abnormal left ventricular diastolic filling in chronic thromboembolic pulmonary hypertension: true diastolic dysfunction or left ventricular underfilling? J Am Coll Cardiol. 2007;49(12):1334–9.

    Article  PubMed  Google Scholar 

  35. Mahmud E, Raisinghani A, Hassankhani A, Sadeghi HM, Strachan GM, Auger W, et al. Correlation of left ventricular diastolic filling characteristics with right ventricular overload and pulmonary artery pressure in chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2002;40(2):318–24.

    Article  PubMed  Google Scholar 

  36. Kalogeropoulos AP, Georgiopoulou VV, Howell S, Pernetz MA, Fisher MR, Lerakis S, et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2008;21(9):1028–34.

    Article  PubMed  Google Scholar 

  37. Lopez-Candales A, Dohi K, Rajagopalan N, Suffoletto M, Murali S, Gorcsan J, et al. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vonk-Noordegraaf A, Marcus JT, Gan CT, Boonstra A, Postmus PE. Interventricular mechanical asynchrony due to right ventricular pressure overload in pulmonary hypertension plays an important role in impaired left ventricular filling. Chest. 2005;128(6 Suppl):628S–30S.

    Article  PubMed  Google Scholar 

  39. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7.

    Article  PubMed  Google Scholar 

  40. D’Andrea A, Caso P, Sarubbi B, D’Alto M, Giovanna Russo M, Scherillo M, et al. Right ventricular myocardial activation delay in adult patients with right bundle branch block late after repair of tetralogy of Fallot. Eur J Echocardiogr. 2004;5(2):123–31.

    Article  PubMed  Google Scholar 

  41. Hui W, Slorach C, Friedberg MK. Apical transverse motion is associated with interventricular mechanical delay and decreased left ventricular function in children with dilated cardiomyopathy. J Am Soc Echocardiogr. 2018;31(8):943–50.

    Article  PubMed  Google Scholar 

  42. Shimamura J, Nishimura T, Mizuno T, Takewa Y, Tsukiya T, Inatomi A, et al. Quantification of interventricular dyssynchrony during continuous-flow left ventricular assist device support. J Artif Organs. 2019;22(4):269–75.

    Article  PubMed  Google Scholar 

  43. Addetia K, Uriel N, Maffessanti F, Sayer G, Adatya S, Kim GH, et al. 3D morphological changes in LV and RV during LVAD ramp studies. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):159–69.

    Article  PubMed  Google Scholar 

  44. Tyberg JV, Belenkie I, Manyari DE, Smith ER. Ventricular interaction and venous capacitance modulate left ventricular preload. Can J Cardiol. 1996;12(10):1058–64.

    CAS  PubMed  Google Scholar 

  45. Atherton JJ, Moore TD, Lele SS, Thomson HL, Galbraith AJ, Belenkie I, et al. Diastolic ventricular interaction in chronic heart failure. Lancet. 1997;349(9067):1720–4.

    Article  CAS  PubMed  Google Scholar 

  46. Rain S, Andersen S, Najafi A, Gammelgaard Schultz J, da Silva Goncalves Bos D, Handoko ML, et al. Right ventricular myocardial stiffness in experimental pulmonary arterial hypertension: relative contribution of fibrosis and myofibril stiffness. Circ Heart Fail. 2016;9(7):e002636.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shirakabe M, Yamaguchi S, Tamada Y, Baniya G, Fukui A, Miyawaki H, et al. Impaired distensibility of the left ventricle after stiffening of the right ventricle. J Appl Physiol (1985). 2001;91(1):435–40.

    Article  CAS  Google Scholar 

  48. Kroeker CA, Shrive NG, Belenkie I, Tyberg JV. Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume. Am J Physiol Heart Circ Physiol. 2003;284(6):H2247–54.

    Article  PubMed  Google Scholar 

  49. Sanchez-Quintana D, Climent V, Ho SY, Anderson RH. Myoarchitecture and connective tissue in hearts with tricuspid atresia. Heart. 1999;81(2):182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smerup M, Nielsen E, Agger P, Frandsen J, Vestergaard-Poulsen P, Andersen J, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat Rec (Hoboken). 2009;292(1):1–11.

    Article  Google Scholar 

  51. Belenkie I, Horne SG, Dani R, Smith ER, Tyberg JV. Effects of aortic constriction during experimental acute right ventricular pressure loading. Further insights into diastolic and systolic ventricular interaction. Circulation. 1995;92(3):546–54.

    Article  CAS  PubMed  Google Scholar 

  52. Apitz C, Honjo O, Humpl T, Li J, Assad RS, Cho MY, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144(6):1494–501.

    Article  PubMed  Google Scholar 

  53. Apitz C, Honjo O, Friedberg MK, Assad RS, Van Arsdell G, Humpl T, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60(1):17–23.

    Article  PubMed  Google Scholar 

  54. Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98(10):997–1005.

    Article  CAS  PubMed  Google Scholar 

  55. Kral Kollars CA, Gelehrter S, Bove EL, Ensing G. Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries. Am J Cardiol. 2010;105(5):735–9.

    Article  PubMed  Google Scholar 

  56. Schranz D, Rupp S, Muller M, Schmidt D, Bauer A, Valeske K, et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant. 2013;32(5):475–81.

    Article  PubMed  Google Scholar 

  57. Schwarz K, Singh S, Dawson D, Frenneaux MP. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ. 2013;22(7):507–11.

    Article  PubMed  Google Scholar 

  58. Ramos SR, Pieles G, Sun M, Slorach C, Hui W, Friedberg MK. Early versus late cardiac remodeling during right ventricular pressure load and impact of preventive versus rescue therapy with endothelin-1 receptor blockers. J Appl Physiol (1985). 2018;124(5):1349–62.

    Article  CAS  Google Scholar 

  59. Nielsen EA, Sun M, Honjo O, Hjortdal VE, Redington AN, Friedberg MK. Dual endothelin receptor blockade abrogates right ventricular remodeling and biventricular fibrosis in isolated elevated right ventricular afterload. PLoS One. 2016;11(1):e0146767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kitahori K, He H, Kawata M, Cowan DB, Friehs I, Del Nido PJ, et al. Development of left ventricular diastolic dysfunction with preservation of ejection fraction during progression of infant right ventricular hypertrophy. Circ Heart Fail. 2009;2(6):599–607.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Friedberg MK, Cho MY, Li J, Assad RS, Sun M, Rohailla S, et al. Adverse biventricular remodeling in isolated right ventricular hypertension is mediated by increased transforming growth factor-beta1 signaling and is abrogated by angiotensin receptor blockade. Am J Respir Cell Mol Biol. 2013;49(6):1019–28.

    Article  CAS  PubMed  Google Scholar 

  62. Gold J, Akazawa Y, Sun M, Hunter KS, Friedberg MK. Relation between right ventricular wall stress, fibrosis, and function in right ventricular pressure loading. Am J Physiol Heart Circ Physiol. 2020;318(2):H366–H77.

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen EA, Okumura K, Sun M, Hjortdal VE, Redington AN, Friedberg MK. Regional septal hinge-point injury contributes to adverse biventricular interactions in pulmonary hypertension. Physiol Rep. 2017;5(14):e13332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. McCann GP, Gan CT, Beek AM, Niessen HW, Vonk Noordegraaf A, van Rossum AC. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol. 2007;188(2):349–55.

    Article  PubMed  Google Scholar 

  65. Beyar R, Dong SJ, Smith ER, Belenkie I, Tyberg JV. Ventricular interaction and septal deformation: a model compared with experimental data. Am J Phys. 1993;265(6 Pt 2):H2044–56.

    CAS  Google Scholar 

  66. Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, et al. Experimental right ventricular hypertension induces regional beta1-integrin-mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J Am Heart Assoc. 2018;7(7):e007928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shehata ML, Lossnitzer D, Skrok J, Boyce D, Lechtzin N, Mathai SC, et al. Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am J Roentgenol. 2011;196(1):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sanz J, Dellegrottaglie S, Kariisa M, Sulica R, Poon M, O’Donnell TP, et al. Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol. 2007;100(4):731–5.

