Skip to main content

Statistical Parameter Estimation for Observation Error Modelling: Application to Meteor Radars

  • Chapter
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)

Abstract

Data assimilation schemes blend observational data, with limited coverage, with a short term forecast to produce an analysis, which is meant to be the best estimate of the current state of the atmosphere. Appropriately specifying observation error statistics is necessary to obtain an optimal analysis. Observation error can originate from instrument error as well as the error of representation. While representation error is most commonly associated with unresolved scales and processes, this term is often considered to include contributions from pre-processing or quality control and errors associated with the observation operator. With a focus on practical operational implementation, this chapter aims to define the components of observation error, discusses their sources and characteristics, and provides an overview of current methods for estimating observation error statistics. We highlight the implicit assumptions of these methods, as well as their shortcomings. We will detail current operational practice for diagnosing observation error and accounting for correlated observation error. Finally, we provide a practical methodology for using these diagnostics, as well as the associated innovation-based observation impact, to optimize the assimilation of meteor radar observations in the upper atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bédard, J, Buehne M (2020) A practical assimilation approach to extract smaller-scale information from observations with spatially correlated errors: an idealized study. Q J R Meteorol Soc 146 (726):468–482

    Google Scholar 

  • Bélanger PR (1974) Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica 10(3):267–275

    Article  Google Scholar 

  • Bennitt GV, Johnson HR, Weston PP, Jones J, Pottiaux E (2017) An assessment of ground-based GNSS zenith total delay observation errors and their correlations using the Met Office UKV model. Q J R Meteorol Soc 143(707):2436–2447

    Article  Google Scholar 

  • Berry T, Sauer T (2013) Adaptive ensemble Kalman filtering of non-linear systems. Tellus, Ser A: Dyn Meteorol Ocean 65(20331):1–16

    Google Scholar 

  • Bormann N, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Q J R Meteorol Soc 136(649), 1036–1050

    Google Scholar 

  • Bormann N, Bonavita M, Dragani R, Eresmaa R, Matricardi M, McNally A (2016) Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q J R Meteorol Soc 142(697):1767–1780

    Article  Google Scholar 

  • Bormann N, Collard A, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: Application to airs and IASI data. Q J R Meteorol Soc 136(649):1051–1063

    Google Scholar 

  • Bormann N, Saarinen S, Kelly G, Thépaut J-N (2003) The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon Weather Rev 131(4):706–718

    Google Scholar 

  • Bowler NE (2020) Revised GNSS-RO observation uncertainties in the Met Office NWP system. Q J R Meteorol Soc

    Google Scholar 

  • Campbell WF, Satterfield EA, Ruston B, Baker NL (2017) Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon Weather Rev 145(3):1019–1032

    Article  Google Scholar 

  • Cordoba M, Dance S, Kelly G, Nichols N, Waller J (2017) Diagnosing atmospheric motion vector observation errors for an operational high resolution data assimilation system. Q J R Meteorol Soc 143(702):333–341

    Article  Google Scholar 

  • Cotton J, Francis P, Heming J, Forsythe M, Reul N, Donlon C (2018) Assimilation of SMOS l-band wind speeds: impact on Met Office global NWP and tropical cyclone predictions. Q J R Meteorol Soc 144(711):614–629

    Article  Google Scholar 

  • Daescu DN, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012. https://doi.org/10.1002/qj.693

    Article  Google Scholar 

  • Daescu DN, Langland RH (2013) Error covariance sensitivity and impact estimation with adjoint 4D-Var: theoretical aspects and first applications to NAVDAS-AR. Q J R Meteorol Soc 139:226–241. https://doi.org/10.1002/qj.1943

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge University Press

    Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background and analysis-error statistics in observation space. Q J R Meteorol Soc 131(613):3385–3396

    Article  Google Scholar 

  • Dreano D, Tandeo P, Pulido M, Chonavel T, AIt-El-Fquih B, Hoteit I (2017) Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm. Q J R Meteorol Soc 143(705):1877–1885

    Google Scholar 

  • Eckermann SD, Ma J, Hoppel KW, Kuhl DD, Allen DR, Doyle JA, Viner KC, Ruston BC, Baker NL, Swadley SD, Whitcomb TR, Reynolds CA, Xu L (2018) High-altitude (0–100 km) global atmospheric reanalysis system: Description and application to the 2014 austral winter of the Deep Propagating Gravity-Wave Experiment (DEEPWAVE). Mon Wea Rev 146:2639–2666. https://doi.org/10.1175/MWR-D-17-0386.1

    Article  Google Scholar 

  • Eresmaa R, Letertre-Danczak J, Lupu C, Bormann N, McNally AP (2017) The assimilation of cross-track infrared sounder radiances at ECMWF. Q J R Meteorol Soc 143(709):3177–3188

    Article  Google Scholar 

  • Forget G, Wunsch C (2007) Estimated global hydrographic variability. J Phys Oceanogr 37(8):1997–2008

    Article  Google Scholar 

  • Fowler AM, Dance SL, Waller JA (2018) On the interaction of observation and prior error correlations in data assimilation. Q J R Meteorol Soc 144(710):48–62

    Article  Google Scholar 

  • Fowler AM, Simonin D, Waller JA (2020) Measuring theoretical and actual observation influence in the Met Office UKV: application to Doppler radial winds. Geophys Res Lett 47. https://doi.org/10.1029/2020GL091110

  • Frehlich R (2006) Adaptive data assimilation including the effect of spatial variations in observation error. Quart J Roy Meteor Soc 132:1225–1257. https://doi.org/10.1256/qj.05.146

    Article  Google Scholar 

  • Fritts DC, Iimura H, Lieberman R, Janches D, Singer W (2012) A conjugate study of mean winds and planetary waves employing enhanced meteor radars at Rio Grande, Argentina (53.8°S) and Juliusruh, Germany (54.6°N), J Geophys Res 117(D5):D05117. https://doi.org/10.1029/2011JD016305

  • Garand L, Heilliette S, Buehner M (2007) Interchannel error correlation associated with AIRS radiance observations: Inference and impact in data assimilation. J Appl Meteorol Climatol 46(6):714–725

    Article  Google Scholar 

  • Geer AJ (2019) Correlated observation error models for assimilating all-sky infrared radiances. Atmos Meas Tech 12(7)

    Google Scholar 

  • Geer AJ, Bauer P (2011) Observation errors in all-sky data assimilation. Q J R Meteorol Soc 137(661):2024–2037

    Article  Google Scholar 

  • Gustafsson N, Janjic T, Schraff C, Leuenberger D, Weissmann M, Reich H, Brousseau P, Montmerle T, Wattrelot E, Bučánek A, Mile M, Hamdi R, Lindskog M, Barkmeijer J, Dahlbom M, Macpherson B, Ballard S, Inverarity G, Carley J, Alexander C, Dowell D, Liu S, Ikuta Y, Fujita T (2018) Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q J R Meteorol Soc 144(713):1218–1256

    Google Scholar 

  • Harlim J, Mahdi A, Majda AJ (2014) An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models. J Comput Phys 257:782–812

    Article  Google Scholar 

  • Healy S, White A (2005) Use of discrete Fourier transforms in the 1d-var retrieval problem. Q J R Meteorol Soc: J Atmos Sci, Appl Meteorol Phys Ocean 131(605):63–72

    Article  Google Scholar 

  • Hocking W, Fuller B, Vandepeer B (2001) Real-time determination of meteor-related parameters utilizing modern digital technology. J Atmos Solar Terr Phys 63(2–3):155–169

    Article  Google Scholar 

  • Hodyss D, Nichols N (2015) The error of representation: Basic understanding. Tellus A 67(24):822–839

    Google Scholar 

  • Hodyss D, Satterfield E (2017) The treatment, estimation, and issues with representation error modelling. In: Data assimilation for atmospheric, oceanic and hydrologic applications, vol III. Springer, pp 177–194

    Google Scholar 

  • Hoffman RN, Ardizzone JV, Leidner SM, Smith DK, Atlas R (2013) Error estimates for ocean surface winds: applying Desroziers diagnostics to the cross-calibrated, multiplatform analysis of wind speed. J Atmos Oceanic Tech 30(11):2596–2603

    Article  Google Scholar 

  • Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL et al (2014) The navy global environmental model. Oceanography 27(3):116–125

    Article  Google Scholar 

  • Holdsworth DA, Reid IM, Cervera MA (2004) The Buckland Park all-sky interferometric meteor radar—description and first results. Radio Sci 39:RS5009. https://doi.org/10.1029/2003RS003014

  • Hollingsworth A, Lonnberg P (1986) The statistical structure of short-range forecast errors as determined from radiosonde data. part I: The wind field. Tellus A 38A(2):111–136

    Google Scholar 

  • Honda T, Miyoshi T, Lien G-Y, Nishizawa S, Yoshida R, Adachi SA, Terasaki K, Okamoto K, Tomita H, Bessho K (2018) Assimilating all-sky himawari-8 satellite infrared radiances: a case of typhoon Soudelor (2015). Mon Weather Rev 146(1):213–229

