Skip to main content

Warm-Start Meta-Ensembles for Forecasting Energy Consumption in Service Buildings

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Energy Management Systems are equipments that normally perform the individual supervision of power controllable loads. With the objective of reducing energy costs, those management decisions result from algorithms that select how the different working periods of equipment should be combined, taking into account the usage of the locally generated renewable energy, electricity tariffs etc., while complying with the restrictions imposed by users and electric circuits. Forecasting energy usage, as described in this paper, allows to optimize the management being a major asset.

This paper proposes and compares three new meta-methods for forecasts associated to real-valued time series, applied to the buildings energy consumption case, namely: a meta-method which uses a single regressor (called Sliding Regressor – SR), an ensemble of regressors with no memory of previous fittings (called Bagging Sliding Regressor – BSR), and a warm-start bagging meta-method (called Warm-start Bagging Sliding Regressor – WsBSR). The novelty of this framework is combination of the meta-methods, warm-start ensembles and time series in a forecast framework for energy consumption in buildings. Experimental tests done over data from an hotel show that, the best accuracy is obtained using the second method, though the last one has comparable results with less computational requirements.

This work was supported by the Portuguese Foundation for Science and Technology (FCT), project LARSyS - FCT Project UIDB/50009/2020 and by the European Union, under the FEDER (Fundo Europeu de Desenvolvimento Regional) and INTERREG programs, in the scope of the T2UES (0517_TTUES_6_E) project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, A., Hassan, M., Abdullah, M., Rahman, H., Hussin, F., Abdullah, H., Saidur, R.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33, 102–109 (2014). https://doi.org/10.1016/j.rser.2014.01.069

    Article  Google Scholar 

  2. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2020)

    MATH  Google Scholar 

  3. Alto da Colina Hotel: https://www.alfagar.com/alfagar-alto-da-colina.html, Accessed 22 Jan 2021

  4. Araya, D.B., Grolinger, K., ElYamany, H.F., Capretz, M.A., Bitsuamlak, G.: An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 144, 191–206 (2017). https://doi.org/10.1016/j.enbuild.2017.02.058

    Article  Google Scholar 

  5. Bindiu, R., Chindris, M., Pop, G.: Day-ahead load forecasting using exponential smoothing. Sci. Bull. “Petru Maior” Univ. Targu Mures 6, 89 (2009)

    Google Scholar 

  6. Cabrita, C.L., Monteiro, J.M., Cardoso, P.J.S.: Improving energy efficiency in smart-houses by optimizing electrical loads management. In: 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED). IEEE (2019). https://doi.org/10.1109/synergy-med.2019.8764140

  7. Chandramowli, S., Lahr, M.L.: Forecasting New Jersey’s electricity demand using auto-regressive models. SSRN Electron. J. (2012). https://doi.org/10.2139/ssrn.2258552

    Article  Google Scholar 

  8. Chen, T.T., Lee, S.J.: A weighted LS-SVM based learning system for time series forecasting. Inf. Sci. 299, 99–116 (2015). https://doi.org/10.1016/j.ins.2014.12.031

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang, J., Wu, P., Chiang, S., Chang, T., Chang, S., Wen, K.: Introduction to Grey System Theory. Gao-Li Publication, Taiwan (1998)

    Google Scholar 

  10. Deb, C., Zhang, F., Yang, J., Lee, S.E., Shah, K.W.: A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 74, 902–924 (2017). https://doi.org/10.1016/j.rser.2017.02.085

    Article  Google Scholar 

  11. Divina, F., Gilson, A., Goméz-Vela, F., Torres, M.G., Torres, J.: Stacking ensemble learning for short-term electricity consumption forecasting. Energies 11(4), 949 (2018). https://doi.org/10.3390/en11040949

    Article  Google Scholar 

  12. Eurepean Union: Regulation (Eu) 2018/1999 of the European Parliament and of the Council (2018). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.328.01.0001.01.ENG

  13. Gómez, J., Molina-Solana, M.: Towards self-adaptive building energy control in smart grids. In: NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning. Vancouver, Canada (2019). https://www.climatechange.ai/NeurIPS2019_workshop.html

  14. Governo Português: Plano nacional de energia e clima 2021–2030 (PNEC 2030) (2020). https://apambiente.pt/_zdata/Alteracoes_Climaticas/Mitigacao/PNEC/PNEC PT_Template Final 2019 30122019.pdf

  15. Joutz, F.L., Maddala, G.S., Trost, R.P.: An integrated bayesian vector auto regression and error correction model for forecasting electricity consumption and prices. J. Forecast. 14(3), 287–310 (1995). https://doi.org/10.1002/for.3980140310

    Article  Google Scholar 

  16. Karim, S.A.A., Alwi, S.A.: Electricity load forecasting in UTP using moving averages and exponential smoothing techniques. Appl. Math. Sci. 7, 4003–4014 (2013). https://doi.org/10.12988/ams.2013.33149

  17. Kascha, C.: A comparison of estimation methods for vector autoregressive moving-average models. Econ. Rev. 31(3), 297–324 (2012). https://doi.org/10.1080/07474938.2011.607343

    Article  MathSciNet  Google Scholar 

  18. Lee, D., Cheng, C.C.: Energy savings by energy management systems: a review. Renew. Sustain. Energy Rev. 56, 760–777 (2016). https://doi.org/10.1016/j.rser.2015.11.067

    Article  Google Scholar 

  19. Lee, W.J., Hong, J.: A hybrid dynamic and fuzzy time series model for mid-term power load forecasting. Int. J. Electric. Power Energy Syst. 64, 1057–1062 (2015). https://doi.org/10.1016/j.ijepes.2014.08.006

    Article  Google Scholar 

  20. Li, K., Hu, C., Liu, G., Xue, W.: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy Build. 108, 106–113 (2015). https://doi.org/10.1016/j.enbuild.2015.09.002

    Article  Google Scholar 

  21. Liu, Z., et al.: Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction. Energy Explor. Exploit. 37(4), 1426–1451 (2019). https://doi.org/10.1177/0144598718822400

    Article  Google Scholar 

  22. Monfet, D., Corsi, M., Choinière, D., Arkhipova, E.: Development of an energy prediction tool for commercial buildings using case-based reasoning. Energy Build. 81, 152–160 (2014). https://doi.org/10.1016/j.enbuild.2014.06.017

    Article  Google Scholar 

  23. Monteiro, J., Cardoso, P.J.S., Serra, R., Fernandes, L.: Evaluation of the human factor in the scheduling of smart appliances in smart grids. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014. LNCS, vol. 8515, pp. 537–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07446-7_52

    Chapter  Google Scholar 

  24. Monteiro, J., Eduardo, J., Cardoso, P.J.S., Ao, J.S.: A distributed load scheduling mechanism for micro grids. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE (2014). https://doi.org/10.1109/smartgridcomm.2014.7007659

  25. Nie, H., Liu, G., Liu, X., Wang, Y.: Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Procedia 16, 1455–1460 (2012). https://doi.org/10.1016/j.egypro.2012.01.229

    Article  Google Scholar 

  26. Paolella, M.S.: Linear Models and Time-Series Analysis: Regression. ARMA and GARCH. John Wiley & Sons, ANOVA (2018)

    Book  Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Rokach, L.: Ensemble Learning. WSPC (2019). https://www.ebook.de/de/product/35671842/lior_rokach_ensemble_learning.html

  29. Sadaei, H.J., Enayatifar, R., Abdullah, A.H., Gani, A.: Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int. J. Electric. Power Energy Syst. 62, 118–129 (2014). https://doi.org/10.1016/j.ijepes.2014.04.026

    Article  Google Scholar 

  30. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009). https://doi.org/10.1109/MCI.2009.932254

    Article  Google Scholar 

  31. Song, H., Qin, A.K., Salim, F.D.: Evolutionary multi-objective ensemble learning for multivariate electricity consumption prediction. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018). https://doi.org/10.1109/ijcnn.2018.8489261

  32. Taylor, J.W.: Triple seasonal methods for short-term electricity demand forecasting. Eur. J. Oper. Res. 204(1), 139–152 (2010). https://doi.org/10.1016/j.ejor.2009.10.003

    Article  MATH  Google Scholar 

  33. Tso, G.: A study of domestic energy usage patterns in Hong Kong. Energy 28(15), 1671–1682 (2003). https://doi.org/10.1016/s0360-5442(03)00153-1

    Article  Google Scholar 

  34. Tso, G.K., Yau, K.K.: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9), 1761–1768 (2007). https://doi.org/10.1016/j.energy.2006.11.010

    Article  Google Scholar 

  35. Vu, K.M.: The ARIMA and VARIMA time series: their modelings. AuLac Technologies Inc., Analyses and Applications (2007)

    Google Scholar 

  36. Wahid, F., Kim, D.: A prediction approach for demand analysis of energy consumption using k-nearest neighbor in residential buildings. Int. J. Smart Home 10(2), 97–108 (2016). https://doi.org/10.14257/ijsh.2016.10.2.10

  37. Wang, X., Meng, M.: A hybrid neural network and ARIMA model for energy consumption forecasting. J. Comput. 7(5) (2012). https://doi.org/10.4304/jcp.7.5.1184-1190

  38. Wang, Z., Srinivasan, R.S.: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 75, 796–808 (2017). https://doi.org/10.1016/j.rser.2016.10.079

    Article  Google Scholar 

  39. Zhang, Y., Wang, J.: Short-term load forecasting based on hybrid strategy using warm-start gradient tree boosting. J. Renew. Sustain. Energy 12(6) (2020). https://doi.org/10.1063/5.0015220

  40. Zia, M.F., Elbouchikhi, E., Benbouzid, M.: Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl. Energy 222, 1033–1055 (2018). https://doi.org/10.1016/j.apenergy.2018.04.103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. S. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardoso, P.J.S., Guerreiro, P.M.M., Monteiro, J., Pedro, A.S., Rodrigues, J.M.F. (2021). Warm-Start Meta-Ensembles for Forecasting Energy Consumption in Service Buildings. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics