Skip to main content

Graphene-Based Nanocomposites for Photocatalytic Applications: Emphasis on Environmental Remediation

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Graphene is one of the most promising and potential materials in the field of nanotechnology due to its high specific surface area, unique planar structure, better conductivity and extraordinary chemical stability. It is considered as an extremely potential material for development of various nanocomposites for enormous applications. The optical and electrical properties of graphene are enhanced by preparation of its composites with inorganic nanomaterials, polymers or using functionalized graphene such as graphene oxide and reduced graphene oxide. Superior and controllable optical properties of graphene-based nanocomposites make them excellent photocatalysts. Nanocomposites based on graphene exhibit suppressed electron–hole pair recombination rates and diminish energy gaps due to valence band-level and conduction band-level modifications, leading to the better adsorption of light radiation and enhancement in the photocatalytic performance of nanocomposites. This chapter will present an overview of state-of-the-art graphene as well as functionalized graphene-based nanocomposites and their photocatalytic activity for degradation of organic pollutants. In this chapter, various strategies will be demonstrated to synthesize graphene-based nanocomposites. The effect of various components such as inorganic nanoparticles, polymeric materials and graphene analogue on photocatalytic activity of nanocomposites will be reported. The goal of this study is to provide the latest and advance analysis in the area of developing nanotechnology for photocatalytic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zheng D, Hu H, Liu X, Hu S (2015) Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 20:383–405

    Article  CAS  Google Scholar 

  3. Syama S, Mohanan PV (2019) Comprehensive application of graphene: emphasis on biomedical concerns. Nano Micro Lett 11:6

    Article  CAS  Google Scholar 

  4. Mahmoudi T, Wang Y, Hahn Y-B (2018) Graphene and its derivatives for solar cells application. Nano Energy 47:51–56

    Article  CAS  Google Scholar 

  5. Díez-Pascual AM, Luceño Sánchez JA, Peña Capilla R, García Díaz P (2018) Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10:217

    Article  PubMed Central  CAS  Google Scholar 

  6. Li X, Yu J, Wageh S, Al‐Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640

    Google Scholar 

  7. Zhang S, Li B, Wang X, Zhao G, Hu B, Lu Z, Wen T, Chen J, Wang X (2020) Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem Eng J 390:124642

    Google Scholar 

  8. Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M (2020) Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. Mol Catal 484:110758

    Google Scholar 

  9. Prasad C, Liu Q, Tang H, Yuvaraja G, Long J, Rammohan A, Zyryanov GV (2020) An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications. J Mol Liq 297:111826

    Google Scholar 

  10. Xiang Q, Yu J (2013) Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 4:753

    Article  CAS  PubMed  Google Scholar 

  11. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and grapheme. J Am Chem Soc 128(24):7720–7721

    Article  CAS  PubMed  Google Scholar 

  12. Juang Z-Y, Wu C-Y, Lo C-W, Chen W-Y, Huang C-F, Hwang J-C, Chen F-R, Leou K-C, Tsai C-H (2009) Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8):2026–2031

    Google Scholar 

  13. Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Mildred Dresselhaus S, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  CAS  PubMed  Google Scholar 

  14. Wu T, Jiang Y, Zhang X (2015) The synthesis of CVD single crystal graphene growth on copper substrate. J Funct Mater 46:16037–16043

    CAS  Google Scholar 

  15. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  PubMed  Google Scholar 

  16. Xin GQ, Hwang W, Kim N, Cho SM, Chae H (2010) A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology 21(40)

    Google Scholar 

  17. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8:2012

    Article  CAS  PubMed  Google Scholar 

  18. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872

    Article  CAS  PubMed  Google Scholar 

  19. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472

    Google Scholar 

  20. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Eur J Inorg Chem 31(2):1481–1487

    CAS  Google Scholar 

  21. Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  22. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:480

    Article  CAS  Google Scholar 

  23. Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81:826–834

    Article  CAS  Google Scholar 

  24. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469

    Article  CAS  Google Scholar 

  25. Bezerra de Araujo CM, Filipe Oliveira do Nascimento G, Rodrigues Bezerra da Costa G, Santos da Silva K, Salgueiro Baptisttella AM, Ghislandi MG, Alves da Motta Sobrinho M (2019) Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method. Chem Eng Commun 206(11):1375–1387

    Google Scholar 

  26. Singh RK, Kumar R, Sing DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6:64993

    Article  CAS  Google Scholar 

  27. Alkhouzaam A, Qiblawey H, Khraisheh M, Atieh M, Al-Ghouti M (2020) Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram Int 46:23997

    Article  CAS  Google Scholar 

  28. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6

    Google Scholar 

  29. Gui D, Liu C, Chen F, Liu J (2014) Appl Surf Sci 307:172

    Article  CAS  Google Scholar 

  30. Xu G, Jiang F, Ren Z, Yang L (2015) Ceram Int 41:10680

    Article  CAS  Google Scholar 

  31. He HY (2015) Mater Sci Semicond Process 31:200

    Article  CAS  Google Scholar 

  32. Durmus Z, Kurt BZ, Durmus A (2019) Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. Chem Select 4:271

    CAS  Google Scholar 

  33. Wang CC, Shieu FS, Shih HC (2020) Enhanced photodegradation by RGO/ZnO core-shell nanostructures. J Environ Chem Eng 8:103589

    Google Scholar 

  34. Li Y, Wang D, Li W, He Y (2015) J Alloys Compd 648:942

    Article  CAS  Google Scholar 

  35. Zhao X, Zhang J, Zhang J, Gong C, Gu X, Ma Z, Zhou J, Yu L, Zhang Z (2015) Construction of spongy antimony-doped tin oxide/graphene nanocomposites using commercially available products and its excellent electrochemical performance. J Power Sources 294:223

    Google Scholar 

  36. Li N, Liu G, Zhen C, Li F, Zhang LL, Cheng HM (2011) Adv Funct Mater 21:1717

    Article  CAS  Google Scholar 

  37. Bhirud A, Sathaye S, Waichal R, Park C, Jand Kale B (2015) In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J Mater Chem A 3:17050

    Google Scholar 

  38. Anand K, Singh O, Singh RC (2013) Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties. Appl Phys A 116(3)

    Google Scholar 

  39. Rattan S, Kumar S, Goswamy JK (2020) In-situ one pot synthesis of graphene-ZnO nanohybrid and its application to UV light detection. Mater Res Express 7:015058

    Google Scholar 

  40. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania−graphene nanocomposites. J Phys Chem C 113:19812

    Google Scholar 

  41. He R, Lou Z, Gui J, Tang B, Xu D (2020) Room-temperature synthesis of BiOI/graphene oxide foam composite for phenol removal under visible light. Appl Surface Sci 504:144370

    Google Scholar 

  42. Sang Y, Zhao Z, Tian J, Hao P, Jiang H, Liu H, Claverie JP (2014) Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small 10:3775

    Article  CAS  PubMed  Google Scholar 

  43. Wojtoniszak M, Zielinska B, Chen XC, Kalenczuk RJ, Borowiak-Palen E (2012) J Mater Sci 47(7):3185

    Article  CAS  Google Scholar 

  44. Zhang XY, Li HP, Cui XL, Lin YH (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801

    Google Scholar 

  45. Shi M, Shen J, Ma H, Li Z, Lu X, Li N, Ye M (2012) Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids Surf A Physicochemical Eng Aspects 405:30

    Article  CAS  Google Scholar 

  46. Liu Y, Yu Z, Peng Y, Shao L, Li X, Zeng H (2020) A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane. Chem Phys Lett 749:137424

    Google Scholar 

  47. Atchudan R, Nesakumar T, Edison JI, Perumal S, Karthikeyan D, Lee YR (2016) Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B Biol 162:500

    Article  CAS  Google Scholar 

  48. Moussa H, Girot E, Mozet K, Alem H, Medjahdi G, Schneider R (2016) ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B Environ 185:11

    Article  CAS  Google Scholar 

  49. Lv H, Shen X, Ji Z, Qiu D, Zhu G, Bi Y (2013) Synthesis of graphene oxide-BiPO4 composites with enhanced photocatalytic properties. Appl Surface Sci 284:308

    Article  CAS  Google Scholar 

  50. Nguyen DCT, Yeon Cho K, Won-Chun OH (2017) Synthesis of mesoporous SiO2/Cu2O–graphene nanocomposites and their highly efficient photocatalytic performance for dye pollutants. RSC Adv 7:29284

    Article  CAS  Google Scholar 

  51. Ameen S, Seo HK, Akhtar MS, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220

    Article  CAS  Google Scholar 

  52. Mousumi Mitra M, Ahamed ST, Ghosh A, Mondal A, Kargupta K, Ganguly S, Banerjee D (2019) Polyaniline/reduced graphene oxide composite-enhanced visible light-driven photocatalytic activity for the degradation of organic dyes. ACS Omega 4:1623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Oliveira HPD, Sydlik SA, Swager TM (2013) Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J Phys Chem C 117:10270

    Article  CAS  Google Scholar 

  54. Wu H, Lin S, Chen C, Liang W, Liu X, Yang HA (2016) New ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater Res Bull 83:434

    Article  CAS  Google Scholar 

  55. Zhang J, Xiong Z, Zhao XS (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634

    Article  CAS  Google Scholar 

  56. Khan F, Khan MS, Kamal S, Arshad M, Ahmad SI, Nami SAA (2020) Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. J Mater Chem C

    Google Scholar 

  57. Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19

    Article  CAS  Google Scholar 

  58. Singh P, Sharma K, Hasija V, Sharma V, Sharma S, Raizada P, Singh M, Saini AK, Bandegharaei AH, Thakur VK (2019) Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Mater Today Chem 14:100186

    Google Scholar 

  59. Khan A, Sajjad L, Shamaila S, Tian B, Chen F, Zhang J (2010) Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177:781

    Article  CAS  Google Scholar 

  60. Hayat K, Gondal MA, Khaled MM, Yamani ZH, Ahmed S (2011) Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J Hazard Mater 186:1226

    Article  CAS  PubMed  Google Scholar 

  61. Jayaraj SK, Sadishkumar V, Arun T, Thangadurai P (2018) Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: a detailed understanding of the mechanism and their antibacterial activity. Mater Sci Semicond Process 85:122

    Article  CAS  Google Scholar 

  62. Nagajyothi PC, Prabhakar Vattikuti SV, Devarayapalli KC, Yoo K, Shim J, Sreekanth TVM (2020) Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit Rev Environ Sci Technol 50(24):2617–2723

    Article  CAS  Google Scholar 

  63. Chandu B, Kurmarayuni CM, Kurapati S et al (2020) Green and economical synthesis of graphene–silver nanocomposite exhibiting excellent photocatalytic efficiency. Carbon Lett 30:225

    Article  Google Scholar 

  64. Khan ME, Khan MM, Cho MH (2015) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121

    Article  CAS  Google Scholar 

  65. Yaqoob AA, Mohd Noor NHB, Serrà A, Nasir M, Ibrahim M (2020) Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials 10:932

    Google Scholar 

  66. Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2:509

    Google Scholar 

  67. Posa VR, Annavaram V, Koduru JR, Ammireddy VR, Somala AR (2016) Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation. Korean J Chem Eng 33:456

    Article  CAS  Google Scholar 

  68. Worajittiphon P, Pingmuang K, Inceesungvorn B, Wetchakun N, Phanichphant S (2015) Enhancing the photocatalytic activity of ZnO nanoparticles for efficient rhodamine B degradation by functionalised graphene nanoplatelets. Ceram Int 41:1885

    Article  CAS  Google Scholar 

  69. Ameen S, Akhtar MS, Seo HK, Shin HS (2013) Advanced ZnO-graphene oxide nanohybrid and its photocatalytic applications. Mater Lett 100:261

    Article  CAS  Google Scholar 

  70. Qin J, Zhang X, Yang C, Cao M, Ma M, Liu R (2017) ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl Surf Sci 392:196

    Article  CAS  Google Scholar 

  71. Wu D, An T, Li G, Wang W, Cai Y, Yip HY, Zhao H, Wong PK (2015) Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide-zinc oxide composite. Appl Surf Sci 358:137

    Article  CAS  Google Scholar 

  72. Gu L, Wang J, Cheng H, Zhao Y, Liu L, Han X (2013) One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces 5(8):3085

    Article  CAS  PubMed  Google Scholar 

  73. Velasco-Hernández A, Esparza-Muñoz RA, de Moure-Flores FJ, Santos-Cruz J, Mayén-Hernández SA (2020) Synthesis and characterization of graphene oxide—TiO2 thin films by sol-gel for photocatalytic applications. Mater Sci Semicond Process 114:105082

    Google Scholar 

  74. Karaolia P, Michael-Kordatou I, Hapeshi E, Drosou C, Bertakis Y, Christofilos D, Armatas GS, Sygellou L, Schwartz T, Xekoukoulotakis NP, Fatta-Kassinos D (2018) Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl Catal B Environ 224:10–824

    Article  CAS  Google Scholar 

  75. Teo PS, Pandikumar A, Lim HN, Huang NM, Chia CH (2014) Magnetically separable reduced graphene oxide/iron oxide nanocomposite materials for environmental remediation Catal. Sci Technol. https://doi.org/10.1039/C4CY00806E

    Article  Google Scholar 

  76. Benjwal P, Kumar M, Chamoli P, Kamal KK (2015) Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(III) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv 5:73249

    Article  CAS  Google Scholar 

  77. Nuengmatcha P, Porrawatkul P, Chanthai S, Sricharoen P, Limchoowong N (2019) Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. J Environ Chem Eng 7(6):103438

    Google Scholar 

  78. Zhang L, Hu X, Zhu L, Jin X, Feng C (2019) Water-dispersible ZnO/COFe2O4/graphene photocatalyst and their high-performance in water treatment. Fullerenes Nanotubes Carbon Nanostruct 27(11):873–877

    Article  CAS  Google Scholar 

  79. Wei Y, Liang J, Yao Y et al (2019) Synthesis of visible light-driven graphene based ZnFe mixed metal oxide for efficient degradation of tetracycline. J Mater Sci Mater Electron 30:8931

    Article  CAS  Google Scholar 

  80. Chandel N, Sharma K, Sudhaik A, Raizada P, Hosseini-Bandegharaei A, Thakur VK, Singh P (2020) Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arab J Chem 13:4324

    Article  CAS  Google Scholar 

  81. Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N (20145) Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl Surface Sci 353:865

    Google Scholar 

  82. Khalid NR, Ahmed E, Ahmad M, Niaz NA, Ramzan M, Shakil M, Iqbal T, Majid A (2016) Microwave-assisted synthesis of Ag-TiO2/graphene composite for hydrogen production under visible light irradiation. Ceram Int 42:8257

    Article  CAS  Google Scholar 

  83. Dutta S, Sahoo R, Ray C, Sarkar S, Jana J, Negishi Y, Pal T (2015) Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis. Dalton Trans 44:193

    Article  CAS  PubMed  Google Scholar 

  84. Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP (2016) Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl Catal B Environ 181:352

    Article  CAS  Google Scholar 

  85. Wang H, Li G, Fakhri A (2020) Fabrication and structural of the Ag2S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. J Photochem Photobiol B Biol 207:111882

    Google Scholar 

  86. Dhanasekar M, Jenefer V, Nambiar RB, Babu SG, Selvam SP, Neppolian B, Bhat SV (2018) Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater Res Bull 97:238

    Article  CAS  Google Scholar 

  87. Hong Y, Bao S, Xiang X, Wang X (2020) Concentration-dominated orientation of phenyl groups at the polystyrene/graphene interface. ACS Macro Lett 9(6):889

    Article  CAS  PubMed  Google Scholar 

  88. Divakaran N, Kale MB, Senthil T, Mubarak S, Dhamodharan D, Wu L, Wang J (2020) Novel unsaturated polyester nanocomposites via hybrid 3D POSS-modified graphene oxide reinforcement: electro-technical application perspective. Nanomaterials 10:260

    Article  CAS  PubMed Central  Google Scholar 

  89. Ussia M, Bruno E, Spina E, Vitalini D, Pellegrino G, Ruffino F, Privitera V, Carroccio SC (2018) Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Sci Rep 8:5001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hussien MSA, Mohammed MI, Yahia IS (2020) Multifunctional applications of graphene-doped PMMA nanocomposite membranes for environmental photocatalytic. J Inorg Organomet Polym 30:2708

    Article  CAS  Google Scholar 

  91. Sundaran SP, Reshmi CR, Sagitha P, Athiyanathil S (2020) Polyurethane nanofibrous membranes decorated with reduced graphene oxide-TiO2 for photocatalytic templates in water purification. J Mater Sci 55:5892

    Google Scholar 

  92. Zhang D, Dai F, Zhang P, An Z, Zhao Y, Chen L (2019) The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Mater Sci Eng C 96:684–692

    Article  CAS  Google Scholar 

  93. Moztahida M, Lee DS (2020) Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: optimization using response surface methodology. J Hazard Mater 400:123314

    Google Scholar 

  94. Ni X, Zhang J, Hong L, Yang C, Li Y (2019) Reduced graphene oxide@ceria nanocomposite-coated polymer microspheres as a highly active photocatalyst. Colloids Surfaces A Physicochemical Eng Aspects 567:161

    Article  CAS  Google Scholar 

  95. Moon YE, Jung G, Yun J, Kim H (2013) Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater Sci Eng B 178:1097

    Article  CAS  Google Scholar 

  96. Almeida NA, Martins PM, Teixeira S et al (2016) TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. J Mater Sci 51:6974

    Article  CAS  Google Scholar 

  97. Zhang J, Ding E, Xu S, Li Z, Fakhri A, Gupta VK (2020) Production of metal oxides nanoparticles based on poly-alanine/chitosan/reduced graphene oxide for photocatalysis degradation, anti-pathogenic bacterial and antioxidant studies. Int J Biol Macromol 164:1584

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Z, Zhai S, Wang M, Ji H, He L, Ye C, Wang C, Fang S, Zhang H (2016) Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. J Alloys Compd 659:101

    Article  CAS  Google Scholar 

  99. Samuel MS, Suman S, Venkateshkannan, Selvarajan E, Mathimani T, Pugazhendhi A (2020) Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J Photochem Photobiol B Biol 204:111809

    Google Scholar 

  100. Jiao T, Zhao H, Zhou J, Zhang Q, Luo X, Hu J, Peng Q, Yan X (2015) Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustain Chem Eng 3(12):3130

    Article  CAS  Google Scholar 

  101. Ahmad N, Sultana S, Azam A, Sabir S, Khan MZ (2017) Novel bio-nanocomposite materials for enhanced biodegradability and photocatalytic activity. New J Chem 41:10198

    Article  CAS  Google Scholar 

  102. Mitra M, Ghosh A, Mondal A, Kargupta K, Ganguly S, Banerjee D (2017) Facile synthesis of aluminium doped zinc oxide polyaniline hybrids for photoluminescence and enhanced visible light assisted photo-degradation of organic contaminants. Appl Surf Sci 402:418

    Article  CAS  Google Scholar 

  103. Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119–120:197–206

    Article  CAS  Google Scholar 

  104. Ghaly HA, El-Kalliny AS, Gad-Allah TA, Abd El-Sattar NE, Souaya ER (2017) Stable plasmonic Ag/AgCl-polyaniline photoactive composite for degradation of organic contaminants under solar light. RSC Adv 7:12726

    Article  CAS  Google Scholar 

  105. Thekkayil R, Gopinath P, Jon H (2014) Enhanced photocatalytic activity of polyaniline through noncovalent functionalization with graphite oxide. Mater Res Express 1:045602

    Google Scholar 

  106. Miao J, Xie A, Li S, Huang F, Cao J, Shen Y (2016) A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Appl Surf Sci 360:594

    Article  CAS  Google Scholar 

  107. Ahuja P, Ujjain SK, Arora I, Samim M (2018) Hierarchically grown NiO-decorated polyaniline-reduced graphene oxide composite for ultrafast sunlight-driven photocatalysis. ACS Omega 3:7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu H, Lin S, Chen C, Liang W, Liu X, Yang H (2016) A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater Res Bull 83:434

    Article  CAS  Google Scholar 

  109. Biswas MRUD, Cho KY, Na JD, Oh W-C (2019) Highly electro-conductive graphene-decorated PANI-BiVO4 polymer-semiconductor nanocomposite with outstanding photocatalytic performance. Mater Sci Eng B 251:114469

    Google Scholar 

  110. Zhao J, Biswas MRUD, Oh WC (2019) A novel BiVO4-GO-TiO2-PANI composite for upgraded photocatalytic performance under visible light and its non-toxicity. Environ Sci Pollut Res 26:11888

    Article  CAS  Google Scholar 

  111. Zhang F, Zhang Y, Zhang G, Yang Z, Dionysiou DD, Zhu A (2018) Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. Appl Catal B Environ 236:53

    Article  CAS  Google Scholar 

  112. Ahmad N, Sultana S, Sabir S, Zain Khan MZ (2020) Exploring the visible light driven photocatalysis by reduced graphene oxide supported Ppy/CdS nanocomposites for the degradation of organic pollutants. J Photochem Photobiol A Chem 386:112129

    Google Scholar 

  113. Zhang L, Jamal R, Zhao Q, Wang M, Abdiryim T (2015) Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/ MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Res Lett 10:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun M, Li W, Sun S, He J, Zhang Q, Shi Y (2015) One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity. Mater Res Bull 61:280–286

    Article  CAS  Google Scholar 

  115. Liu S, Sun H, Suvorova A, Wang S (2013) One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chem Eng J 229:533–539. ISSN 1385–8947

    Google Scholar 

  116. Durmus Z, Kurt BZ, Durmus A (2019) Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. Chem Select 4(1):271–278

    CAS  Google Scholar 

  117. Rabieh S, Nassimi K, Bagheri M (2016) Synthesis of hierarchical ZnO–reduced graphene oxide nanocomposites with enhanced adsorption–photocatalytic performance. Mater Lett 162:28

    Article  CAS  Google Scholar 

  118. Azarang M, Shuhaimi A, Yousefi R, Jahromi SP (2015) One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Adv 528:21888

    Article  CAS  Google Scholar 

  119. Guo S, Zhang G, Guo Y, Yu JC (2013) Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60:437

    Article  CAS  Google Scholar 

  120. Feng Y, Yao T, Yang Y, Zheng F, Chen P, Wu J, Xin B (2018) One-step preparation of Fe2O3/reduced graphene oxide aerogel as heterogeneous Fenton-like catalyst for enhanced photo-degradation of organic dyes. Chem Select 3:9062

    CAS  Google Scholar 

  121. Aawani E, Memarian N, Dizaji HR (2019) Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J Phys Chem Solids 125:8

    Article  CAS  Google Scholar 

  122. Ma N, Chen A, Bian Z, Yang Y, Wang H (2019) In situ synthesis of a cadmium sulfide/reduced graphene oxide/bismuth Z-scheme oxyiodide system for enhanced photocatalytic performance in chlorinated paraben degradation. Chem Eng J 359:530

    Article  CAS  Google Scholar 

  123. Fakhri A, Naji M (2017) Degradation photocatalysis of tetrodotoxin as a poison by gold doped PdO nanoparticles supported on reduced graphene oxide nanocomposites and evaluation of its antibacterial activity. J Photochem Photobiol B Biol 167:58

    Article  CAS  Google Scholar 

  124. Wang X, Zhang J, Zhang K, Zou W, Chen S (2016) Facile fabrication of reduced graphene oxide/CuI/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv 6:44851–44858

    Article  CAS  Google Scholar 

  125. Feng J, Hou Y, Wang X, Quan W, Zhang J, Wang Y, Li L (2016) In-depth study on adsorption and photocatalytic performance of novel reduced graphene oxide-ZnFe2O4-polyaniline composites. J Alloys Compd 681:157–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, H., Rawat, D.S., Garg, S. (2022). Graphene-Based Nanocomposites for Photocatalytic Applications: Emphasis on Environmental Remediation. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_4

Download citation

Publish with us

Policies and ethics