Skip to main content

Chemistry and Applications of Propolis

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 74 Accesses

Abstract

Propolis (bee glue) is a sticky resinous product manufactured by honeybees. In this book, dedicated to plant resins, propolis has a very special place: It is the only material which comes not from plants but from animals, from bees. This chapter summarizes the present status of knowledge on propolis: the approaches to its chemical analysis, the different chemical types of propolis, and the numerous plant resins known as propolis botanical sources. It demonstrates the potential of bee glue as a source of new chemical structures and new biologically active compounds due to its chemical diversity, resulting from the diversity of plant sources. The versatile and valuable biological activities of propolis have been reviewed, together with its diverse applications in medicine, dentistry, pharmacy, animal husbandry, beekeeping, food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Smone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63:3016–3022

    Article  Google Scholar 

  2. Ghisalberti EL (1979) Propolis: a review. Bee World 60:59–84

    Article  CAS  Google Scholar 

  3. Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 133:253–260

    Article  PubMed  CAS  Google Scholar 

  4. Zulhendri F, Chandrasekaran K, Kowacz M, Ravalia M, Kripal K, Fearnley J, Perera CO (2021) Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: a review. Foods 10:1360. https://doi.org/10.3390/foods10061360

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crane E (1990) Bees and beekeeping: science, practice and world resources. Heinemann Newnes, Oxford

    Google Scholar 

  6. Salatino A, Teixeira ÉW, Negri G (2005) Origin and chemical variation of Brazilian propolis. Evid Based Complement Alternat Med 2:33–38

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langenheim JH (1990) Plant resins. Am Sci 78:16–24

    Google Scholar 

  8. Salatino A, Salatino MLF (2017) Why do honeybees exploit so few plant species as propolis sources? MOJ Food Process Technol 41:58–160. https://doi.org/10.15406/mojfpt20170400107

    Article  Google Scholar 

  9. Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311

    Article  Google Scholar 

  10. Bankova V, Popova M, Trusheva B (2018) The phytochemistry of the honeybee. Phytochemistry 155:1–11

    Article  PubMed  CAS  Google Scholar 

  11. Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342

    Article  Google Scholar 

  12. Leonhardt SD, Blüthgen N (2009) A sticky affair: resin collection by Bornean stingless bees. Biotropica 41:730–736

    Article  Google Scholar 

  13. Popova M, Trusheva B, Bankova V (2021) Propolis of stingless bees: a phytochemist’s guide through the jungle of tropical biodiversity. Phytomedicine 86:153098

    Article  PubMed  CAS  Google Scholar 

  14. Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363

    Article  PubMed  CAS  Google Scholar 

  15. Bankova V, Trusheva B, Popova M (2021) Propolis extraction methods: a review. J Apic Res. https://doi.org/10.1080/0021883920211901426

  16. Milojković-Opsenica D, Ristivojević P, Andrić F, Trifković J (2013) Planar chromatographic systems in pattern recognition and fingerprint analysis. Chromatographia 76:1239–1247. https://doi.org/10.1007/s10337-013-2423-9

    Article  CAS  Google Scholar 

  17. Ristivojević P, Andrić FL, Trifković JD, Vovk I, Stanisavljević LŽ, Tešić ŽL, Milojković-Opsenica DM (2014) Pattern recognition methods and multivariate image analysis in HPTLC fingerprinting of propolis extracts. J Chemom 28:301–310

    Article  Google Scholar 

  18. Milojković-Opsenica D, Ristivojević P, Trifković J, Vovk I, Lušić D, Tešić Ž (2016) TLC fingerprinting and pattern recognition methods in the assessment of authenticity of poplar-type propolis. J Chromatogr Sci 54:1077–1083. https://doi.org/10.1093/chromsci/bmw024

    Article  PubMed  CAS  Google Scholar 

  19. Markham KR, Mitchell KA, Wilkins AL, Daldy JA, Lu Y (1996) HPLC and GC-MS identification of the major organic constituents in New Zeland propolis. Phytochemistry 42:205–211

    Article  CAS  Google Scholar 

  20. Sawaya ACHF, Cunha IBS, Marcucci MC (2011) Analytical methods applied to diverse types of Brazilian propolis. Chem Cent J 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Herzler M, Herre S, Pragst F (2003) Selectivity of substance Identification by HPLC-DAD in toxicological analysis using a UV spectra library of 2682 compounds. J Anal Toxicol 27:233–242

