Skip to main content

Endosperm Oil Biosynthesis: A Case Study for Trait Related Gene Evolution in Coconut

  • Chapter
  • First Online:
The Coconut Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 360 Accesses

Abstract

Coconut palm is one of the important vegetable oil crops of the tropics and sub-tropics. Studies delineating the oil biosynthesis in coconut palm are of paramount importance due to its market potential and quality [high proportion of medium-chain fatty acids (MCFAs), especially lauric acid]. The availability of coconut transcriptome data, coconut genome assemblies, and functional gene expression profiles has greatly aided in systematically identifying Arabidopsis orthologs involved in lipid and carbohydrate metabolic pathways. These findings could provide valuable information into the evolutionary relationships between the lipid and carbohydrate metabolism pathways, identifying genes involved in regulating quantitative and qualitative variation in fatty acid and lipid components. This chapter reviews the genes involved in coconut endosperm fatty acid and triacylglycerol (TAG) synthesis and the findings of comparative genomics into the fruit composition, oil biosynthesis, fatty acid composition, and oil quality in coconut. A roadmap for future work on the subject is highlighted for exploiting the oil biosynthesis genes in the coconut palm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29(6):521–527

    Article  CAS  Google Scholar 

  • Angeles JG, Lado JP, Pascual ED, Cueto CA, Laurena AC, Laude RP (2018) Towards the understanding of important coconut endosperm phenotypes: is there an epigenetic control? Agronomy 8(10):225

    Article  CAS  Google Scholar 

  • Arunachalam V, Rajesh MK (2017) Coconut genetic diversity, conservation and utilization. In: Ahuja MR, Jain SM (eds). Biodiversity and conservation of woody plants, pp 3–36. Springer International Publishing AG

    Google Scholar 

  • Babu BK, Mathur RK, Kumar PN, Ramajayam D, Ravichandran G, Venu MVB (2017) Development, identification and validation of CAPS marker for SHELL trait which governs dura, pisifera and tenera fruit forms in oil palm (Elaeis guineensis Jacq.). PLoS One 12(2):e0171933. https://doi.org/10.1371/journal.pone.0171933

  • Bai B, Wang L, Lee M, Zhang Y, Alfiko Y, Ye BQ, Wan ZY, Lim CH, Suwanto A, Chua NH, Yue GH (2017) Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17:93

    Article  Google Scholar 

  • Balleza CF, Sierra ZN (1972) Proximate analysis of the coconut endosperm in progressive stages of development. Phil J Coco Stud 16:37–43

    Google Scholar 

  • Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16:358–364

    Article  CAS  Google Scholar 

  • Baudouin L, Lebrun P, Konan JL, Ritter E, Berger A, Billotte N (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112(2):258–268

    Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Aca Sci USA 108(30):12527–12532

    Article  CAS  Google Scholar 

  • Bourrellier AB, Valot B, Guillot A, Ambard-Bretteville F, Vidal J, Hodges M (2010) Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci USA 107:502–507

    Article  CAS  Google Scholar 

  • Ceniza MS, Ueda S, Sugimura Y (1974) In vitro culture of coconut endosperm: Callus induction and its fatty acids. Phil J Coco Stud 18(2):16–19

    Google Scholar 

  • Child R (1974) Coconuts, 2nd ed. Longman Group Ltd., London, UK. ISBN0-582-46675-X

    Google Scholar 

  • Dorni C, Sharma P, Saikia G, Longvah T (2018) Fatty acid profile of edible oils and fats consumed in India. Food Chem 238:9–15

    Article  CAS  Google Scholar 

  • Du ZY, Arias T, Meng W, Chye ML (2016) Plant acyl-CoA-binding proteins: an emerging family involved in plant development and stress responses. Prog Lipid Res 63:165–181

    Article  CAS  Google Scholar 

  • Dumhai R, Wanchana S, Saensuk C, Choowongkomon K, Mahatheeranont S, Kraithong T, Toojinda T, Vanavichit A, Arikit S (2019) Discovery of a novel CnAMADH2 allele associated with higher levels of 2-acetyl-1-pyrroline (2AP) in yellow dwarf coconut (Cocos nucifera L.). Sci Hortic 243:490–497

    Article  CAS  Google Scholar 

  • Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F (2013) Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162(3):1337–1358

    Article  CAS  Google Scholar 

  • Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B (2020) Research advances of WRINKLED1 (WRI1) in plants. Funct Plant Biol 47(3):185–194

    Article  Google Scholar 

  • Feng D, Gao L, Zheng Y, Li D, Zhou P (2020) Molecular cloning and function characterisation of a cytoplasmic fructose-1, 6-bisphosphate aldolase gene from coconut (Cocos nucifera L.). The J Hortic Sci Biotechnol 95(6):703–711

    Google Scholar 

  • Gao L, Sun R, Liang Y, Zhang M, Zheng Y, Li D (2014) Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.). Gene 549(1):70–76

    Google Scholar 

  • Guerin C, Serret J, Montúfar R, Vaissayre V, Bastos-Siqueira A, Durand-Gasselin T, Tregear J, Morcillo F, Dussert S (2020) Palm seed and fruit lipid composition: phylogenetic and ecological perspectives. Ann Bot 125(1):157–172

    Article  CAS  Google Scholar 

  • Ithnin M, Xu Y, Marjuni M, Serdari NM, Amiruddin MD, Low ET, Tan YC, Yap SJ, Ooi LC, Nookiah R, Singh R (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genom 13:103

    Article  Google Scholar 

  • Jeennor S, Volkaert H (2014) Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 10:1–14. https://doi.org/10.1007/s11295-013-0655-3

    Article  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kartha ARS (1964) Biosynthesis of fat in ripening coconut: the in vivo ‘quantum’ synthesis of triglycerides. J Sci Food Agric 15(5):299–302

    Article  CAS  Google Scholar 

  • Kong Q, Yang Y, Guo L, Yuan L, Ma W (2020) Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor. Front Plant Sci 11:24. https://doi.org/10.3389/fpls.2020.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostik V, Memeti S, Bauer B (2013) Fatty acid composition of edible oils and fats. JHED 4:112–116

    Google Scholar 

  • Kumar SN (2011) Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil. J Agric Food Chem 59:13050–13058

    Article  CAS  Google Scholar 

  • Kumar A, Samsudeen K (2018) Seasonal variation and developmental changes in the biochemical composition of coconut kernel in Mohachao Narel, a sweet endosperm coconut (Cocos nucifera L.) population from Maharashtra. Trends Biosci 11:1599–1603

    Google Scholar 

  • Kushairi A, Loh SK, Azman I, Hishamuddin E, Ong-Abdullah M, Izuddin ZB, Razmah G, Sundram S, Parveez GK (2018) Oil palm economic performance in Malaysia and R&D progress in 2017. J Oil Palm Res 30:163–195. https://doi.org/10.21894/jopr.2018.0030

  • Lantican D, Strickler S, Canama A, Gardoce R, Mueller L, Galvez H (2018) The coconut genome: providing a reference sequence towards coconut varietal improvement. In: Proceedings of the plant and animal genome XXVI conference, San Diego, CA, USA, pp 13–17

    Google Scholar 

  • Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF (2019) De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. ‘Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3: Genes Genomes Genet 9:6

    Google Scholar 

  • Laureles LR, Rodriguez FM, ReanËœo CE, Santos GA, Laurena AC, Mendoza EMT (2002) Variability in fatty acid and triacylglycerol composition of the oil of coconut (Cocos nucifera L.) hybrids and their parentals. J Agric Food Chem 50:1581–1586

    Google Scholar 

  • Li D, Zheng Y, Wan L, Zhu X, Wang Z (2009) Differentially expressed microRNAs during solid endosperm development in coconut (Cocos nucifera L.). Sci Hortic 122(4):666–669

    Google Scholar 

  • Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Li D (2014) Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC Plant Biol 14(1):205

    Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133. Published online 2010 Jun 11. https://doi.org/10.1199/tab.0133

  • Manohar AN, Lantican DV, Dancel MP, Gardoce RR, Galvez HF (2019) Genome-guided molecular characterization of oil genes in coconut (Cocos nucifera L.). Philipp J Sci 148(S1):183–191

    Google Scholar 

  • Naresh Kumar S (2007) Capillary gas chromatography method for fatty acid analysis of coconut oil. J Plantn Crops 35:23–27

    Google Scholar 

  • Naresh Kumar S, Champakam B, Rajagopal V (2000) Fatty acid composition of coconut oil among the cultivars—an insight into industrial application. Ind Coconut J 31:25–28

    Google Scholar 

  • Naresh Kumar S, Champakam B, Rajagopal V (2004) Variability in coconut cultivars for lipid and fatty acid composition of oil. Trop Agric (trinidad and Tobago) 81(1):34–40

    Google Scholar 

  • Nguyen QT, Bandupriya HD, Foale M, Adkins SW (2016) Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiol Biochem 109:579–589

    Article  CAS  Google Scholar 

  • Osorio-Guarín JA, Garzón-Martínez GA, Delgadillo-Duran P, Bastidas S, Moreno LP, Enciso-Rodríguez FE, Cornejo OE, Barrero LS (2019) Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population. BMC Plant Biol 19:533. https://doi.org/10.1186/s12870-019-2153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoeurk C, Somana J, Sornwatana T, Udompaisarn S, Traewachiwiphak S, Sirichaiyakul P, Phongsak T, Arthan D (2018) Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut. Phytochem 156:33–42

    Article  CAS  Google Scholar 

  • Rajesh MK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ (2020) Assembly and annotation of the nuclear and organellar genomes of a dwarf coconut (Chowghat Green Dwarf) Possessing enhanced disease resistance. OMICS A J Integ Biol 24(12):726–742

    Google Scholar 

  • Ramesh SV, Krishnan V, Praveen S, Hebbar KB (2019) Coconut oil–scientific facts. Curr Sci 117(4):564–565

    CAS  Google Scholar 

  • Ramesh SV, Pandiselvam R, Thushara R, Manikantan MR, Hebbar KB, Beegum S, Mathew AC, Neenu S, Shil S (2020) Engineering intervention for production of virgin coconut oil by hot process and multivariate analysis of quality attributes of virgin coconut oil extracted by various methods. J Food Process Eng 43(6):e13395

    Article  CAS  Google Scholar 

  • Rance KA, Mayes S, Price Z, Jack PL, Corley RH (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 103:1302–1310

    Article  CAS  Google Scholar 

  • Reynolds KB, Cullerne DP, El Tahchy A, Rolland V, Blanchard CL, Wood CC, Singh SP, Petrie JR (2019) Identification of genes involved in lipid biosynthesis through de novo transcriptome assembly from Cocos nucifera developing endosperm. Plant Cell Physiol 60(5):945–960

    Article  CAS  Google Scholar 

  • Rodriguez FM, Laurena AC, Laureles LR, Santos GA, Mendoza EM (1998) Determination of fatty acid and triglyceride composition of different coconut (Cocos nucifera L.) cultivars and hybrids. Phil J Crop Sci 23:84

    Google Scholar 

  • Samsudeen K, Rajesh MK, Nagwaker DD, Reshmi R, Kumar PA, Devadas K, Anitha K (2013) Diversity in Mohachao Narel, a sweet endosperm coconut (Cocos nucifera L.) population from Maharashtra, India. Natl Acad Sci Lett 36(3):319-330

    Google Scholar 

  • Schuch R, Winter E, Bruck FM, Brummel M, Spener F (1997) β-Ketoacyl-acyl carrier protein synthases in the regulation of fatty acid synthase activity in higher plants-an overview. Fett-Lipid 99(8):278–281

    Article  CAS  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, Ooi LC, Ooi SE, Chan KL, Halim MA, Azizi N (2013) Oil palm genome sequence reveals divergence of inter fertile species in old and new worlds. Nature 500(7462):335–339

    Article  CAS  Google Scholar 

  • Smith BG (1991) Oil palm breeding: the potential for using physiological selection criteria. Paper presented at International oil palm conference, Kuala Lumpur

    Google Scholar 

  • Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y (2017) Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci 8:63

    Google Scholar 

  • Teh CK, Ong AL, Kwong QB, Apparow S, Chew FT, Mayes S, Mohamed M, Appleton D, Kulaveerasingam H (2016) Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 6:19075

    Article  CAS  Google Scholar 

  • Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156(2):564–584

    Article  CAS  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027

    Article  CAS  Google Scholar 

  • Wong YC, Teh HF, Mebus K, Ooi TE, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H (2017) Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 18:470. https://doi.org/10.1186/s12864-017-3855-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Chye ML (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151

    Article  CAS  Google Scholar 

  • Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J (2017) The genome draft of coconut (Cocos nucifera). Giga Sci 6(11):p.gix095

    Google Scholar 

  • Xiao Y, Xia W, Mason AS, Cao Z, Fan H, Zhang B, Zhang J, Ma Z, Peng M, Huang D (2019) Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera). Planta 249(2):333–350

    Article  CAS  Google Scholar 

  • Yuan Y, Chen Y, Yan S, Liang Y, Zheng Y, Dongdong L (2014) Molecular cloning and characterisation of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. Funct Plant Biol 41(1):80–86

    Article  CAS  Google Scholar 

  • Yuan Y, Liang Y, Gao L, Sun R, Zheng Y, Li D (2015) Functional heterologous expression of a lysophosphatidic acid acyltransferase from coconut (Cocos nucifera L.) endosperm in Saccharomyces cerevisiae and Nicotiana tabacum. Sci Hortic 192:224–230

    Article  CAS  Google Scholar 

  • Yuan Y, Liang Y, Li B, Zheng Y, Luo X, Dongdong L (2015) Cloning and function characterization of a β-Ketoacyl-acyl-ACP Synthase I from Coconut (Cocos nucifera L.) endosperm. Plant Mol Biol Rep 33:1131–1140. https://doi.org/10.1007/s11105-014-0816-z

    Article  CAS  Google Scholar 

  • Yuan Y, Gao L, Sun R, Yu T, Liang Y, Li D, Zheng Y (2017) Seed-specific expression of an acyl-acyl carrier protein thioesterase CnFatB3 from coconut (Cocos nucifera L.) increases the accumulation of medium-chain fatty acids in transgenic Arabidopsis seeds. Sci Hortic 223:5–9

    Article  CAS  Google Scholar 

  • Zheng Y, Jin Y, Yuan Y, Feng D, Chen L, Li D, Zhou P (2019) Identification and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from the endosperm of coconut (Cocos nucifera L.). Gene 702:75–82

    Article  CAS  Google Scholar 

  • Zhou L, Yarra R, Cao H (2020) SSR based association mapping analysis for fatty acid content in coconut flesh and exploration of the elite alleles in Cocos nucifera L. Curr Plant Biol 21:100141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arunachalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arunachalam, V., Ramesh, S.V., Paulraj, S., Babu, B.K., Muralikrishna, K.S., Rajesh, M.K. (2021). Endosperm Oil Biosynthesis: A Case Study for Trait Related Gene Evolution in Coconut. In: Rajesh, M.K., Ramesh, S.V., Perera, L., Kole, C. (eds) The Coconut Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-76649-8_10

Download citation

Publish with us

Policies and ethics