    Article  Google Scholar 

  • Hotta D, Kalnay E, Ota Y, Miyoshi T (2017) EFSR: Ensemble forecast sensitivity to observation error covariance. Mon Wea Rev 145:5015–5031. https://doi.org/10.1175/MWR-D-17-0122.1

    Article  Google Scholar 

  • Iimura H, Fritts DC, Janches D, Singer W, Mitchell NJ (2015) Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements. Ann Geophys 33(11):1349–1359. https://doi.org/10.5194/angeo-33-1349-2015

    Article  Google Scholar 

  • Janjić T, Bormann N, Bocquet M, Carton JA, Cohn SE, Dance SL, Losa SN, Nichols NK, Potthast R, Waller JA, Weston P (2018) On the representation error in data assimilation. Q J R Meteorol Soc 144 (713):1257–1278

    Google Scholar 

  • Jones GOL, Berkey FT, Fish CS, Hocking WK, Taylor MJ (2003) Validation of imaging Doppler interferometer winds using meteor radar. Geophys Res Lett 30:1743. https://doi.org/10.1029/2003GL017645

    Article  Google Scholar 

  • Karspeck AR (2016) An ensemble approach for the estimation of observational error illustrated for a nominal 1 global ocean model. Mon Weather Rev 144(5):1713–1728

    Article  Google Scholar 

  • Kuhl DD, Rosmond TE, Bishop CH, McLay J, Baker NL (2013) Comparison of hybrid ensemble/4dvar and 4dvar within the navdas-ar data assimilation framework. Mon Weather Rev 141(8):2740–2758

    Article  Google Scholar 

  • Lahoz BKW, Ménard R (eds) (2010) Data assimilation: Making sense of observations. Springer

    Google Scholar 

  • Lange H, Janjić T (2016) Assimilation of Mode-S EHS aircraft observations in COSMO-KENDA. Mon Weather Rev 144(5):1697–1711

    Google Scholar 

  • Liu J, Kalnay E (2008) Estimating observation impact without adjoint model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327–1335. https://doi.org/10.1002/qj.280

    Article  Google Scholar 

  • Macpherson S, Laroche S (2019) Estimation of ground-based GNSS zenith total delay temporal observation error correlations using data from the NOAA and e-gvap networks. Q J R Meteorol Soc 145(719):513–529

    Article  Google Scholar 

  • McCormack J, Hoppel K, Kuhl D, de Wit R, Stober G, Espy P, Baker N, Brown P, Fritts D, Jacobi C et al (2017) Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013. J Atmos Solar Terr Phys 154:132–166

    Article  Google Scholar 

  • McLay J, Bishop CH, Reynolds CA (2010) A local formulation of the ensemble transform (ET) analysis perturbation scheme. Weather Forecast 25(3):985–993

    Article  Google Scholar 

  • Mehra RK (1970) On the identification of variances and adaptive Kalman filtering. IEEE Trans Autom Control AC-15(2):175–184

    Google Scholar 

  • Ménard R (2016) Error covariance estimation methods based on analysis residuals: theoretical foundation and convergence properties derived from simplified observation networks. Q J R Meteorol Soc 142:257–273

    Article  Google Scholar 

  • Merchant CJ, Saux-Picart S, Waller J (2020) Bias correction and covariance parameters for optimal estimation by exploiting matched in-situ references. Remote Sens Environ 237:111590

    Google Scholar 

  • Mile M, Ben´aˇcek P, R´ozsa S (2019) The use of GNSS zenith total delays in operational arome/hungary 3d-var over a central European domain. Atmos Meas Tech 12(3)

    Google Scholar 

  • Miyoshi T, Kalnay E, Li H (2013) Estimating and including observation error correlations in data assimilation. Inverse Problems in Science and Engineering 21(3):387–398

    Article  Google Scholar 

  • Okamoto K, Sawada Y, Kunii M (2019) Comparison of assimilating all-sky and clear-sky infrared radiances from himawari-8 in a mesoscale system. Q J R Meteorol Soc 145(719):745–766

    Article  Google Scholar 

  • Oke PR, Sakov P (2008) Representation error of oceanic observations for data assimilation. J Atmos Oceanic Tech 25(6):1004–1017

    Article  Google Scholar 

  • Pinnington EM, Casella E, Dance SL, Lawless AS, Morison JI, Nichols NK, Wilkinson M, Quaife TL (2016) Investigating the role of prior and observation error correlations in improving a model forecast of forest carbon balance using four-dimensional variational data assimilation. Agric for Meteorol 228:299–314

    Article  Google Scholar 

  • Pulido M, Tandeo P, Bocquet M, Carrassi A, Lucini M (2018) Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods. Tellus A: Dyn Meteorol Ocean 70(1):1442 099

    Google Scholar 

  • Rainwater S, Bishop CH, Campbell WF (2015) The benefits of correlated observation errors for small scales. Q J R Meteorol Soc 141(693):3439–3445

    Article  Google Scholar 

  • Satterfield E, Hodyss D, Kuhl DD, Bishop CH (2017) Investigating the use of ensemble variance to predict observation error of representation. Mon Weather Rev 145(2):653–667

    Article  Google Scholar 

  • Satterfield EA, Hodyss D, Kuhl DD, Bishop CH (2018) Observation informed generalized hybrid error covariance models. Mon Weather Rev 146(11):3605–3622

    Article  Google Scholar 

  • Simonin D, Waller JA, Ballard SP, Dance SL, Nichols NK (2019) A pragmatic strategy for implementing spatially correlated observation errors in an operational system: an application to Doppler radial winds. Q J R Meteorol Soc 145(723):2772–2790

    Article  Google Scholar 

  • Spargo AJ, Reid IM, MacKinnon AD (2019) Multistatic meteor radar observations of gravity-wave–tidal interaction over southern Australia. Atmos Meas Tech 12:4791–4812. https://doi.org/10.5194/amt-12-4791-2019

  • Stewart LM, Cameron J, Dance SL, English S, Eyre JR, co-authors. Technical report, University of Reading. Mathematics reports series. Observation Error Correlations in IASI Radiance Data. 2009. http://www.reading.ac.uk/web/FILES/maths/obs_error_IASI_radiance.pdf

  • Stewart LM, Dance SL, Nichols NK (2013). Data assimilation with correlated observation errors: experiments with a 1-D shallow water model. Tellus A 65

    Google Scholar 

  • Stober G, Chau JL, Vierinen J, Jacobi C, Wilhelm S (2018) Retrieving horizontally resolved wind fields using multi-static meteor radar observations. Atmos Meas Tech 11:4891–4907. https://doi.org/10.5194/amt-11-4891-2018

    Article  Google Scholar 

  • Stober G, Baumgarten K, McCormack JP, Brown P, Czarnecki J (2019) Comparative study between ground-based observations and NAVGEM-HA reanalysis data in the MLT region. Atmos Chem Phys Discuss https://doi.org/10.5194/acp-2019-1006, in review

  • Tandeo P, Ailliot P, Bocquet M, Carrassi A, Miyoshi T, Pulido M, Zhen Y (2020) A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation. Mon Wea Rev, Accepted

    Google Scholar 

  • Ueno G, Nakamura N (2016) Bayesian estimation of observation error covariance matrix in ensemble based filters. Q J R Meteorol Soc 142:2055–2080. https://doi.org/10.1002/qj.2803

    Article  Google Scholar 

  • Valkonen T, Schyberg H, Figa-Saldana J (2017) Assimilating advanced scatterometer winds in a high-resolution limited area model over northern Europe. IEEE J Sel Top Appl Earth Obs Remote Sens 10(5):2394–2405

    Article  Google Scholar 

  • Waller JA, Dance SL, Lawless AS, Nichols NK, Eyre JR (2014) Representativity error for temperature and humidity using the Met Office high-resolution model. Q J R Meteorol Soc 140(681):1189–1197

    Article  Google Scholar 

  • Waller JA, Dance SL, Lawless AS, Nichols NK (2014) Estimating correlated observation error statistics using an ensemble transform Kalman filter. Tellus A: Dyn Meteorol Ocean 66(1):23294

    Article  Google Scholar 

  • Waller JA, Dance SL, Nichols NK (2016) Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. Q J R Meteorol Soc 142:418–431

    Article  Google Scholar 

  • Waller JA, Simonin D, Dance SL, Nichols NK, Ballard SP (2016) Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon Weather Rev 144(10):3533–3551

    Article  Google Scholar 

  • Waller JA, Ballard SP, Dance SL, Kelly G, Nichols NK, Simonin D (2016) Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sensing 8(7):581

    Article  Google Scholar 

  • Waller J, Dance S, Nichols N (2017) On diagnosing observation-error statistics with local ensemble data assimilation. Q J R Meteorol Soc 143(708):2677–2686

    Article  Google Scholar 

  • Waller JA, Garcıa-Pintado J, Mason DC, Dance SL, Nichols NK (2018) Technical note: Assessment of observation quality for data assimilation in flood models. Hydrol Earth Syst Sci 22(7):3983–3992

    Article  Google Scholar 

  • Waller JA, Bauernschubert E, Dance SL, Nichols NK, Potthast R, Simonin D (2019) Observation error statistics for Doppler radar radial wind superobservations assimilated into the DWD COSMO_KENDA system. Mon Weather Rev 147(9):3351–3364

    Article  Google Scholar 

  • Wang T, Fei J, Cheng X, Huang X, Zhong J (2018) Estimating the correlated observation-error characteristics of the chinese fengyun microwave temperature sounder and microwave humidity sounder. Adv Atmos Sci 35(11):1428–1441

    Article  Google Scholar 

  • Weston PP, Bell W, Eyre JR (2014) Accounting for correlated error in the assimilation of high-resolution sounder data. Q J R Meteorol Soc 140(685):2420–2429

    Article  Google Scholar 

  • Wilhelm S, Stober G, Chau JL (2017) A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69° N. Ann Geophys 35:893–906. https://doi.org/10.5194/angeo-35-893-2017

    Article  Google Scholar 

  • Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z (2008) Ensemble data assimilation with the NCEP global forecast system. Mon Weather Rev 136(2):463–482

    Article  Google Scholar 

  • Zhen Y, Harlim J (2015) Adaptive error covariances estimation methods for ensemble Kalman filters. J Comput Phys 294:619–638

    Article  Google Scholar 

Download references

Acknowledgements

NRL components of this research were supported by the Space Environment Exploitation (SEE) program of DARPA’s Defense Sciences Office and by the Office of Naval Research through the NRL base 6.1 and 6.2 programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Satterfield .

Editor information

Editors and Affiliations

Ethics declarations

Davis meteor radar was funded by Australian Antarctic Science project number 4445 and Syowa MF radar was funded by the National Institute of Polar Research (NIRP); Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (JSPS) KAKENHI under grant 17H02969. McMurdo meteor radar was supported by Scott E. Palo and Jeffrey M. Forbes and funded by the Office of Polar Programs of the National Science Foundation, Award #1543446. Meteor radars at Esrange, Bear Lake, King Edward Point and Rothera were funded by National Environment Research Council grant NE/R001391/1, and supported by NE/R001235/1 for King Edward Point and Rothera, and by Michael Taylor for Bear Lake. Carriri and Cachoeira Paulista meteor radars were supported by R. A. Buriti, I. Paulino, P. P. Batista, C. G Targon, and V. F. Andorioli, and funded by Fundação de Amparo àpesquisa do estado de São Paulo under 00/9510-1 and Conselho Nacional de Desenvolvimento Cientifico e Tecnológic (CNPQ) under grant PRONEX 76.97.1079.00. Buckland Park meteor radar was supported by Iain Reid and supported by the University of Adelaide and ATRAD Pty Ltd. King Sejong Island meteor radar was supported by Yongha Kim and Jeong-Han Kim, Korea Polar Research Institute (KOPRI). Eureka meteor radar and Saskatoon MF radar were supported by Alan Manson. Svalbard meteor radar was funded by University of Tromsø and NIPR. Andenes and Juliusruh meteor radars were supported by Jorge Chau and Collm meteor radar was supported by Deutsches Forchungsgemeinschaft (DFG), grant JA 836/38-1 (NOSTHEM). The operation of SAAMER in Tierra del Fuego is support by Diego Janches and NASA’s SSO program and NESC assessment TI-17-01204. Trondheim meteor radar was supported by Robert Hibbins, Research Council of Norway/CoE under contract 223252/F50. Mohe, Beijing, and Wuhan meteor radars were supported by You Yu, and funded by Solar-Terrestrial Environment Research Network (STERN) of Chinese Academy of Sciences and Chinese Meridian Project (CMP), with data archives in the Geophysics Center, National Earth System Science Data Center at Beijing National Observatory of Space Environment (BNOSE) and in the CMP data center. Mengcheng meteor radar wassupported by Xianghui Xue, and National Natural Science Foundation of China (41904135): B-type Strategic Priority of CAS Grant XDB41000000 and National Space Science Data Center, National Science & Technology Infrastructure of China.Kunming meteor radar was supported by National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Satterfield, E.A. et al. (2022). Statistical Parameter Estimation for Observation Error Modelling: Application to Meteor Radars. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer, Cham. https://doi.org/10.1007/978-3-030-77722-7_8

Download citation

Publish with us

Policies and ethics