    Article  PubMed  CAS  Google Scholar 

  22. Falcão S, Vilas-Boas M, Estevinho LM, Barros C, Domingues MRM, Cardoso SM (2010) Phenolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Anal Bioanal Chem 396:887–897. https://doi.org/10.1007/s00216-009-3232-8

    Article  PubMed  CAS  Google Scholar 

  23. Marcucci MC, Ferreres F, Custódio AR, Ferreira MMC, Bankova VS, García-Viguera C, Bretz WA (2000) Evalution of phenolic compounds in Brazilian propolis from different geographic regions. Z Naturforsch C J Biosci 55:76–81

    Article  PubMed  CAS  Google Scholar 

  24. Pellati F, Orlandini G, Pinetti D, Benvenuti S (2011) HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J Pharm Biomed Anal 55:934–948

    Article  PubMed  CAS  Google Scholar 

  25. Kumazawa S, Nakamura J, Murase M, Miyagawa M, Ahn M-R, Fukumoto S (2008) Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften 95:781. https://doi.org/10.1007/s00114-008-0383-y

    Article  PubMed  CAS  Google Scholar 

  26. Kasiotis KM, Anastasiadou P, Papadopoulos A, Machera K (2017) Revisiting Greek propolis: chromatographic analysis and antioxidant Activity study. PLoS One 12(1):e0170077

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, N, KF, Suen MWM, Tai HL (2003) Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev 24:3–12

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Volpi N, Bergonzini G (2006) Analysis of flavonoids from propolis by on-line HPLC–electrospray mass spectrometry. J Pharm Biomed Anal 42:354–361

    Article  PubMed  CAS  Google Scholar 

  29. Righi AA, Negri G, Salatino A (2013) Comparative chemistry of propolis from eight Brazilian localities. Evid Based Complement Alternat Med 2013:267878. https://doi.org/10.1155/2013/267878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu Q, Wu H-L, Liu Z, Xiao R, Wang T, Hu Y, Ding Y-J, Yu R-Q (2018) Chemometrics-assisted HPLC-DAD as a rapid and interference-free strategy for simultaneous determination of 17 polyphenols in raw propolis. Anal Methods 10:5577–5588

    Article  CAS  Google Scholar 

  31. Murray KK (2002) Coupling matrix-assisted laser desorption/ionization to liquid separations. Mass Spectrom Rev 16:283–299

    Article  Google Scholar 

  32. Bankova V, Bertelli D, Borba R, Conti BJ, da Silva Cunha IB, Danert C, Eberlin MN, Falcão SI, Isla MI, Nieva Moreno MI, Papotti G, Popova M, Santiago KB, Salas A, Sawaya ACHF, Schwab NV, Sforcin JM, Simone-Finstrom M, Spivak M, Trusheva B, Vilas-Boas M, Michael Wilson M, Zampini C (2019) Standard methods for Apis mellifera propolis research. J Apic Res 58:1–49

    Article  Google Scholar 

  33. Saftić L, Peršurić Ž, Fornal E, Pavlešić T, Pavelić SK (2019) Targeted and untargeted LC-MS polyphenolic profiling and chemometric analysis of propolis from different regions of Croatia. J Pharm Biomed Anal 165:162–172

    Article  PubMed  Google Scholar 

  34. Pavlovic R, Borgonovo G, Leoni V, Giupponi L, Ceciliani G, Sala S, Bassoli A, Giorgi A (2020) Effectiveness of different analytical methods for the characterization of propolis: a case of study in Northern Italy. Molecules 25:504

    Article  PubMed Central  CAS  Google Scholar 

  35. Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In: Metz T (ed) Metabolic profiling, methods in molecular biology, vol 708. Humana Press. https://doi.org/10.1007/978-1-61737-985-7_11

    Chapter  Google Scholar 

  36. Greenaway W, Scaysbrook T, Whatley FR (1987) The analysis of bud exudate of Populus x euramericana, and of propolis, by gas chromatography–mass spectrometry. Proc Royal Soc B Biol Sci 232:249–272. https://doi.org/10.1098/rspb19870073

