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Abstract The paper gives a snapshot of the potential of LCA (life cycle assess-
ment) data-based optimizations in control systems. The environmental burden of 
existing infrastructure can be significantly reduced during use phase. Four Siemens’ 
applications in different fields with different lead indicators show how LCA assess-
ments can be adapted to fulfil the requirements of such applications. The applica-
tions are power and air quality management use cases in the field of eMobility, 
building management, industrial process control and traffic management. The main 
methodological challenge solved is the provision of the necessary temporal and 
special resolution, as well as forecasting of parameters for scheduling of processes.

1  Introduction

Life cycle assessment (LCA) methodology has become common to assess products 
and services and even found its way into strategy processes of planning infrastruc-
ture to convert our cities into sustainable urban areas [1]. Infrastructure has very 
long life cycles. Our time to cope with global warming is running up quickly, and 
there is little doubt that we need to speed up our climate actions as humanity. But to 
reduce emissions in markets with long life cycles, where inefficient assets can’t 
quickly be replaced with sustainable ones, proves slow. We therefore propose to use 
LCAs of infrastructure during operation to improve the environmental performance 
of these infrastructures. To integrate environmental target functions into control sys-
tems and reducing or shifting consumption can increase environmental performance 
compared to conventional, solely monetarily or functionally optimized control algo-
rithms. The goal is to make LCAs fit for control systems.
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2  Four Applications

The four case studies used as examples to show the potential of embedding environ-
mental target functions into control systems are building, energy and transport cases:

• Smart charging for bus depots: A use case using flexibility in charging time of 
buses during their stay in bus depots in order to charge at times, where the grid 
mix has low average emissions. The analysis is part of the Mobility2Grid project 
and funded by the German Ministry for Education and Research.

• Smart cooling: A campus air conditioning system, which uses an ice storage in 
order to shift power consumption for cooling aggregates to times, where the grid 
mix has low average emissions. The analysis is part of the EnBA-M project and 
funded by the German Federal Ministry for Economic Affairs and Energy.

• Smart chemistry, methanol from steel mill gases: A case study using flexibility in 
power consumption, making an otherwise highly emitting process reduces GHG 
emissions. The analysis is part of the Carbon2Chem project and funded by the 
German Ministry for Education and Research.

• City Air Management: An online service operative in Nuremberg which is used 
to forecast events of high air pollution on a 5-day horizon at a street site measure-
ment station. It simulates different interventions for this period to select them at 
times of maximum efficiency.

The methods described are a combination of conventional LCA, executed in 
LCA software and conventional control systems including forecasting algorithms 
and optimization algorithms. From a pure LCA prospective, they are based on com-
parative LCA, since the optimizer, no matter if machine or human operator, has to 
select between different scenarios. Not all assessments cover the full life cycle.

3  Smart Charging for Bus Depots

To guarantee operations of electric bus depots, charging infrastructure is slightly 
oversized in order to compensate for high demand events such as very cold or hot 
weather, delayed buses, maintenance and many other inconveniences. This neces-
sary flexibility creates times at which buses are not charged and the grid connection 
is not fully utilized. This case study is an ex post analysis of the potential of this 
flexibility to reduce carbon emissions by charging at times, where the grid provides 
power of low CO2e emissions. Three scenarios are analysed:

• Plug and charge: The buses are connected to the charger and start charging at full 
power, as soon as they are parked after returning to the depot and going through 
their daily routine.

• Cost-optimized: The buses are charged at max. Power during the period where 
the cost for power at the day-ahead market is the lowest without exceeding the 
grid connection.
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• GHG-optimized: The buses are charged at max. Power during the period where 
the average GHG emission per kWh is the lowest without exceeding the grid 
connection.

The energy demand and schedules of the bus operation are based on real data 
from 140 Berlin diesel buses. Due to range restrictions, many buses are assumed to 
opportunity charge on the route. This increases the flexibility in depots.

3.1  Method

All three scenarios have the same hardware requirements, which is why only the 
power consumption during operations is part of the assessment. Only bidirectional 
charging or regulating the charging power based on battery wear would result in the 
necessity of expanding the system boundary to include the battery production and 
end of life. To calculate the optimum charging times based on an economic and a 
GHG target function, dynamic prices or emission functions for power are necessary. 
The spot market provides economic cost. Taxes and T&D (transmission and distri-
bution) are not included. The dynamic country-based GHG emission factors per 
kWh are calculated on a time resolution of 15 min for Germany. T&D and upstream 
emissions are included. The grid mix is known for this time resolution, and each 
share of each energy carrier is multiplied with its respective energy carrier, as com-
mon for annual emission factor aggregates for countries too.

Combined with the bus schedules, dynamic emission factors feed into an opti-
mizer, which defines at which time the buses are charged. The optimizer is set to 
optimize according to the target functions of the three scenarios stated above (view 
Fig. 1 Optimization Problem). The secondary constraints are the times the bus is 
available for charging, 100% state of charge when leaving the depot, the charging 
power and the grid connection limit of the depot. GHG emissions and cost for power 
are added up according to the resulting charging schedules of the three scenarios.

Fig. 1 Smart charging use case process
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3.2  Results

The results show that the cost-optimized charging schedule does reduce the cost for 
power purchase at the energy market by almost 12% compared to a non-optimized 
plug and charge scenario. This results in a small increase in GHG emissions per 
kWh. The GHG-optimized charging schedule reduces GHG emissions by less than 
0.5% and reduces cost by 4% compared to the plug and charge scenario (Fig. 1 on 
the right, GHG optimum vs. cost optimum).

3.3  Interpretation

The flexibility to shift charging times of buses is small. The shifting is only possible 
in the range of a few hours at maximum. The flexibility is almost exclusively avail-
able at night. There is almost no flexibility during daytime. But GHG emissions of 
the German grid mix don’t frequently change drastically in short periods during the 
night, since there is no PV (photovoltaic power) at night and low-pressure zones for 
wind are moving slowly. This combination results in a marginal GHG saving poten-
tial of this application. In order to facilitate cost savings, however, the flexibility is 
relevant. Power prices at the power markets change more quickly at night, since the 
demand side has a larger impact. Cost-saving algorithms don’t necessarily reduce 
GHG emissions as to be seen when looking at the results of the cost-optimized 
scenario.

4  Smart Cooling

Air conditionings are flexible loads. They are rarely running on full power, and any 
building has a certain thermal inertia, which can be used to store thermal energy. For 
this project, the thermal storage for the air conditioning was increased by adding a 
large ice storage to the system. The ice storage increases the temporal flexibility for 
power consumption. It can be charged independent of the demand of the building 
and discharged independent of the heat pump. This allows load shifting to provide 
similar services as smart charging. But in this case, the flexibility is much larger in 
the sense that power consumption can often be delayed or consumed ahead of time 
for several days. Additional complexity is added to the system compared to battery 
charging. The COP (coefficient of performance) and therefore the efficiency of the 
system differ significantly depending on the spread between the ambient tempera-
ture and the temperature of the thermal storage. These two parameters, plus the 
losses of the storage at high spreads over time, impact the overall power demand of 
the system. Since this system sets schedules in operation, the optimization is based 
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on forecasted parameters for weather, power cost and emissions. The three scenar-
ios and control mechanisms tested were similar to the smart charging case:

• Reference Scenario: System running without making use of the storage.
• Cost-optimized: The ice storage is filled at times with the best ratio of low power 

cost and high COP.
• GHG-optimized: The ice storage is filled at times with the best ratio of low rela-

tive GHG emissions for power and high COP.

As an additional indicator, the overall electricity demand is plotted.

4.1  Methodology

Even though the ice storage is not necessary for the operation according to the first 
scenario, production and end of life of the storage are not assessed. The storage was 
already available, but not in use, since cheap night rates for power had been abol-
ished. The methodology of generating the environmental cost functions is the same 
as for bus charging above. But the data is based on forecasts for ambient tempera-
tures, cooling demand of the buildings, cost and GHG emissions per kWh. The 
weather forecast is a commercially available API, and the other parameters are fore-
casted based on historical data of cooling demand and power generation mixes and 
day-ahead forecasts on renewable power generation and electricity load on the grid.

4.2  Results

Cost- and GHG-optimized operations are compared with the reference scenario. 
The cost-optimized operation shows a little reduction in power consumption of 
0.2%, the GHG emissions increase by the same amount and the cost for power 
reduces by 4% (only cost at the power market). The GHG-optimized operation 
increases power consumption by 4% but reduces GHG emissions by 6%. Cost for 
power increases by almost 2% compared to the reference operation (Fig.  2: On 
the right).

4.3  Interpretation

It appears contradictory that the GHG-optimized operation leads to a higher power 
consumption. Figure 2 shows in the magnifier in the middle that the GHG-optimized 
operation leads to high power consumption in the middle of the day. This is due to 
the high availability of PV. The PV drives down the relative GHG emissions of the 
power mix at noon. This overcompensates the poor COP at daytime where ambient 
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temperatures are high and the temperature spread between the ice storage and heat 
exchanger outside is high. Power cost is more demand driven; thus, cost can also be 
low at night, where the COP is more favourable. The case shows once again that 
cost- and GHG-optimized operations can lead to opposing results and create con-
flicts of interest.

5  Smart Chemistry, Methanol from Steel Mill Gases

The concept of carbon capture and use is to use CO2 emissions from industrial pro-
cesses and to reduce them with hydrogen in order to create basic chemicals such as 
methanol. This project uses electrolysis of water for the production of hydrogen. 
The target is to draw power when the load on the grid is lower than production in 
order to minimize curtailment of electricity from renewable energy sources. Using 
the fossil-based methanol production process as a benchmark, it was determined 
that, in addition, the power for electrolysis has to stay below 0.2 kg CO2 eq./kWh 
with its GHG emissions to generate carbon savings.

5.1  Methodology

The methodology in use is very similar to the first two applications. Since it takes a 
long time to set up such a large-scale system, forecasting becomes inevitable even 
to determine the environmental performance of the first year of operation. A power 
scenario with an hourly resolution with times and volumes of excess energy is cre-
ated in a multi-model scenario approach. It is based on publicly available plans and 
policies for the development of installed capacities of German power plants by 
energy carrier and the net structure in 2030, combined with appropriate 

Fig. 2 Smart cooling use case process
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meteorological data. For the resulting power production profile, the greenhouse gas 
intensity of power production is calculated on an hourly base.

5.2  Results

For the underlying assumptions regarding the share of installed renewable energy 
sources, which results in a share of 47 per cent on gross power production, only 
370 hours per year fulfilled the criteria of being below 0.2 kg CO2 eq./kWh (Fig. 3). 
During these 370 h, the share of renewables in the power mix accounts for at least 
70 per cent (Fig. 4). All these time periods coincide with periods of excess energy.

5.3  Interpretation

The analysis indicates that for the underlying assumptions on the share of renew-
ables in power production, only few operating hours meet the criteria of low enough 
greenhouse gas emissions. A fluctuating electrolysis therefore would require 
immense capacities for electrolysis and hydrogen storage which cannot be imple-
mented in practice due to economic reasons and required space. Moreover, hydro-
gen storage would lead to additional environmental impacts, not covered by this 
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analysis. Hydrogen electrolysis during hours not meeting the low greenhouse gas 
level would cause a net increase of global warming impact of the CCU concept in 
comparison with the conventional processes of steel and methanol synthesis. This 
analysis is very sensitive to the assumed share of renewables and thus curtailment. 
Political targets for renewables have just been raised after the analysis. The potential 
of using excess energy for electrolysis will be recalculated under the new frame-
work. The remaining hydrogen demand should be covered by hydrogen directly 
produced from renewable energy sources.

6  City Air Management

The City Air Management is an online web service which helps cities to manage 
local air quality at roadside measurement stations for the next 5 days (Fig. 5). It 
provides three basic functionalities for the air pollutants PM10, PM2.5 and NO2:

• Monitoring the air quality at public measurement stations on a dashboard.
• Forecasting of air pollutants at these locations for 5 days.
• Intervention simulation and calculating pollution reduction of measures.

Instead of taking year-round measures, cities can take action when and where 
they have the highest impact.
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6.1  Methodology

Monitoring
Cities/counties/states operate their own air pollution sensor networks in order to 
prove their compliance with national or international regulation. This data is gath-
ered on central servers and publicly available in most parts of the world. The CyAM 
has an API which allows this data to be pulled from this server or pushed to the 
CyAM as soon as the data is available. This is commonly every hour. The data for 
the individual measurement stations is visualized, categorized and benchmarked 
against the legal thresholds in a dashboard. It provides an immediate evaluation of 
the current situation and information on whether it is necessary to act. The latest 
history is also available for review, as well as the gliding annual average.

Forecasting
There are two common options to do forecasting for air pollutants, domain models 
and artificial intelligence. Domain models in this case are models which understand 
the physical and chemical processes of emission source behaviour and the atmo-
spheric processes during transmission of pollutants. There are a vast variety of 
emission sources in and around a city. It involves tremendous efforts to assess all 
relevant fractions in real time. The modelling of the transmission (distribution plus 
the physical and chemical processes of the pollutants in the air) is time consuming, 
requires high computing capacities and is very sensitive to poor weather forecasts.

Thus, CyAM uses artificial intelligence to forecast air pollution concentrations at 
individual air quality measurement stations. It takes few available parameters which 
are available as forecasts. With historic data, it builds a temporal algorithm based on 
standard error backpropagation [2]. CyAM also uses air pollution measurement 
data, weather data/weather forecast data, calendric data and special events. The AI 

Fig. 5 City air management visualization and process
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finds correlations and patterns in this data to predict air pollution for individual 
measurement stations. It doesn’t contain any knowledge about the physical and 
chemical processes, responsible for these concentrations. Based on real-time data 
and forecasts of weather – and calendric/event data – a 5-day forecast is provided. 
The Advantage is a model which has high precision, takes little computing power 
during operation and requires few data points.

Intervention Impact Calculation
In order to calculate impacts of individual measures, a domain model is inevitable. 
But it only models the emissions which can actually be impacted by interventions, 
in this case traffic related. The traffic emissions are calculated for each hour of the 
following 5 days based on assumptions from historic data, calendric information 
and temperature forecasts for the baseline. Emissions for scenarios are then calcu-
lated for each intervention in SimaPro. Tailpipe emissions are based on HBEFA [3]. 
Some example interventions for specific street sections are:

• Allocation of eBuses on the lines passing the street section.
• Temporary driving ban of trucks or diesel cars for the street section.
• Low emission zones for the street section.
• Public transport ticket for air pollution season.

The local traffic-related share of the forecasted concentrations at the hotspot 
measurement station is determined correlating the forecasts of individual measure-
ment stations in different locations. The combination of the traffic emission sce-
narios, the emission forecast and the traffic-related contribution of the forecasted 
concentration enables the prediction of the interventions’ impact (Fig. 5).

6.2  Results

The accuracy of the forecast is measured by identifying how many of the 30% most 
polluted days were accurately predicted 5 days ahead of time. For NO2 at the most 
polluted measurement station in Nuremberg, which is the lead indicator and loca-
tion, this is 80%. Since it is an operational web service, the results are visualized on 
a dashboard as to be seen in the top three screenshots of Fig. 5. To evaluate the 
efficiency of the traffic interventions, the very same methodology is used as an ex 
post evaluation during the consulting phase of the project when the city selects 
which interventions they would like to have on the dashboard. The efficiency 
increase of temporary vs. all year-round measures is visualized in Fig. 6. The graph 
shows the results of the flexible truck ban for an individual road section in Nuremberg 
as a sum curve. The impact of the intervention is calculated for every day, relative 
to the annual saving. The jagged line is the historical sum curve from January 1 (on 
the very left, day 1) to December 31 (on the very right, day 365); see x-axis for the 
number of days per year. The smooth line sums up these savings, starting with the 
most efficient day of the year (on the very left, day 1), no matter if it is in January 
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or December, ending with the least efficient day of the year (on the very right, 
day 365).

6.3  Interpretation

The spread between these two lines shows the potential efficiency increase by 
implementing an intervention on a temporary basis, compared to an all year-round 
implementation. If a street section driving ban for trucks was implemented on the 
70 most efficient days of the year, the yield in air pollution savings at the measure-
ment station would be 50% of an all year-round implementation. In return, the least 
efficient 200 days, where there is enough wind to reduce emissions, only yield 20%. 
The efficiency of interventions measured as local air quality increase over days with 
traffic restrictions is most significant the fewer days they are triggered. Due to the 
fact that the forecast is not 100% accurate, the efficiency of the operational system 
is slightly lower, but cannot be determined at this stage of the project. Despite the 
efficiency, few cities apply such methods until now [4].

7  Conclusion

The use of environmental target functions in control systems has large potentials, 
reducing both global and local environmental impacts. Even when compared to 
economically optimized control strategies, environmental target function-based 
optimization can deliver significantly better environmental results. This is true even 

Fig. 6 Example efficiency of temporary vs. all year-round measures
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if cost of GHG emissions is priced in to some degree already at the energy markets, 
for example. The potential depends on the flexibility that is controlled and the vola-
tility of the environmental impact. For some systems, environmental optimization- 
based control systems become absolutely crucial to create net environmental 
benefits compared to fossil-based processes. A large-scale hydrogen electrolysis for 
methanol production from CO2 requires an optimization based on short-term prog-
nosis for global warming impact of power production in order to meet the target of 
net reduction of greenhouse gas emissions.

From a methodological point of view, conventional LCA software and tools can 
deliver the environmental cost or burden of any state of the system for control pur-
poses. The temporal and spatial resolution has to reflect the resolution at which any 
control system or short-term advisory tool operates.
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