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Abstract. The trend towards flexible, agile, and resource-efficient pro-
duction systems requires a continuous development of processes as well
as of tools in the area of forming technology. To create load-adjusted
and weight-optimized tool structures, we present an overview of a new
algorithm-driven design optimization workflow based on mixed-integer
linear programming. Loads and boundary conditions for the mathemat-
ical optimization are taken from numerical simulations. They are trans-
formed into time-independent point loads generating physical uncertainty
in the parameters of the optimization model. CAD-based mathematical
optimization is used for topology optimization and geometry generation of
the truss-like structure. Finite element simulations are performed to val-
idate the structural strength and to optimize the shape of lattice nodes
to reduce mechanical stress peaks. Our algorithm-driven design optimiza-
tion workflow takes full advantage of the geometrical freedom of addi-
tive manufacturing by considering geometry-based manufacturing con-
straints. Depending on the additive manufacturing process, we use lower
and upper bounds on the diameter of the members of a truss and the asso-
ciated yield strengths. An additively manufactured flexible blank holder
demonstrates the algorithm-driven topology design optimization.
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1 Introduction

Increasing mass customization and product complexity combined with shorter
product life cycles require agile, flexible, and smart production systems in manu-
facturing technology [13]. In addition, future studies on the topic of manufacturing
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technology are required to be subordinated to the maxim of resource efficiency. In
forming technology, the forming tools play a key role as the link between semi-
finished products and machines and directly impact the flexibility of a forming
process [2]. To be more precise, kinematic forming processes such as three-roll-
push bending [3] or incremental swivel bending [11] have inherent flexibility due
to their shape-giving tool movement. In contrast, tool-bound processes like stamp-
ing are limited regarding an achievable variety of geometries.

State-of-the-art forming tools are typically solid and oversized steel parts
generating an unnecessarily high level of energy consumption for the tool pro-
duction along the entire value chain and in the operation of the tools. This
research gap can be addressed by combining lightweight construction with topol-
ogy optimization to obtain an efficient design tool for forming tool development.
On account of the fact that Additive Manufacturing (AM) methods enable the
fabrication of complex-shaped and topology-optimized tools [2]—in comparison
to conventional manufacturing methods—the combination of lightweight con-
struction, topology optimization, and AM is of significant interest.

Xu et al. [12] show that a blank holder’s weight can be decreased by 28.1%
using topology optimization methods with a negligible impact on structural per-
formance. Burkart et al. [1] point out that their achieved weight reduction of a
blank holder by over 20% using topology optimization can reduce dynamic press
loads by 40% resulting in an extended process window with shorter cycle times.
Besides the established and in industrial finite element software implemented
continuum topology optimization methods based on Solid Isotropic Material
with Penalization Method (SIMP) [10], also algorithm-driven optimization based
on mathematical programming [5] can be used for early-stage design optimiza-
tion of truss-like lattice structures. Reintjes and Lorenz [7] show a large-scale
truss topology optimization of additively manufactured lattice structures based
on the high performance of commercial (mixed-integer) linear programming soft-
ware like CPLEX.

Considering lightweight construction and topology optimization, this paper
presents a new algorithm-driven optimization workflow for additively manufac-
tured forming tools, mainly consisting of mathematical programming, numerical
topology optimization, and verification via numerical simulation. We distinguish
strictly between the rigid-body equilibrium of forces calculated via a mixed-
integer linear program and a verification of the results via a linear-elastic and
a non-linear-elastic numerical analysis. Based on the algorithm-driven optimiza-
tion workflow we optimize a demonstrator tool of a segmented blank holder.
Finally, we give an outlook on how an optimized lattice structure can be used
as a mechanism for in-process modification of local surface geometry and local
structural stiffness.

2 Mathematical Optimization and the Application to a
Segmented Blank Holder

Within the Centre of Smart Production Design Siegen (SMAPS), we investigate
sensoric and actuatoric forming tools with the aim of self-adjustable surfaces.
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Targeting the adaption of contact pressure distribution, dynamic compensation
of part springback, and change of geometry for part variant diversity, different
scales of surface adjustment are needed, as illustrated in Fig. 1 left [4]. As a
vision, future forming tools will have the self-adjusting capability to control
material flow and react to changing process conditions. To this end, a deep
understanding of the forming process itself, sensor and actuator integration, as
well as a force transmitting tool structure that is able to change surface geometry
and stiffness locally, is necessary. A simple demonstrator for such a flexible tool
is shown in Fig. 1 right. The segmented blank holder consists of a housing with
thread holes at the bottom (3), a cover (1), and a segmented inlay structure for
force transmission (2). The surface adjustment can be realized by the infeed of
one screw per segment. Tests were carried out with different arrangements and
infeeds of the screws. The basic proof of concept was done by measurement of the
surface deformation using Gom ARAMIS, which showed different surface profiles
dependent on the screw setup [4]. We examine how such a force transmitting inlay