    Article  PubMed  Google Scholar 

  69. Burkett DA, Slorach C, Patel SS, Redington AN, Ivy DD, Mertens L, et al. Left ventricular myocardial function in children with pulmonary hypertension: relation to right ventricular performance and hemodynamics. Circ Cardiovasc Imaging. 2015;8(8):e003260.

    Article  PubMed  Google Scholar 

  70. Kheyfets VO, Dufva MJ, Boehm M, Tian X, Qin X, Tabakh JE, et al. The left ventricle undergoes biomechanical and gene expression changes in response to increased right ventricular pressure overload. Physiol Rep. 2020;8(9):e14347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cho EJ, Jiamsripong P, Calleja AM, Alharthi MS, McMahon EM, Chandrasekaran K, et al. The left ventricle responds to acute graded elevation of right ventricular afterload by augmentation of twist magnitude and untwist rate. J Am Soc Echocardiogr. 2011;24(8):922–9.

    Article  PubMed  Google Scholar 

  72. Chua J, Zhou W, Ho JK, Patel NA, Mackensen GB, Mahajan A. Acute right ventricular pressure overload compromises left ventricular function by altering septal strain and rotation. J Appl Physiol (1985). 2013;115(2):186–93.

    Article  Google Scholar 

  73. Gomez O, Okumura K, Honjo O, Sun M, Ishii R, Bijnens B, et al. Heart rate reduction improves biventricular function and interactions in experimental pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2018;314(3):H542–H51.

    PubMed  Google Scholar 

  74. Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am J Respir Cell Mol Biol. 2020;63(6):843–55.

    Article  CAS  PubMed  Google Scholar 

  75. Okumura K, Kato H, Honjo O, Breitling S, Kuebler WM, Sun M, et al. Carvedilol improves biventricular fibrosis and function in experimental pulmonary hypertension. J Mol Med (Berl). 2015;93(6):663–74.

    Article  CAS  Google Scholar 

  76. Takahashi K, Inage A, Rebeyka IM, Ross DB, Thompson RB, Mackie AS, et al. Real-time 3-dimensional echocardiography provides new insight into mechanisms of tricuspid valve regurgitation in patients with hypoplastic left heart syndrome. Circulation. 2009;120(12):1091–8.

    Article  CAS  PubMed  Google Scholar 

  77. Rosner A, Bharucha T, James A, Mertens L, Friedberg MK. Impact of right ventricular geometry and left ventricular hypertrophy on right ventricular mechanics and clinical outcomes in hypoplastic left heart syndrome. J Am Soc Echocardiogr. 2019;32(10):1350–8.

    Article  PubMed  Google Scholar 

  78. Forsha D, Li L, Joseph N, Kutty S, Friedberg MK. Association of left ventricular size with regional right ventricular mechanics in hypoplastic left heart syndrome. Int J Cardiol. 2020;298:66–71.

    Article  PubMed  Google Scholar 

  79. Fujioka T, Kuhn A, Sanchez-Martinez S, Bijnens BH, Hui W, Slorach C, et al. Impact of interventricular interactions on left ventricular function, stroke volume, and exercise capacity in children and adults with Ebstein’s anomaly. JACC Cardiovasc Imaging. 2019;12(5):925–7.

    Article  PubMed  Google Scholar 

  80. Hickey EJ, Veldtman G, Bradley TJ, Gengsakul A, Manlhiot C, Williams WG, et al. Late risk of outcomes for adults with repaired tetralogy of Fallot from an inception cohort spanning four decades. Eur J Cardiothorac Surg. 2009;35(1):156–64; discussion 64.

    Article  PubMed  Google Scholar 

  81. Larios G, Friedberg MK. Imaging in repaired tetralogy of Fallot with a focus on recent advances in echocardiography. Curr Opin Cardiol. 2017;32(5):490–502.

    Article  PubMed  Google Scholar 

  82. Schafer M, Browne LP, Jaggers J, Barker AJ, Morgan GJ, Ivy DD, et al. Abnormal left ventricular flow organization following repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2020;160(4):1008–15.

    Article  PubMed  Google Scholar 

  83. Sjoberg P, Bidhult S, Bock J, Heiberg E, Arheden H, Gustafsson R, et al. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI. Eur Radiol. 2018;28(10):4066–76.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li SN, Yu W, Lai CT, Wong SJ, Cheung YF. Left ventricular mechanics in repaired tetralogy of Fallot with and without pulmonary valve replacement: analysis by three-dimensional speckle tracking echocardiography. PLoS One. 2013;8(11):e78826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dragulescu A, Friedberg MK, Grosse-Wortmann L, Redington A, Mertens L. Effect of chronic right ventricular volume overload on ventricular interaction in patients after tetralogy of Fallot repair. J Am Soc Echocardiogr. 2014;27(8):896–902.

    Article  PubMed  Google Scholar 

  86. Fernandes FP, Manlhiot C, Roche SL, Grosse-Wortmann L, Slorach C, McCrindle BW, et al. Impaired left ventricular myocardial mechanics and their relation to pulmonary regurgitation, right ventricular enlargement and exercise capacity in asymptomatic children after repair of tetralogy of Fallot. J Am Soc Echocardiogr. 2012;25(5):494–503.

    Article  PubMed  Google Scholar 

  87. Cheung EW, Liang XC, Lam WW, Cheung YF. Impact of right ventricular dilation on left ventricular myocardial deformation in patients after surgical repair of tetralogy of fallot. Am J Cardiol. 2009;104(9):1264–70.

    Article  PubMed  Google Scholar 

  88. Li Y, Xie M, Wang X, Lu Q, Zhang L, Ren P. Impaired right and left ventricular function in asymptomatic children with repaired tetralogy of Fallot by two-dimensional speckle tracking echocardiography study. Echocardiography. 2015;32(1):135–43.

    Article  PubMed  Google Scholar 

  89. Firstenberg MS, Smedira NG, Greenberg NL, Prior DL, McCarthy PM, Garcia MJ, et al. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function. Circulation. 2001;104(12 Suppl 1):I330–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kobayashi M, Takahashi K, Yamada M, Yazaki K, Matsui K, Tanaka N, et al. Assessment of early diastolic intraventricular pressure gradient in the left ventricle among patients with repaired tetralogy of Fallot. Heart Vessel. 2017;32(11):1364–74.

    Article  Google Scholar 

  91. Friedberg MK, Fernandes FP, Roche SL, Grosse-Wortmann L, Manlhiot C, Fackoury C, et al. Impaired right and left ventricular diastolic myocardial mechanics and filling in asymptomatic children and adolescents after repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2012;13(11):905–13.

    Article  PubMed  Google Scholar 

  92. Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation. 1995;91(6):1782–9.

    Article  CAS  PubMed  Google Scholar 

  93. Liang XC, Cheung EW, Wong SJ, Cheung YF. Impact of right ventricular volume overload on three-dimensional global left ventricular mechanical dyssynchrony after surgical repair of tetralogy of Fallot. Am J Cardiol. 2008;102(12):1731–6.

    Article  PubMed  Google Scholar 

  94. Li VW, Yu CK, So EK, Wong WH, Cheung YF. Ventricular myocardial deformation imaging of patients with repaired tetralogy of Fallot. J Am Soc Echocardiogr. 2020;33(7):788–801.

    Article  PubMed  Google Scholar 

  95. Grotenhuis HB, Dallaire F, Verpalen IM, van den Akker MJE, Mertens L, Friedberg MK. Aortic root dilatation and aortic-related complications in children after tetralogy of Fallot repair. Circ Cardiovasc Imaging. 2018;11(12):e007611.

    Article  PubMed  Google Scholar 

  96. Schafer M, Browne LP, Morgan GJ, Barker AJ, Fonseca B, Ivy DD, et al. Reduced proximal aortic compliance and elevated wall shear stress after early repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2018;156(6):2239–49.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Friedberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedberg, M.K. (2021). Mechanical and Functional Interdependence Between the RV and LV. In: Gaine, S.P., Naeije, R., Peacock, A.J. (eds) The Right Heart. Springer, Cham. https://doi.org/10.1007/978-3-030-78255-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78255-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78254-2

  • Online ISBN: 978-3-030-78255-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics