Skip to main content

The Role of Metals in Nanocomposites for UV and Visible Light-Active Photocatalysis

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Photocatalysis has emerged as a promising tool to perform various applications such as water splitting, inert molecular excitation, harnessing solar energy for chemical as well as biochemical activities, and developing various photocatalytic devices. The driving force behind the synthesis using light is that it is reliable, abundant, and a green source of energy. In the past decade, there is an immense increase in interest in exploring the use of metal nanoparticles in photocatalysis. Among many nanoparticle systems exploited for catalysis, plasmonic photocatalysts are one of the most intensely investigated due to their potential applications in energy materials. The shift of interest has been taking place to utilize the electromagnetic properties of metal or plasmonic nanoparticles than their traditional use as co-catalyst in various chemical processes. Photocatalysis consists of the direct conversion of light energy into chemical energy and thus reducing energy consumption. Metal nanoparticles (Ag, Au, Pd, or Pt) photocatalyst is very efficient, for example, in transforming renewable solar energy to chemical energy. Apart from catalytic applications, these nanocomposites are perceived to be environment-friendly, an attribute, which is becoming more relevant in recent times. This book chapter mainly discusses the mechanisms and applications of photocatalytic activity of nanocomposites composed of metal-based nanomaterials.

Vikas, Ruchi Singh, Arti Sharma, Ashish Kumar Dhillon. These authors have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serpone N, Emeline A (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3(5):673–677. https://doi.org/10.1021/jz300071j

    Article  CAS  PubMed  Google Scholar 

  2. Ingram D, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205. https://doi.org/10.1021/ja200086g

    Article  CAS  PubMed  Google Scholar 

  3. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y et al (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci-Basel 9(12). https://doi.org/10.3390/app9122489

  4. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Japanese J Appl Phys Part 1-Regular Papers Brief Commun Rev Papers 44(12):8269–85. https://doi.org/10.1143/JJAP.44.8269

  5. Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401. https://doi.org/10.1088/0034-4885/76/4/046401

    Article  CAS  PubMed  Google Scholar 

  6. Khore S, Kadam S, Naik S, Kale B, Sonawane R (2018) Solar light active plasmonic Au@ TiO2 nanocomposite with superior photocatalytic performance for H-2 production and pollutant degradation. New J Chem 42(13):10958–10968. https://doi.org/10.1039/c8nj01410h

    Article  CAS  Google Scholar 

  7. Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825. https://doi.org/10.1039/c2cp40823f

    Article  CAS  PubMed  Google Scholar 

  8. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M et al (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041. https://doi.org/10.1021/ja305603t

    Article  CAS  PubMed  Google Scholar 

  9. Masson J (2020) Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 145(11):3776–3800. https://doi.org/10.1039/d0an00316f

    Article  CAS  PubMed  Google Scholar 

  10. Sui M, Kunwar S, Pandey P, Lee J (2019) Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci Rep 9(1):16582. https://doi.org/10.1038/s41598-019-53292-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammond JL, Bhalla N, Rafiee SD, Estrela P (2014) Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors (Basel) 4(2):172–188. https://doi.org/10.3390/bios4020172

    Article  Google Scholar 

  12. Xavier J, Vincent S, Meder F, Vollmer F (2018) Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics 7(1):1–38. https://doi.org/10.1515/nanoph-2017-0064

    Article  Google Scholar 

  13. Tseng YH, Chang IG, Tai Y, Wu KW (2012) Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination. J Nanosci Nanotechnol 12(1):416–422. https://doi.org/10.1166/jnn.2012.5376

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Chen Q, Cullen DA, Xie Z, Lian T (2020) Efficient hot electron transfer from small Au nanoparticles. Nano Lett 20(6):4322–4329. https://doi.org/10.1021/acs.nanolett.0c01050

    Article  CAS  PubMed  Google Scholar 

  15. Park JY, Kim SM, Lee H, Nedrygailov II (2015) Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. Acc Chem Res 48(8):2475–2483. https://doi.org/10.1021/acs.accounts.5b00170

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Zhang X, Yang L, Ren L, Wang D, Ye J (2017) Metal nanoparticles induced photocatalysis. Natl Sci Rev 4(5):761–780. https://doi.org/10.1093/nsr/nwx019

    Article  CAS  Google Scholar 

  17. Liu L, Ouyang S, Ye J (2013) Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chem Int Ed Engl 52(26):6689–6693. https://doi.org/10.1002/anie.201300239

