Skip to main content

Immobilization of Photocatalytic Material on the Suitable Substrate

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In the world of increasing industrialization and global population, environmental pollution has continued to rise over last few decade. Photocatalysis came forward as capable method in removal of various recalcitrant pollutants from atmosphere. The nano-photocatalytic semiconductors are majorly used in the form of slurry, and removal of these nano-photocatalytic materials turns out to be quite challenging and costly. Therefore, to resolve the problem of recollection of material, voluminous strategies have been executed for immobilising nano-photocatalyst on various substrates including carbon-based compounds, glass, zeolites, polymers, clay and ceramics and various natural fibres. The strategies including sol-gel, dip coating, polymer-assisted hydrothermal discharge, photo-etching, electrophoretic deposition, cold plasma discharge (CPD), RF magnetron sputtering and spray pyrolysis are discussed in this chapter. At last, characterization techniques used for studying various properties of immobilized catalyst are discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. ECL 16:367–388

    CAS  Google Scholar 

  2. Bratby J (2016) Coagulation and flocculation in water and wastewater treatment. IWA publishing

    Google Scholar 

  3. Cinperi NC, Ozturk E, Yigit NO, Kitis M (2019) Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J Cleaner Prod 223:837–848

    Google Scholar 

  4. Kim J, Chung Y, Shin D et al (2003) Chlorination by-products in surface water treatment process. Desalination 151:1–9

    Article  CAS  Google Scholar 

  5. Sharma K, Dutta V, Sharma S et al (2019) Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review

    Google Scholar 

  6. Garg S, Yadav M, Chandra A, Hernadi K (2019) A review on BiOX (X= Cl, Br and I) nano-/microstructures for their photocatalytic applications. J Nanosci Nanotechnol 19:280–294. https://doi.org/10.1166/jnn.2019.15771

    Article  CAS  PubMed  Google Scholar 

  7. Deepthi K, Suresh P, Umabala AM, Rao AVP (2017) Enhanced visible light assisted photo catalytic activity of Bi2MO6 (M= Mo, W) in presence of H2O2 for degradation of Rhodamine-B and methylene blue. Int J Appl Chem 13:773–785

    Google Scholar 

  8. Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761–1769

    Article  CAS  Google Scholar 

  9. Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A Gen 555:47–74

    Google Scholar 

  10. Singh S, Sharma R, Khanuja M (2018) A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X= Cl, Br, I, F) nanostructures. Korean J Chem Eng 35:1955–1968

    Google Scholar 

  11. Pare B, Singh P, Jonnalgadda SB (2009) Degradation and mineralization of victoria blue B dye in a slurry photoreactor using advanced oxidation process

    Google Scholar 

  12. Pare B, Singh P, Jonnalgadda SB (2009) Artificial light assisted photocatalytic degradation of lissamine fast yellow dye in ZnO suspension in a slurry batch reactor

    Google Scholar 

  13. Reddy CV, Reddy KR, Harish VVN et al (2020) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 45:7656–7679. https://doi.org/10.1016/j.ijhydene.2019.02.144

    Article  CAS  Google Scholar 

  14. Yadav M, Garg S, Chandra A, Hernadi K %J CI (2019) Immobilization of green BiOX (X= Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process 45:17715–17722

    Google Scholar 

  15. Jung H, Min Cho K, Hwan Kim K et al (2018) Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustain Chem Eng 6:5718–5724. https://doi.org/10.1021/acssuschemeng.8b00002

    Article  CAS  Google Scholar 

  16. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153:389–394. https://doi.org/10.1016/j.jhazmat.2007.08.070

    Article  CAS  PubMed  Google Scholar 

  17. Shu Y, Aikebaier T, Quan X et al (2014) Selective catalytic reaction of NOx with NH3 over Ce-Fe/TiO2-loaded wire-mesh honeycomb: resistance to SO2 poisoning. Appl Catal B 150–151:630–635. https://doi.org/10.1016/j.apcatb.2014.01.008

    Article  CAS  Google Scholar 

  18. Serpone N, Borgarello E, Harris R et al (1986) Photocatalysis over TiO2 supported on a glass substrate. Solar Energy Mater 14:121–127. https://doi.org/10.1016/0165-1633(86)90070-5

    Article  CAS  Google Scholar 

  19. Zhang S, Zhang J, Sun J, Tang Z (2020) Capillary microphotoreactor packed with TiO2-coated glass beads: an efficient tool for photocatalytic reaction. Chem Eng Process Process Intensification 147: https://doi.org/10.1016/j.cep.2019.107746

    Article  CAS  Google Scholar 

  20. Wang ZS, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  CAS  Google Scholar 

  21. Yang J, Wang X, Zhao X et al (2015) Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J Phys Chem C 119:3068–3078

    Google Scholar 

  22. Etaiw SEH, Marie H (2018) Ultrasonic synthesis of 1D-Zn (II) and La (III) supramolecular coordination polymers nanoparticles, fluorescence, sensing and photocatalytic property. J Photochem Photobiol A 364:478–491

    Article  CAS  Google Scholar 

  23. Wang J, Tang L, Zeng G, et al (2017) Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5:1062–1072

    Google Scholar 

  24. Venkatadri R, Peters RW (1993) Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton’s reagent, and titanium dioxide-assisted photocatalysis. Hazard Waste Hazard Mater 10:107–149

    Google Scholar 

  25. Yin HY, Wang L, Sun YF et al (2011) Enhancement of crystalization and photocatalysis of Bi2MoO6 nanoplates by SDS assisted hydrothermal method. In: Advanced materials research. Trans Tech Publ, pp 2091–2097

    Google Scholar 

  26. Zhang G, Song IY, Ahn KH et al (2011) Free radical polymerization initiated and controlled by visible light photocatalysis at ambient temperature. Macromolecules 44:7594–7599

    Article  CAS  Google Scholar 

  27. Tyagi H, Chawla H, Bhandari H, Garg S (2021) Recent-enhancements in visible-light photocatalytic degradation of organochlorines pesticides: a review, materials today: proceedings. https://doi.org/10.1016/j.matpr.2020.12.1036

  28. Singh (2021) Magnetic hybrid nanoparticles for drug delivery - Google Scholar, (n.d.). https://scholar.google.com/scholar?cluster=6557395070724245148&hl=en&oi=scholarr (accessed June 28, 2021)

  29. Chawla H, Chandra A, Ingole PP, Garg S (2021) Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M=W, Mo, Cr) for environmental remediation and clean energy production. J Ind Eng Chem

    Google Scholar 

  30. Gui M-S, Zhang W-D, Chang Y-Q, Yu Y-X (2012) One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity. Chem Eng J 197:283–288

    Google Scholar 

  31. Lei P, Wang F, Gao X et al (2012) Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J Hazard Mater 227–228:185–194. https://doi.org/10.1016/j.jhazmat.2012.05.029

    Article  CAS  PubMed  Google Scholar 

  32. Chauhan I, Aggrawal S, Chandravati Mohanty P (2015) Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review. RSC Adv 5:83036–83055

    Article  CAS  Google Scholar 

  33. Li Z, Chen F, Yuan L et al (2012) Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  34. A. Rawool S, Samanta A, Ajithkumar T et al (2020) Photocatalytic hydrogen generation and CO2 conversion using g-C3N4 decorated dendritic fibrous nanosilica: role of interfaces between silica and g-C3N4. ACS Appl Energy Mater 3:8150–8158. https://doi.org/10.1021/acsaem.0c01265

  35. Kim J, van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    Article  CAS  Google Scholar 

  36. Srikanth B, Goutham R, Badri Narayan R et al (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manage 200:60–78

    Article  CAS  Google Scholar 

  37. Pajootan E, Rahimdokht M, Arami M (2017) Carbon and CNT fabricated carbon substrates for TiO2 nanoparticles immobilization with industrial perspective of continuous photocatalytic elimination of dye molecules. J Ind Eng Chem 55:149–163. https://doi.org/10.1016/j.jiec.2017.06.039

    Article  CAS  Google Scholar 

  38. Wang H, Sun P, Cong S et al (2016) Nitrogen-doped carbon dots for “green” quantum dot solar cells. Nanoscale Res Lett 11:1–6

    Article  Google Scholar 

  39. Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272

    Article  CAS  Google Scholar 

  40. Zhang M, Shao C, Mu J et al (2012) Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J Mater Chem 22:577–584

    Google Scholar 

  41. Yadav M, Garg S, Chandra A et al (2020) Green BiOI impregnated 2-dimensional cylindrical carbon block: a promising solution for environmental remediation and easy recovery of the photocatalyst. Sep Purif Technol 240:116628

    Google Scholar 

  42. Zhu D, Zhou Q (2020) Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl Catal B Environ 268:118426

    Google Scholar 

  43. Gavrilović Tv, Jovanović DJ, Dramićanin MD (2018) Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions. In: Nanomaterials for green energy. Elsevier, pp 55–81

    Google Scholar 

  44. Qin M, Hou S, Wang LK et al (2007) Two methods for glass surface modification and their application in protein immobilization. Colloids Surf B 60:243–249. https://doi.org/10.1016/j.colsurfb.2007.06.018

    Article  CAS  Google Scholar 

  45. Vaiano V, Iervolino G (2018) Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater. J Colloid Interface Sci 518:192–199. https://doi.org/10.1016/j.jcis.2018.02.033

    Article  CAS  PubMed  Google Scholar 

  46. Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M (2007) Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. J Hazard Mater 140:257–263. https://doi.org/10.1016/j.jhazmat.2006.07.054

    Article  CAS  PubMed  Google Scholar 

  47. Nawi MA, Sabar S, Jawad AH et al (2010) Adsorption of reactive red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2-chitosan synergistic photocatalyst-adsorption bilayer system. Biochem Eng J 49:317–325. https://doi.org/10.1016/j.bej.2010.01.006

    Article  CAS  Google Scholar 

  48. Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457. https://doi.org/10.1016/j.jhazmat.2009.02.052

    Article  CAS  PubMed  Google Scholar 

  49. Jansson I, Kobayashi K, Hori H et al (2017) Decahedral anatase titania particles immobilized on zeolitic materials for photocatalytic degradation of VOC. Catal Today 287:22–29. https://doi.org/10.1016/j.cattod.2016.11.041

    Article  CAS  Google Scholar 

  50. Salaeh S, Juretic Perisic D, Biosic M et al (2016) Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem Eng J 304:289–302. https://doi.org/10.1016/j.cej.2016.06.083

    Article  CAS  Google Scholar 

  51. Yang L, Wang F, Hakki A et al (2017) The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance. Appl Surf Sci 392:687–696. https://doi.org/10.1016/j.apsusc.2016.09.023

    Article  CAS  Google Scholar 

  52. Leal Marchena C, Lerici L, Renzini S et al (2016) Synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Appl Catal B 188:23–30. https://doi.org/10.1016/j.apcatb.2016.01.064

    Article  CAS  Google Scholar 

  53. Mohamed RM, Mohamed MM (2008) Copper (II) phthalocyanines immobilized on alumina and encapsulated inside zeolite-X and their applications in photocatalytic degradation of cyanide: a comparative study. Appl Catal A 340:16–24. https://doi.org/10.1016/j.apcata.2008.01.029

    Article  CAS  Google Scholar 

  54. Liao G, He W, He Y (2019) Investigation of microstructure and photocatalytic performance of a modified zeolite supported nanocrystal TiO2 composite. Catalysts 9:502. https://doi.org/10.3390/catal9060502

    Article  CAS  Google Scholar 

  55. Paul B, Martens WN, Frost RL (2012) Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Appl Clay Sci 57:49–54. https://doi.org/10.1016/j.clay.2011.12.009

    Article  CAS  Google Scholar 

  56. Hass Caetano Lacerda E, Monteiro FC, Kloss JR, Fujiwara ST (2020) Bentonite clay modified with Nb2O5: an efficient and reused photocatalyst for the degradation of reactive textile dye. J Photochem Photobiol A 388:112084. https://doi.org/10.1016/j.jphotochem.2019.112084

  57. An T, Chen J, Li G et al (2008) Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal Today 139:69–76. https://doi.org/10.1016/j.cattod.2008.08.024

    Article  CAS  Google Scholar 

  58. Radeka M, Markov S, Lončar E et al (2014) Photocatalytic effects of TiO2 mesoporous coating immobilized on clay roofing tiles. J Eur Ceram Soc 34:127–136. https://doi.org/10.1016/j.jeurceramsoc.2013.07.010

    Article  CAS  Google Scholar 

  59. Sraw A, Kaur T, Pandey Y et al (2018) Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. J Environ Chem Eng 6:7035–7043. https://doi.org/10.1016/j.jece.2018.10.062

    Article  CAS  Google Scholar 

  60. Bel Hadjltaief H, ben Ameur S, da Costa P, et al (2018) Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Appl Clay Sci 152:148–157. https://doi.org/10.1016/j.clay.2017.11.008

  61. Yadav M, Garg S, Chandra A, Hernadi K (2019) Immobilization of green BiOX (X= Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process. Ceram Int 45:17715–17722

    Google Scholar 

  62. Fakhri A, Gupta VK, Rabizadeh H et al (2018) Preparation and characterization of WS2 decorated and immobilized on chitosan and polycaprolactone as biodegradable polymers nanofibers: photocatalysis study and antibiotic-conjugated for antibacterial evaluation. Int J Biol Macromol 120:1789–1793. https://doi.org/10.1016/j.ijbiomac.2018.09.207

    Article  CAS  PubMed  Google Scholar 

  63. Das S, Mahalingam H (2019) Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. J Environ Chem Eng 7: https://doi.org/10.1016/j.jece.2019.103289

    Article  CAS  Google Scholar 

  64. Kasanen J, Salstela J, Suvanto M, Pakkanen TT (2011) Photocatalytic degradation of methylene blue in water solution by multilayer TiO2 coating on HDPE. Appl Surf Sci 258:1738–1743. https://doi.org/10.1016/j.apsusc.2011.10.028

    Article  CAS  Google Scholar 

  65. Matsuzawa S, Maneerat C, Hayata Y et al (2008) Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase. Appl Catal B 83:39–45. https://doi.org/10.1016/j.apcatb.2008.01.036

    Article  CAS  Google Scholar 

  66. Nawi RMA, Haitham K (2014) Fabrication, characterization and application of a reusableimmobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dyeS. Appl Surf Sci 319:90–98. https://doi.org/10.1016/j.apsusc.2014.07.049

    Article  CAS  Google Scholar 

  67. Cantarella M, Sanz R, Buccheri MA et al (2016) Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A 321:1–11. https://doi.org/10.1016/j.jphotochem.2016.01.020

    Article  CAS  Google Scholar 

  68. Das S, Mahalingam H (2020) Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater. J Hazard Mater 383:121219. https://doi.org/10.1016/j.jhazmat.2019.121219

  69. Hir ZAM, Moradihamedani P, Abdullah AH, Mohamed MA (2017) Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mater Sci Semicond Process 57:157–165. https://doi.org/10.1016/j.mssp.2016.10.009

    Article  CAS  Google Scholar 

  70. Khin MM, Nair AS, Babu VJ et al (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  71. Wood D, Shaw S, Cawte T et al (2020) An overview of photocatalyst immobilization methods for air pollution remediation. Chem Eng J 391:123490

    Google Scholar 

  72. Samy M, Ibrahim MG, Gar Alalm M, Fujii M (2020) Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Purif Technol 235:116138. https://doi.org/10.1016/j.seppur.2019.116138

  73. Samy M, Ibrahim MG, Gar Alalm M, Fujii M (2020) Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Purif Technol 235: https://doi.org/10.1016/j.seppur.2019.116138

    Article  CAS  Google Scholar 

  74. Bouarioua A, Zerdaoui M (2017) Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J Environ Chem Eng 5:1565–1574. https://doi.org/10.1016/j.jece.2017.02.025

    Article  CAS  Google Scholar 

  75. Kása Z, Orbán E, Pap Z et al Innovative and cost-efficient BiOI immobilization technique on ceramic paper-total coverage and high photocatalytic activity. https://doi.org/10.3390/nano10101959

  76. Levchuk I, Guillard C, Dappozze F et al (2016) Photocatalytic activity of TiO2 films immobilized on aluminum foam by atomic layer deposition technique. J Photochem Photobiol A 328:16–23. https://doi.org/10.1016/j.jphotochem.2016.03.034

    Article  CAS  Google Scholar 

  77. Kakaei K, Esrafili MD, Ehsani A (2019) Graphene and anticorrosive properties. In: Interface science and technology. Elsevier B.V., pp 303–337

    Google Scholar 

  78. Ebnesajjad S, Landrock AH (2015) Adhesive applications and bonding processes. In: Adhesives technology handbook. Elsevier, pp 206–234

    Google Scholar 

  79. ten Elshof JE (2015) Chemical solution deposition techniques for epitaxial growth of complex oxides. In: Epitaxial growth of complex metal oxides. Elsevier, pp 69–93

    Google Scholar 

  80. Rane AV, Kanny K (2018) Manufacturing process-reinforced rubber sheet for rubber dam. In: Hydraulic rubber dam: an effective water management technology. Elsevier, pp 37–46

    Google Scholar 

  81. Zolfaghari P, Khaledian HR, Aliasgharlou N et al (2019) Facile surface modification of immobilized rutile nanoparticles by non-thermal glow discharge plasma: effect of treatment gases on photocatalytic process. Appl Surf Sci 490:266–277. https://doi.org/10.1016/j.apsusc.2019.06.077

    Article  CAS  Google Scholar 

  82. Navaneetha Pandiyaraj K, Ram Kumar MC, Arun Kumar A et al (2016) Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity. Appl Surf Sci 370:545–556. https://doi.org/10.1016/j.apsusc.2016.02.137

    Article  CAS  Google Scholar 

  83. Ebrahimi S, Bordbar-Khiabani A, Yarmand B (2020) Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability. J Alloy Compd 845: https://doi.org/10.1016/j.jallcom.2020.156219

    Article  CAS  Google Scholar 

  84. de Rancourt de Mimérand Y, Li K, Zhou C et al (2020) Functional supported ZnO/Bi2MoO6 heterojunction photocatalysts with 3D-printed fractal polymer substrates and produced by innovative plasma-based immobilization methods. ACS Appl Mater Interfaces 12:43138–43151. https://doi.org/10.1021/acsami.0c12286

  85. Li K, de Rancourt de Mimérand Y, Jin X et al (2020) Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl Nano Mater 3:2830–2845. https://doi.org/10.1021/acsanm.0c00096

  86. Stojadinović S, Radić N, Tadić N et al (2020) Enhanced ultraviolet light driven photocatalytic activity of ZnO particles incorporated by plasma electrolytic oxidation into Al2O3 coatings co-doped with Ce3+. Opt Mater 101:109768. https://doi.org/10.1016/j.optmat.2020.109768

  87. Ebrahimi S, Bordbar-Khiabani A, Yarmand B (2020) Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability. J Alloy Compd 845:156219. https://doi.org/10.1016/j.jallcom.2020.156219

  88. Chizoba Ekezie FG, Sun DW, Cheng JH (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Article  CAS  Google Scholar 

  89. Jin C, Lu Y, Tong G et al (2020) Excellent microwave absorbing properties of ZnO/ZnFe2O4/Fe core-shell microrods prepared by a rapid microwave-assisted hydrothermal-chemical vapor decomposition method. Appl Surf Sci 531:147353. https://doi.org/10.1016/j.apsusc.2020.147353

  90. Alfaro Cruz MR, Ceballos-Sanchez O, Luévano-Hipólito E, Torres-Martínez LM (2018) ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int J Hydrogen Energy 43:10301–10310. https://doi.org/10.1016/j.ijhydene.2018.04.054

    Article  CAS  Google Scholar 

  91. Mahdhi H, Djessas K, ben Ayadi Z (2018) Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature. Mater Lett 214:10–14. https://doi.org/10.1016/j.matlet.2017.11.108

  92. Lelis M, Tuckute S, Varnagiris S et al (2019) Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering. Surf Coat Technol 377:124906. https://doi.org/10.1016/j.surfcoat.2019.124906

  93. Madhuri KV (2020) Thermal protection coatings of metal oxide powders. In: Metal oxide powder technologies. Elsevier, pp 209–231

    Google Scholar 

  94. Singh J, Khan SA, Shah J et al (2017) Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl Surf Sci 422:953–961. https://doi.org/10.1016/j.apsusc.2017.06.068

    Article  CAS  Google Scholar 

  95. Wang J, Zhang Z, Wang X et al (2018) Synthesis of novel p-n heterojunction m-Bi2O4/BiOCl nanocomposite with excellent photocatalytic activity through ion-etching method. Cuihua Xuebao/Chinese J Catal 39:1792–1803. https://doi.org/10.1016/S1872-2067(18)63142-0

    Article  CAS  Google Scholar 

  96. Bo L, Liu H, Han H (2019) Photocatalytic degradation of trace carbamazepine in river water under solar irradiation. J Environ Manag 241:131–137. https://doi.org/10.1016/j.jenvman.2019.03.132

    Article  CAS  Google Scholar 

  97. Pasikhani JV, Gilani N, Pirbazari AE (2018) Improvement the wastewater purification by TiO2 nanotube arrays: the effect of etching-step on the photo-generated charge carriers and photocatalytic activity of anodic TiO2 nanotubes. Solid State Sci 84:57–74. https://doi.org/10.1016/j.solidstatesciences.2018.08.003

    Article  CAS  Google Scholar 

  98. Yin XL, Li LL, Liu ML et al (2019) MoSx/CdS nano-heterostructures accurately constructed on the defects of CdS for efficient photocatalytic H2 evolution under visible light irradiation. Chem Eng J 370:305–313. https://doi.org/10.1016/j.cej.2019.03.231

    Article  CAS  Google Scholar 

  99. Etch System—What is an Etch System? : Hitachi High-Tech GLOBAL. https://www.hitachi-hightech.com/global/products/device/semiconductor/etch.html. Accessed 17 Jan 2021

  100. Demirci S, Yurddaskal M, Dikici T, Sarıoğlu C (2018) Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances. J Hazard Mater 345:27–37. https://doi.org/10.1016/j.jhazmat.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  101. Shafei A, Sheibani S (2019) Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol–gel method. Mater Res Bull 110:198–206. https://doi.org/10.1016/j.materresbull.2018.10.035

    Article  CAS  Google Scholar 

  102. Zhang W, Liu Y, Pei X, Chen X (2017) Effects of indium doping on properties of xIn-0.1%Gd-TiO2 photocatalyst synthesized by sol-gel method. J Phys Chem Solids 104:45–51. https://doi.org/10.1016/j.jpcs.2016.12.031

    Article  CAS  Google Scholar 

  103. Mahdavi R, Ashraf Talesh SS (2017) The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrason Sonochem 39:504–510. https://doi.org/10.1016/j.ultsonch.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  104. Phin HY, Ong YT, Sin JC (2020) Effect of carbon nanotubes loading on the photocatalytic activity of zinc oxide/carbon nanotubes photocatalyst synthesized via a modified sol-gel method. J Environ Chem Eng 8: https://doi.org/10.1016/j.jece.2019.103222

    Article  CAS  Google Scholar 

  105. Kaviyarasu K, Mariappan A, Neyvasagam K et al (2017) Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf Interfaces 6:247–255. https://doi.org/10.1016/j.surfin.2016.10.002

    Article  CAS  Google Scholar 

  106. Spiridonova J, Mere A, Krunks M et al (2020) Enhanced visible and ultraviolet light-induced gas-phase photocatalytic activity of TiO2 thin films modified by increased amount of acetylacetone in precursor solution for spray pyrolysis. Catalysts 10:1011. https://doi.org/10.3390/catal10091011

    Article  CAS  Google Scholar 

  107. Abe Y, Laine RM (2020) Photocatalytic La4Ti3O12 nanoparticles fabricated by liquid-feed flame spray pyrolysis. Ceram Int 46:18656–18660. https://doi.org/10.1016/j.ceramint.2020.04.178

    Article  CAS  Google Scholar 

  108. Gao F, Xu Z, Zhao H (2020) Flame spray pyrolysis made Pt/TiO2 photocatalysts with ultralow platinum loading and high hydrogen production activity. Proc Combust Inst. https://doi.org/10.1016/j.proci.2020.06.330

    Article  Google Scholar 

  109. Dundar I, Mere A, Mikli V et al (2020) Thickness effect on photocatalytic activity of TiO2 thin films fabricated by ultrasonic spray pyrolysis. Catalysts 10:1058. https://doi.org/10.3390/catal10091058

    Article  CAS  Google Scholar 

  110. Saito K, Yi E, Laine RM, Sugahara Y (2020) Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity. Ceram Int 46:1314–1322. https://doi.org/10.1016/j.ceramint.2019.09.094

    Article  CAS  Google Scholar 

  111. Teixeira S, Martins PM, Lanceros-Méndez S et al (2016) Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl Surf Sci 384:497–504. https://doi.org/10.1016/j.apsusc.2016.05.073

    Article  CAS  Google Scholar 

  112. Salazar H, Martins PM, Santos B et al (2020) Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere 250: https://doi.org/10.1016/j.chemosphere.2020.126299

    Article  CAS  PubMed  Google Scholar 

  113. Vaiano V, Sarno G, Sacco O, Sannino D (2017) Degradation of terephthalic acid in a photocatalytic system able to work also at high pressure. Chem Eng J 312:10–19. https://doi.org/10.1016/j.cej.2016.11.115

    Article  CAS  Google Scholar 

  114. Nasir AM, Jaafar J, Aziz F et al (2020) A review on floating nanocomposite photocatalyst: fabrication and applications for wastewater treatment. J Water Process Eng 36:101300. https://doi.org/10.1016/j.jwpe.2020.101300

  115. Sacco O, Vaiano V, Rizzo L, Sannino D (2018) Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J Clean Prod 175:38–49. https://doi.org/10.1016/j.jclepro.2017.11.088

    Article  CAS  Google Scholar 

  116. Wahid F, Khan T, Hussain Z, Ullah H (2018) Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Applications of nanocomposite materials in drug delivery. Elsevier, pp 701–735

    Google Scholar 

  117. Faraldos M, Bahamonde A (2018) Multifunctional photocatalytic coatings for construction materials. In: Nanotechnology in eco-efficient construction: materials, processes and applications. Elsevier, pp 557–589

    Google Scholar 

  118. Senthil Kumar P, Grace Pavithra K, Naushad M (2019) Characterization techniques for nanomaterials. In: Nanomaterials for solar cell applications. Elsevier, pp 97–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chawla, H., Garg, S., Ingole, P.P., Chandra, A. (2022). Immobilization of Photocatalytic Material on the Suitable Substrate. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_15

Download citation

Publish with us

Policies and ethics