Fig. 1. Flexibility levels of forming tools (left) and demonstrator of a segmented blank
holder (right)

can be generated using truss-like lattice structures generated by algorithm-driven
design optimization. First, a linear static finite element simulation using Altair
Optistruct was performed to obtain the load case for mathematical optimization.
We assume that the insert is loaded by a screw force of Fscrew = 4.5 kN and
a contact pressure between workpiece and inlay, resulting in the process force
Fprocess = 13.5 kN, see Fig. 2. The reaction load is the contact pressure pcover
between the cover and the inlay. After a transformation of the stress given in
the Finite Element Analysis (FEA) into linear constraints (point loads), we get
a formulation suitable for a Mixed-Integer Linear Program (MILP) inclusive of
physical uncertainty in the parameters of the optimization model.

3 CAD-Based Mathematical Optimization

The design process of complex truss-like lattice structures in Computer-Aided
Design (CAD) is inefficient and limits the number of parts (members) to be
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Fig. 2. Load case for the FEA (left) and point loads for the MILP (right)

automatically built in a CAD model [8,9]. For the reasons stated, transform-
ing large-scale mathematical optimization results into a CAD model is not a
straightforward task. Our first research concerning this problem found that using
an Autodesk Inventor Professional Add-In, we were able to generate 6084 round
structural elements (volume bodies) in 20 h and 24 min [6,7]. To further improve
computational efficiency, in order to be able to define a part as a structural ele-
ment rather than only as a volume body and allow an easy geometry preparation
for numerical analysis, we developed a direct CAD creation (Ansys SpaceClaim
2020 R2) in addition to a history-based CAD creation (Autodesk Inventor Pro-
fessional). Our Ansys SpaceClaim Add-In construcTOR, see Fig. 3, allows CAD
engineers to generate algorithm-driven design iteration studies within the Ansys
Workbench. The Add-In involves a Graphical User-Interface (GUI) and bidirec-
tional linkage to CPLEX 12.6.1, see Fig. 3, such that no profound knowledge
about mathematical optimization is needed. To avoid local stress peaks at the
intersection of members during numerical analysis, we post-process the intersec-
tion of members. For this purpose, a solid sphere (near-side body only) merging
into the members with a diameter at least equal to the diameter of the member
with the largest cross-section is added. The large number of parts given in Table 1
details that we were able to lift the limitation dictated by history-based model-
ing, see [7]. Besides, a significant reduction in computational time and memory
usage depending on the type of implementation, geometrical complexity of the
member’s cross-section and instance size exist. We compared the execution time
and memory usage divided into the generation of the members and the faceting
of Ansys SpaceClaim 2020 R2. In both cases, we used the beam class of the
SpaceClaim API V19 and our own implementation as volume bodies.

Mixed-Integer Linear Program for Truss Optimization
In order to formally represent the ground structure (see Fig. 2) an undirected
graph G = (V, E) is used with vertices (frictionless joints) and connecting edges
(straight and prismatic members). Additionally, a set of bearings B ⊂ V must be
specified. Note that the vertices are fixed in space, as angles between two possi-
ble members and distances between joints matter in our modeling approach. We
additionally require that the resulting structure is symmetrical with respect to two
symmetry planes, see Fig. 2. We use the function R : E → E, mapping edge e to
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(a) Create MILP within
ANSYS SpaceClaim

(b) Bidirectional linkage to
CPLEX

(c) Generate truss-like
structure from best solution

(d) Post-Processing of the
intersections

Fig. 3. CAD-integrated mathematical optimization of lattice structures using the con-
strucTOR GUI

Table 1. Benchmark of different implementation typesa

Implementation Number

of parts

Beam

section

Time [s] Memory usage [MB]

Generation Faceting Overall Generation Faceting

Beam class 15000 Circle 223 6879 7102 1290 1292

Square 228 6817 7045 1414 1412

Volume body 400000 Circle 2354 9204 11558 7404 17966

Square 2810 10884 13694 15714 25610
aThe calculations were performed on a workstation with an Intel Xeon E5-2637 v4 (3,5GHz),

64GB RAM and an NVIDIA GeForce RTX 2080 (8GB RAM).

its representative R(e) in order to enforce that the members at edges e and R(e)
share the same cross-sectional area with respect to the given symmetry. Due to
manufacturing restrictions a member must have a minimum cross-sectional area.
Therefore, we use a binary variable xe to indicate the existence of a member at
edge e ∈ E with a specified minimum cross-sectional area and a continuous vari-
able ae to specify its additional (optional) cross-sectional area. The continuous
variable ne represents the normal force in a member at edge e and rb specifies

Table 2. Variables

Symbol Definition

x ∈ {0, 1}E xe: indicator, whether a member is present at edge e

a ∈ QE
+ ae: additional (optional) cross-sectional area of a member e

r ∈ QB×3 rdb : bearing reaction force at b in spatial direction d ∈ {x, y, z}
n ∈ QE ne: normal force in member present at edge e
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Table 3. Sets and Parameters

Symbol Definition

V Set of vertices

E ⊆ V × V Set of edges

I : V → 2E I(v) = {e ∈ E | v ∈ e}: Set of edges incident to vertex v

B ⊆ V Set of bearings

Le ∈ Q+ Length of edge e

Amin ≥ 0 Minimum cross-sectional area of a member

Amax ≥ 0 Maximum cross-sectional area of a member

σy Yield strength of the cured material

S ≥ 1 Factor of safety

F ∈ QV ×3 F d
v : external force at vertex v in spatial direction d ∈ {x, y, z}

V(v, v′) ∈ Q3 Vector from v ∈ V to v′ ∈ V (corresponding to lever arm)

R : E → E R(e): edge representing edge e due to symmetry

the bearing reaction force of bearing b. The variables and parameters used in our
model are given in Tables 2 and 3, respectively. We use bold letters when referring
to vectors. With respect to the considered application, the external forces F are
taken from numerical simulations of the blank holder (Fprocess and pcover) and the
bearing reaction forces r are corresponding to Fscrew.

min
∑

e∈E

Le

(
Amin · xR(e) + aR(e)

)
(1)

s.t. S|ne| ≤ σy

(
Amin · xR(e) + aR(e)

) ∀ e ∈ E (2)
∑

e∈I(b)

nd
e + F d

b + rdb = 0 ∀ b ∈ B, d ∈ {x, y, z} (3)

∑

e∈I(v)

nd
e + F d

v = 0 ∀ v ∈ V \ B, d ∈ {x, y, z} (4)

aR(e) ≤ (Amax − Amin)xR(e) ∀ e ∈ E (5)
∑

v∈V

V(b, v) × Fv +
∑

b′∈B

V(b, b′) × rb′ = 0 ∀ b ∈ B (6)

∑

v∈V

Fv +
∑

b∈B

rb = 0 (7)

x ∈ {0, 1}E , a ∈ QE
+, r ∈ QB×3, n ∈ QE (8)

The Objective Function (1) aims at minimizing the volume of the resulting sta-
ble and symmetric complex space truss considering the external static load case.
Constraint (2) ensures that the local longitudinal stress in a member must not
exceed the member’s yield strength taking into account a factor of safety. Con-
straints (3) and (4) ensure the static equilibrium at each vertex of the structure.
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The decomposition of ne into its components nd
e with respect to each direction

in space d ∈ {x, y, z} is attained by standard vector decomposition, exploit-
ing the invariant spatial and angular relationships due to the invariant ground
structure. Variables indicating an additional cross-sectional area are bound to
be zero by Constraint (5) if no member is present. Constraints (6) and (7) define
the equilibrium of moments by resolution of the external forces and ensure, in
combination with Constraints (3) and (4), that the resulting structure is always
a static system of purely axially loaded members. In particular, the cross prod-
uct V(b, v) × Fv is the moment caused by the external force Fv on bearing b
with lever arm V(b, v). Analogously, V(b, b′) × rb′ is the moment about bear-
ing b caused by the bearing reaction force at b′. For the case of the segmented
blank holder, see Fig. 2, solutions for Amin = {0.79, 3.14, 7.07} mm2 are shown
in Fig. 4. Table 4 displays the computational results1. For our experiments we
consider a basic vertex distance of 10 mm and the material aluminum with yield
strength σy = 0.19 GPa.

Fig. 4. Amin = (left) 0.79 mm2, (middle) 3.14 mm2, (right) 7.07 mm2

Table 4. Computational results

Amin

[mm2]

Amax

[mm2]

Best found

[mm3]

Bound

[mm3]

Gap

[%]

Runtime

[s]

First found

time [s]

First found

value [mm3]

0.79 78.54 22815 22714 0.44 969828 7193 23756

3.14 78.54 33622 23822 29.15 1032300 2029 49233

7.07 78.54 56377 27192 51.77 362779 3214 86809

4 Finite Element Analysis and Shape Optimization

To validate the mathematical optimization results, linear static FEAs are per-
formed using Altair OptiStruct. The load case is analogous to the load case

1 The calculations were executed on a workstation with an Intel Xeon E5-2637 v3
(3,5 GHz) and 128 GB RAM using CPLEX Version 12.6.1 restricted to a single
thread.
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Fig. 5. Comparison of the FEA of three lattice structures generated by MILP

shown in Fig. 4. The geometries showed in Fig. 4 are discretized with solid ele-
ments of type CTETRA with a nominal element edge length of 0.5 mm. Note
that through this volumetric mesh each node of the lattice structure can trans-
mit rotary moments, which is contrary to the assumptions of the MILP model.
Another difference between both models is the material behavior: While the
MILP model cannot consider constitutive material equations without costly lin-
earization, a linear-elastic material (MATL1) is implemented in the FEA model
with an elastic modulus of aluminum of E = 70 GPa. The results of the FEAs are
shown in Fig. 5, whereby for simplicity reasons, we take advantage of the double
symmetry and visualize just a quarter of the model. We see that the stresses
in all three models are, in general, below the yield strength of σy = 0.19 GPa.
From this we conclude that the design suggestion by mathematical optimization
is a solution with good mechanical performance and geometrical properties for
this load case. Nevertheless, it turns out that some higher stressed positions
exist. To overcome this problem, we suggest adding an FEA based free-shape
optimization to the algorithm-driven design process. To this end, high stressed
areas are identified whose shape OptiStruct is allowed to change, as exemplary
shown in Fig. 6 for one lattice node. In the initial state (Fig. 6 left) there are
maximum von Mises stresses of about 0.5 GPa. The objective of the optimiza-
tion is to move the grid points of the finite element mesh, which are defined in
the design region, in normal direction of this surface until the upper bound stress

Fig. 6. Shape optimization: (left) v. Mises stress in the initial state, (middle) geometry
of the node after 5 iterations, (right) geometry after 15 iterations
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constraint of 0.19 GPa is satisfied. After 3 iterations (Fig. 6 middle) the surface
is slightly shaped and after 15 iterations (Fig. 6 right) we see the final geometry
of the lattice node, where the upper bound stress constraint of 0.19 GPa is sat-
isfied. Consequently, the mechanical strength of the structure is given after this
optimization.

Fig. 7. Forming tool with in-process adjustable active fool surfaces

5 Conclusion and Outlook

We investigated an algorithm-driven optimization workflow for designing addi-
tively manufactured lightweight forming tools using the example of a flexible
blank holder. To this end, an interactive CAD-tool was used for pre- and postpro-
cessing the solution of a MILP optimization for truss-like lattice structures. As
a minimum cross-sectional area is essential due to design restrictions in AM and
symmetry can be exploited to effectively optimize structural systems, we intro-
duced a MILP model considering continuous cross-sectional areas of the lattice
members and two planes of symmetry. Finally, finite element based simulations
and shape optimizations were performed to validate and improve the design
suggestions supported by the preceding CAD-based mathematical optimization.
Our research has highlighted that CAD-based mathematical optimization is an
efficient and reliable tool for preliminary designing truss-like lattice structures
for forming tools. Using finite element shape optimizations, highly stressed areas
can be geometrically modified, resulting in an overall usable design. However,
there is still a need for discussion that the degrees of freedom of a lattice node in
the FEA differ from the degrees of freedom in the MILP model. We claim that a
node in the MILP model cannot transmit rotary moments. On the contrary, due
to the postprocessing of the MILP optimization solutions to merged volumes
and the consequently volumetric meshing, a lattice node in the FEA can trans-
mit rotary moments. This fact is one reason for the stress peaks in the FEA.
Another reason for the stress peaks is that no constitutive material equations and
no geometry are implemented in the MILP model. Therefore, it cannot take local
stresses into account, which, however, underlines the importance of our workflow.
Further work needs to be done to establish a component library, including joints
for our Ansys SpaceClaim Add-In construcTOR. As shown in Fig. 7, we are cur-
rently investigating forming tools with in-process adjustable active tool surfaces
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to control material flow. Based on analysis of the interaction between local tool
surface properties and the forming result, we will define process-time dependent,
necessary displacement, and stiffness at the links between force transmitting lat-
tice structure and tool surface. A new method based on our workflow will be
investigated to fulfill these requirements. We will build mechanical mechanisms
for adjustable surfaces and structural stiffness through technical joints instead
of a solid volume at a lattice node or variable-length lattice members.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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