Skip to main content

Physics and Devices of Superconductive Electronics

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design
  • 1182 Accesses

Abstract

In this chapter, the phenomenon of superconductivity is introduced. A theoretical framework for the analysis of low temperature superconductive materials—the London, Ginzburg-Landau, and Bardeen-Cooper-Schrieffer theories—is described. The defining features of superconductive materials are discussed, along with different types of materials and characteristics. The properties of these materials are emphasized in relation to superconductive electronics. As compared to conventional transistor-based circuits, superconductive electronics utilize a different set of basic devices as building blocks of larger circuits. These basic devices are introduced in this chapter. The properties and dynamic behavior of Josephson junctions are discussed with intuitive analogies describing both the dynamic behavior and classic circuit models. Important cryogenic devices commonly used in superconductive electronics are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. K. Onnes, “Investigations into the Properties of Substances at Low Temperatures, Which Have Led, Amongst Other Things, to the Preparation of Liquid Helium,” Nobel Lecture, vol. 4, December 1913.

    Google Scholar 

  2. D. A. Buck, “The Cryotron – a Superconductive Computer Component,” Proceedings of the IRE, vol. 44, no. 4, pp. 482–493, April 1956.

    Article  Google Scholar 

  3. B. D. Josephson, “Possible New Effects in Superconductive Tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, July 1962.

    Article  Google Scholar 

  4. J. G. Bednorz and K. A. Müller, “Possible High T c Superconductivity in the Ba–La–Cu–O System,” Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–193, June 1986.

    Article  Google Scholar 

  5. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond Superconducting Single-Photon Optical Detector,” Applied Physics Letters, vol. 79, no. 6, pp. 705–707, August 2001.

    Article  Google Scholar 

  6. G. Krylov and E. G. Friedman, “Behavioral Verilog-A Model of Superconductor-Ferromagnetic Transistor,” Proceedings of the IEEE International Symposium on Circuits and Systems, May 2018.

    Google Scholar 

  7. G. Krylov and E. G. Friedman, “Sense Amplifier for Spin-Based Cryogenic Memory Cells,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 5, pp. 1–4, Art no. 1 501 804, August 2019.

    Google Scholar 

  8. F. London and H. London, “The Electromagnetic Equations of the Supraconductor,” Proceedings of the Royal Society of London. Series A – Mathematical and Physical Sciences, vol. 149, no. 866, pp. 71–88, March 1935.

    MATH  Google Scholar 

  9. V. L. Ginzburg, “On Superconductivity and Superfluidity,” Nobel Lecture, December 2003.

    Google Scholar 

  10. P. C. Hohenberg and A. P. Krekhov, “An Introduction to the Ginzburg–Landau Theory of Phase Transitions and Nonequilibrium Patterns,” Physics Reports, vol. 572, pp. 1–42, April 2015.

    Article  MathSciNet  Google Scholar 

  11. V. L. Ginzburg, “Superfluidity and Superconductivity in Astrophysics,” Comments on Astrophysics and Space Physics, vol. 1, pp. 81–86, May 1969.

    Google Scholar 

  12. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity,” Physical Review, vol. 108, no. 5, pp. 1175–1204, December 1957.

    Article  MathSciNet  Google Scholar 

  13. L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas,” Physical Review, vol. 104, pp. 1189–1190, November 1956.

    Article  Google Scholar 

  14. V. F. Weisskopf, The Formation of Cooper Pairs and the Nature of Superconducting Currents, CERN, Switzerland, 1979.

    Google Scholar 

  15. B. V. Svistunov, E. S. Babaev, and N. V. Prokof’ev, Superfluid States of Matter, CRC Press, 2015.

    Book  Google Scholar 

  16. W. Meissner and R. Ochsenfeld, “Ein Neuer Effekt bei Eintritt der Supraleitfähigkeit,” Naturwissenschaften, vol. 21, no. 44, pp. 787–788, November 1933.

    Article  Google Scholar 

  17. L. H. Greene, “High-Temperature Superconductors: Playgrounds for Broken Symmetries,” AIP Conference Proceedings, vol. 795, no. 1, pp. 70–82, October 2005.

    Article  Google Scholar 

  18. S. A. Kivelson and D. S. Rokhsar, “Bogoliubov Quasiparticles, Spinons, and Spin-Charge Decoupling in Superconductors,” Physical Review B, vol. 41, pp. 11 693–11 696, June 1990.

    Google Scholar 

  19. A. I. Golovashkin and N. P. Shabanova, “Temperature Dependence of Critical Magnetic Fields and Electronic Characteristics of Nb3Ge Films,” Soviet Physics, JETP, vol. 55, no. 3, pp. 503–508, March 1982.

    Google Scholar 

  20. A. B. Pippard, “Field Variation of the Superconducting Penetration Depth,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 203, no. 1073, pp. 210–223, May 1950.

    Google Scholar 

  21. J. E. Sonier, The Magnetic Penetration Depth and the Vortex Core Radius in Type-II Superconductors, Ph.D. Dissertation, University of British Columbia, Vancouver, Canada, 1998.

    Google Scholar 

  22. A. A. Abrikosov, “Nobel Lecture: Type-II Superconductors and the Vortex Lattice,” Reviews of Modern Physics, vol. 76, pp. 975–979, December 2004.

    Article  Google Scholar 

  23. R. A. French, “Intrinsic Type-2 Superconductivity in Pure Niobium,” Cryogenics, vol. 8, no. 5, pp. 301–308, October 1968.

    Article  Google Scholar 

  24. H. A. Boorse, D. B. Cook, and M. W. Zemansky, “Superconductivity of Lead,” Physical Review, vol. 78, pp. 635–636, June 1950.

    Article  Google Scholar 

  25. I. S. Khukhareva, “The Superconducting Properties of Thin Aluminum Films,” Soviet Physics, JETP, vol. 16, pp. 828–832, April 1963.

    Google Scholar 

  26. G. Behrens, W. Campbell, D. Williams, and S. White, “Guidelines for the Design of Cryogenic Systems,” NRAO Electronic Division Internal Report, no. 306, 1997.

    Google Scholar 

  27. A. Schilling, M. Cantoni, J. Guo, and H. Ott, “Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System,” Nature, vol. 363, no. 6424, pp. 56–58, May 1993.

    Article  Google Scholar 

  28. K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, 1986.

    Google Scholar 

  29. J. Clarke, “Supercurrents in Lead-Copper-Lead Sandwiches,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 308, no. 1495, pp. 447–471, January 1969.

    Google Scholar 

  30. K. K. Likharev, “Superconducting Weak Links,” Reviews of Modern Physics, vol. 51, pp. 101–159, January 1979.

    Article  Google Scholar 

  31. S. K. Tolpygo, “Superconductor Digital Electronics: Scalability and Energy Efficiency Issues,” Low Temperature Physics, vol. 42, no. 5, pp. 361–379, June 2016.

    Article  Google Scholar 

  32. R. Gross, A. Marx, and F. Deppe, Applied Superconductivity: Josephson Effect and Superconducting Electronics, Walter De Gruyter Incorporated, 2016.

    Google Scholar 

  33. W. C. Stewart, “Current-Voltage Characteristics of Josephson Junctions,” Applied Physics Letters, vol. 12, no. 8, pp. 277–280, April 1968.

    Article  Google Scholar 

  34. D. E. McCumber, “Effect of AC Impedance on DC Voltage-Current Characteristics of Superconductor Weak-Link Junctions,” Journal of Applied Physics, vol. 39, no. 7, pp. 3113–3118, June 1968.

    Article  Google Scholar 

  35. E. E. Wollman, V. B. Verma, A. E. Lita, W. H. Farr, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Kilopixel Array of Superconducting Nanowire Single-Photon Detectors,” Optics Express, vol. 27, no. 24, pp. 35 279–35 289, November 2019.

    Google Scholar 

  36. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting Nanowire Single-Photon Detectors: Physics and Applications,” Superconductor Science and Technology, vol. 25, no. 6, p. 063001, April 2012.

    Google Scholar 

  37. A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Letters, vol. 14, no. 10, pp. 5748–5753, September 2014.

    Article  Google Scholar 

  38. I. P. Nevirkovets, O. Chernyashevskyy, G. V. Prokopenko, O. A. Mukhanov, and J. B. Ketterson, “Control of Supercurrent in Hybrid Superconducting–Ferromagnetic Transistors,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1–5, June 2015.

    Article  Google Scholar 

  39. I. P. Nevirkovets, O. Chernyashevskyy, G. V. Prokopenko, O. A. Mukhanov, and J. B. Ketterson, “Superconducting-Ferromagnetic Transistor,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 4, pp. 1–6, August 2014.

    Article  Google Scholar 

  40. S. Faris, S. Raider, W. Gallagher, and R. Drake, “Quiteron,” IEEE Transactions on Magnetics, vol. 19, no. 3, pp. 1293–1295, May 1983.

    Article  Google Scholar 

  41. S. Shafranjuk, I. Nevirkovets, O. Mukhanov, and J. Ketterson, “Control of Superconductivity in a Hybrid Superconducting/Ferromagnetic Multilayer using Nonequilibrium Tunneling Injection,” Physical Review Applied, vol. 6, no. 2, p. 024018, August 2016.

    Google Scholar 

  42. A. I. Buzdin, “Proximity Effects in Superconductor-Ferromagnet Heterostructures,” Reviews of Modern Physics, vol. 77, no. 3, pp. 935–976, September 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Friedman, E.G. (2022). Physics and Devices of Superconductive Electronics. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-030-76885-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76885-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76884-3

  • Online ISBN: 978-3-030-76885-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics