Skip to main content

Immune Response Model Fitting to CD4\(^+\) T Cell Data in Lymphocytic Choriomeningitis Virus LCMV infection

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics IV (ICABR 2017, DGS 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 365))

Included in the following conference series:

  • 467 Accesses

Abstract

We make two fits of an ODE system with 5 equations that model immune response by CD4\(^+\) T cells with the presence of regulatory T cells (Tregs). We fit the simulations to data regarding gp61 and NP309 epitopes from mice infected with lymphocytic choriomeningitis virus LCMV. We optimized parameters relating to: the T cell maximum growth rate; the T cell capacity; the T cell homeostatic level; and the ending time of the immune activation phase after infection. We quantitatively and qualitatively compare the obtained results with previous fits in the literature using different ODE models and we show that we are able to calibrate the model and obtain good fits describing the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atefeh, A., Martins, F., Oliveira, B.M.P.M., Pinto, A.: A fit of CD4\(^+\) T cell immune response to an infection by lymphocytic choriomeningitis virus. Math. Biosci. Eng. 16(6), 7009–7021 (2019)

    Google Scholar 

  2. Anderson, P.M., Sorenson, M.A.: Effects of route and formulation on clinical pharmacokinetics of interleukine-2. Clin. Pharmacokinet. 27, 19–31 (1994)

    Article  Google Scholar 

  3. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., Pulendran, B., Palucka, K.: Immunobiology of dendritic cells. Annu. Rev. Immunol. 18(1), 767–811 (2000)

    Article  Google Scholar 

  4. Blyuss, K.B., Nicholson, L.B.: The role of tunable activation thresholds in the dynamics of autoimmunity. J. Theor. Biol. 308, 45–55 (2012)

    Article  MathSciNet  Google Scholar 

  5. Burroughs, N.J., Ferreira, M., Martins, J., Oliveira, B.M.P.M.: Alberto A. Pinto, and N. Stollenwerk. Dynamics and biological thresholds. In: Pinto, A.A., Rand, D.A., Peixoto, M.M. (eds.) Dynamics, Games and Science I, DYNA 2008, in Honor of Maurício Peixoto and David Rand, vol. 1 of Springer Proceedings in Mathematics, pp. 183–191. Springer, Berlin Heidelberg (2011)

    Google Scholar 

  6. Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A.: Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. J. Theor. Biol. 241, 134–141 (2006). July

    Article  MathSciNet  Google Scholar 

  7. Burroughs, N.J., Ferreira, M., Oliveira, B.M.P.M., Pinto, A.A.: Autoimmunity arising from bystander proliferation of T cells in an immune response model. Math. Comput. Model. 53, 1389–1393 (2011)

    Article  MathSciNet  Google Scholar 

  8. Burroughs, N.J., Ferreira, M., Oliveira, B.M.P.M., Pinto, A.A.: A transcritical bifurcation in an immune response model. J. Differ. Equ. Appl. 17(7), 1101–1106 (2011). July

    Article  MathSciNet  Google Scholar 

  9. Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A., Ferreira, M.: Immune response dynamics. Math. Comput. Model. 53, 1410–1419 (2011)

    Article  MathSciNet  Google Scholar 

  10. Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A., Sequeira, H.J.T.: Sensibility of the quorum growth thresholds controlling local immune responses. Math. Comput. Model. 47(7–8), 714–725 (2008). April

    Article  MathSciNet  Google Scholar 

  11. Callard, R.E., Yates, A.J.: Immunology and mathematics: crossing the divide. Immunology 115, 21–33 (2005)

    Article  Google Scholar 

  12. de Boer, R.J., Hogeweg, P.: Immunological discrimination between self and non-self by precursor depletion and memory accumulation. J. Theor. Biol. 124(3), 343–369 (1987). February

    Article  Google Scholar 

  13. de Boer, R.J., Homann, D., Perelson, A.S.: Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171, 3928–3935 (2003)

    Article  Google Scholar 

  14. Homann, D., Teyton, L, Oldstone, M.B.A.: Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7(8), 913–919 (2001)

    Google Scholar 

  15. Khailaie, S., Bahrami, F., Janahmadi, M., Milanez-Almeida, P., Huehn, J., Meyer-Hermann, M.: A mathematical model of immune activation with a unified self-nonself concept. Front. Immunol. 4, 474 (2013). December

    Article  Google Scholar 

  16. León, K., Lage, A., Carneiro, J.: Tolerance and immunity in a mathematical model of T-cell mediated suppression. J. Theor. Biol. 225, 107–126 (2003)

    Article  MathSciNet  Google Scholar 

  17. Lowenthal, J.W., Greene, W.C.: Contrasting interleukine 2 binding properties of the alpha (p55) and beta (p70) protein subunits of the human high-affinity interleukine 2 receptor. J. Exp. Med. 166, 1155–1069 (1987)

    Article  Google Scholar 

  18. Lythe, G., Molina-París, C.: Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol. Rev. 285(1), 206–217 (2018)

    Article  Google Scholar 

  19. Michie, C.A., McLean, A., Alcock, C., Beverley, P.C.L.: Life-span of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264–265 (1992)

    Article  Google Scholar 

  20. Moskophidis, D., Battegay, M., Vandenbroek, M., Laine, E., Hoffmann-Rohrer, U., Zinkernagel, R.M.: Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J. Gen. Virol. 76, 381–391 (1995)

    Article  Google Scholar 

  21. Oliveira, B.M.P.M., Figueiredo, I.P., Burroughs, N.J., Pinto, A.A.: Approximate equilibria for a T cell and Treg model. Appl. Math. Inf. Sci. 9(5), 2221–2231 (2015)

    MathSciNet  Google Scholar 

  22. Oliveira, B.M.P.M., Trinchet, R., Otero-Espinar, M. V., Pinto, A., Burroughs, N.: Modelling the suppression of autoimmunity after pathogen infection. Math. Methods Appl. Sci. 41(18), 8565–8570 (2018)

    Google Scholar 

  23. Pinto, A.A., Burroughs, N.J., Ferreira, F., Oliveira, B.M.P.M.: Dynamics of immunological models. Acta. Biotheor. 58, 391–404 (2010)

    Article  Google Scholar 

  24. Sakaguchi, S.: Naturally arising CD4\(^+\) regulatory T cells for immunological self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004)

    Article  Google Scholar 

  25. Shevach, E.M., McHugh, R.S., Piccirillo, C.A., Thornton, A.M.: Control of T-cell activation by CD4\(^+\) CD25\(^+\) suppressor T cells. Immunol. Rev. 182, 58–67 (2001)

    Article  Google Scholar 

  26. Thornton, A.M., Shevach, E.M.: CD4\(^+\) CD25\(^+\) immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukine 2 production. J. Exp. Med. 188(2), 287–296 (1998)

    Article  Google Scholar 

  27. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A., Rocha, B.: Response of naïve and memory CD8\(^+\) T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000)

    Article  Google Scholar 

  28. Yusuf, A.A., Figueiredo, I.P., Afsar, A., Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A.: The effect of a linear tuning between the antigenic stimulations of CD4\(^+\) T cells and CD4\(^+\) Tregs. Mathematics 8(2), 293. (February 2020)

    Google Scholar 

  29. Zhu, J., Paul, W.E.: CD4 T cells: fates, functions, and faults. Blood 112(5), 1557–1569 (2008)

    Article  Google Scholar 

  30. Zhu, J., Yamane, H., Paul, W.E.: Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28(1), 445–489 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support by FCT–Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2019 and within project “Modelling, Dynamics and Games” with reference PTDC/MAT–APL/31753/2017. Atefeh Afsar would like to thank the financial support of FCT–Fundação para a Ciência e a Tecnologia–through a Ph.D. grant of the MAP–PDMA program with reference PD/BD/142886/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Martins .

Editor information

Editors and Affiliations

Appendix

Appendix

The parameters of our model and their default values as well as the fitted parameters are presented in the following two tables (Tables 1 and 2).

Table 1 Parameters values for our model of T cells and Tregs from [1, 2, 6, 13, 17, 21, 27]
Table 2 Fitted parameters values for our model of T cells and Tregs, with ranges adopted from [1, 6, 13, 20, 21]

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afsar, A., Martins, F., Oliveira, B.M.P.M., Pinto, A.A. (2021). Immune Response Model Fitting to CD4\(^+\) T Cell Data in Lymphocytic Choriomeningitis Virus LCMV infection. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics IV. ICABR DGS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-78163-7_1

Download citation

Publish with us

Policies and ethics