    Article  CAS  PubMed  Google Scholar 

  18. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y et al (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  PubMed  Google Scholar 

  19. Golabiewska A, Malankowska A, Jarek M, Lisowski W, Nowaczyk G, Jurga S et al (2016) The effect of gold shape and size on the properties and visible light-induced photoactivity of Au–TiO2. Appl Catal B-Environ 196:27–40. https://doi.org/10.1016/j.apcatb.2016.05.013

    Article  CAS  Google Scholar 

  20. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134(14):6309–6315. https://doi.org/10.1021/ja2120647

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Li P, Wang T, Hu H, Jiang H, Liu H et al (2015) Constructing a multicomponent junction for improved visible-light photocatalytic performance induced by Au nanoparticles. Chem Commun (Camb) 51(11):2173–2176. https://doi.org/10.1039/c4cc08556f

    Article  CAS  Google Scholar 

  22. Yu S, Kim YH, Lee SY, Song HD, Yi J (2014) Hot-electron-transfer enhancement for the efficient energy conversion of visible light. Angew Chem Int Ed Engl 53(42):11203–11207. https://doi.org/10.1002/anie.201405598

    Article  CAS  PubMed  Google Scholar 

  23. Wu K, Chen J, McBride JR, Lian T (2015) Charge transfer. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349(6248):632–635. https://doi.org/10.1126/science.aac5443

  24. Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589. https://doi.org/10.1021/ja410230u

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Li A, Cao SW, Bosman M, Li S, Xue C (2014) Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers. Nanoscale 6(10):5217–5222. https://doi.org/10.1039/c3nr06562f

    Article  CAS  PubMed  Google Scholar 

  26. Hung S, Xiao F, Hsu Y, Suen N, Yang H, Chen H et al (2016) Iridium oxide-assisted plasmon-induced hot carriers: improvement on kinetics and thermodynamics of hot carriers. Adv Energy Mater 6(8). https://doi.org/10.1002/aenm.201501339

  27. Qian K, Sweeny B, Johnston-Peck A, Niu W, Graham J, DuChene J et al (2014) Surface plasmon-driven water reduction: gold nanoparticle size matters. J Am Chem Soc 136(28):9842–9845. https://doi.org/10.1021/ja504097v

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Mohamed H, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C-Photochem Rev 13(4):263–276. https://doi.org/10.1016/j.jphotochemrev.2012.07.002

    Article  CAS  Google Scholar 

  29. Sato Y, Naya S, Tada H (2015) A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support. Apll Mater 3(10). https://doi.org/10.1063/1.4923098

  30. Tachibana Y, Vayssieres L, Durrant J (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6(8):511–518. https://doi.org/10.1038/nphoton.2012.175

    Article  CAS  Google Scholar 

  31. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  PubMed  Google Scholar 

  32. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2(10). https://doi.org/10.1038/natrevmats.2017.50

  33. Tanaka A, Teramura K, Hosokawa S, Kominami H, Tanaka T (2017) Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem Sci 8(4):2574–2580. https://doi.org/10.1039/c6sc05135a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661. https://doi.org/10.1021/jz1007966

    Article  CAS  Google Scholar 

  35. Wei L, Yu C, Zhang Q, Liu H, Wang Y (2018) TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J Mater Chem A 6(45):22411–22436. https://doi.org/10.1039/c8ta08879a

    Article  CAS  Google Scholar 

  36. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686. https://doi.org/10.1016/j.apsusc.2016.09.093

    Article  CAS  Google Scholar 

  37. Ran J, Jaroniec M, Qiao SZ (2018) Cocatalysts in semiconductor-based photocatalytic CO. Adv Mater 30(7). https://doi.org/10.1002/adma.201704649

  38. Ola O, Maroto-Valer M (2016) Synthesis, characterization and visible light photocatalytic activity of metal based TiO2 monoliths for CO2 reduction. Chem Eng J 283:1244–1253. https://doi.org/10.1016/j.cej.2015.07.090

    Article  CAS  Google Scholar 

  39. Bergman RG (2007) Organometallic chemistry: C–H activation. Nature 446(7134):391–393. https://doi.org/10.1038/446391a

    Article  CAS  PubMed  Google Scholar 

  40. Hu X, Chen J, Xiao W (2017) Controllable remote C–H bond functionalization by visible-light photocatalysis. Angewandte Chemie-Internat Edn 56(8):1960–1962. https://doi.org/10.1002/anie.201611463

    Article  CAS  Google Scholar 

  41. Li H, Shang J, Ai Z, Zhang L (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc 137(19):6393–6399. https://doi.org/10.1021/jacs.5b03105

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Wang T, Zhao ZJ, Yang W, Li JF, Li A et al (2018) Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO. Angew Chem Int Ed Engl 57(19):5278–5282. https://doi.org/10.1002/anie.201713229

    Article  CAS  PubMed  Google Scholar 

  43. Dong X, Zhang W, Sun Y, Li J, Cen W, Cui Z et al (2018) Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J Catal 357:41–50. https://doi.org/10.1016/j.jcat.2017.10.004

    Article  CAS  Google Scholar 

  44. Sarina S, Waclawik E, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15(7):1814–1833. https://doi.org/10.1039/c3gc40450a

    Article  CAS  Google Scholar 

  45. Xiao Q, Jaatinen E, Zhu H (2014) Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light. Chem Asian J 9(11):3046–3064. https://doi.org/10.1002/asia.201402310

    Article  CAS  PubMed  Google Scholar 

  46. Peiris S, McMurtrie J, Zhu H (2016) Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catal Sci Technol 6(2):320–338. https://doi.org/10.1039/c5cy02048d

    Article  CAS  Google Scholar 

  47. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42(7):2679–2724. https://doi.org/10.1039/c2cs35367a

    Article  CAS  PubMed  Google Scholar 

  48. Lan J, Zhou X, Liu G, Yu J, Zhang J, Zhi L et al (2011) Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale 3(12):5161–5167. https://doi.org/10.1039/c1nr10953g

    Article  CAS  Google Scholar 

  49. Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J et al (2009) Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Commun 48:7524–7526. https://doi.org/10.1039/b917052a

    Article  CAS  Google Scholar 

  50. Zhu H, Ke X, Yang X, Sarina S, Liu H (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angewandte Chemie-Inter Edn 49(50):9657–9661. https://doi.org/10.1002/anie.201003908

    Article  CAS  Google Scholar 

  51. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. https://doi.org/10.1039/b800489g

    Article  CAS  PubMed  Google Scholar 

  52. Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79(11):1917–1927. https://doi.org/10.1351/pac200779111917

    Article  CAS  Google Scholar 

  53. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089. https://doi.org/10.1021/ja027751g

    Article  CAS  PubMed  Google Scholar 

  54. Halmann M (1978) Photoelectrochemical reduction of aquesous carbon-dioxide on p-type Gallium-phosphide in liquid junction solar-cells. Nature 275(5676):115–116. https://doi.org/10.1038/275115a0

    Article  CAS  Google Scholar 

  55. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction for carbon-dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638. https://doi.org/10.1038/277637a0

    Article  CAS  Google Scholar 

  56. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39(1):81–88. https://doi.org/10.1039/b904495g

    Article  CAS  PubMed  Google Scholar 

  57. Kortlever R, Shen J, Schouten K, Calle-Vallejo F, Koper M (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6(20):4073–4082. https://doi.org/10.1021/acs.jpclett.5b01559

    Article  CAS  PubMed  Google Scholar 

  58. Yin G, Abe H, Kodiyath R, Ueda S, Srinivasan N, Yamaguchi A et al (2017) Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst. J Mater Chem A 5(24):12113–12119. https://doi.org/10.1039/c7ta00353f

    Article  CAS  Google Scholar 

  59. Schrauzer G, Guth T (1977) Photolysis of water and photoreduction of nitrogen in titanium-dioxide. J Am Chem Soc 99(22):7189–7193. https://doi.org/10.1021/ja00464a015

    Article  CAS  Google Scholar 

  60. Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142(1–2):2–8. https://doi.org/10.1016/j.cattod.2009.01.004

    Article  CAS  Google Scholar 

  61. Chen X, Li Y, Pan X, Cortie D, Huang X, Yi Z (2016) Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun 7:12273. https://doi.org/10.1038/ncomms12273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumik Siddhanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vikas, Singh, R., Sharma, A., Dhillon, A.K., Siddhanta, S. (2022). The Role of Metals in Nanocomposites for UV and Visible Light-Active Photocatalysis. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_11

Download citation

Publish with us

Policies and ethics