    Article  CAS  Google Scholar 

  37. Campo Fernández M, Cuesta-Rubio O, Rosado Perez A, Montes De Oca Porto R, Márquez Hernández I, Piccinelli AL, Rastrelli L (2008) GC-MS determination of isoflavonoids in seven red Cuban propolis samples. J Agric Food Chem 56:9927–9932

    Article  PubMed  Google Scholar 

  38. Popova M, Graikou K, Chinou I, Bankova V (2010) GC-MS Profiling of diterpene compounds in Mediterranean propolis from Greece. J Agric Food Chem 58:3167–3176

    Article  PubMed  CAS  Google Scholar 

  39. Kardar MN, Zhang T, Coxon GD, Watson DG, Fearnley J, Seidel V (2014) Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry 106:156–163

    Article  PubMed  CAS  Google Scholar 

  40. Rufatto LC, dos Santos DA, Marinho F, Henriques JAP, Ely MR, Moura S (2017) Red propolis: chemical composition and pharmacological activity. Asian Pac J Trop Biomed 7:591–598

    Article  Google Scholar 

  41. Bankova V, Popova M (2007) Propolis of stingless bees: a promising source of biologically active compounds. Pharmacogn Rev 1:88–92

    CAS  Google Scholar 

  42. Demarque DP, Dusi RG, de Sousa FDM, Grossi SM, Silvério MRS, Lopes NP, Espindola LS (2020) Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep 10:1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bertelli D, Papotti G, Bortolotti L, Marcazzan GL, Plessi M (2012) 1H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem Anal 23:260–266

    Google Scholar 

  44. Cuesta-Rubio O, Piccinelli AL, Campo Fernandez M, Márquez Hernández I, Rosado A, Rastrelli L (2007) Chemical characterization of Cuban propolis by HPLCPDA, HPLC-MS, and NMR: the brown, red, and yellow Cuban varieties of propolis. J Agric Food Chem 55:7502–7509

    Article  PubMed  CAS  Google Scholar 

  45. Watson DG, Peyfoon E, Zheng L, Lu D, Seidel V, Johnston B, Parkinson JA, Fearnley J (2006) Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin. Phytochem Anal 17:323–331

    Article  PubMed  CAS  Google Scholar 

  46. Papotti G, Bertelli D, Plessi M, Rossi MC (2010) Use of HR-NMR to classify propolis obtained using different harvesting methods. Int J Food Sci Technol 45:1610–1618

    Article  CAS  Google Scholar 

  47. Anđelković B, Vujisić L, Vučković I, Tešević V, Vajs V, Gođevac D (2017) Metabolomics study of Populus type propolis. J Pharm Biomed Anal 135:217–226

    Article  PubMed  Google Scholar 

  48. Costa AG Jr, Yoshida NC, Garcez WS, Perdomo RT, Matos MFC, Garcez FR (2020) Metabolomics approach rxpands the classification of propolis samples from Midwest Brazil. J Nat Prod 83:333–343

    Article  PubMed  CAS  Google Scholar 

  49. Stavropoulou M-I, Stathopoulou K, Cheilari A, Benaki D, Gardikis K, Chinou I, Aligiannis N (2021) NMR metabolic profiling of Greek propolis samples: comparative evaluation of their phytochemical compositions and investigation of their anti-ageing and antioxidant properties. J Pharm Biomed Anal 194:113814

    Article  PubMed  CAS  Google Scholar 

  50. Marcucci MC (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26:83–99

    Article  CAS  Google Scholar 

  51. Popravko SA (1978) Chemical composition of propolis, its origin and standardization. In: A remarkable Hive product: PROPOLIS. Apimondia Publ House, Bucharest, pp 15–18

    Google Scholar 

  52. Bankova V, Marcucci MC (2000) Standardization of propolis: present status and perspectives. Bee World 81:182–188

    Article  Google Scholar 

  53. Bankova VS, De Catro SL, Marcucci MC (2000) Recent advances in chemistry and plant origin. Apidologie 31:3–15

    Article  CAS  Google Scholar 

  54. Popravko SA, Tikhomirova VI, Vulfson NS (1985) [Comparative study of the chemical composition and biological activity of propolis and its sources] In: Propolis. Apimondia Publishing House, Bucharest, pp 35–37 (in Russian)

    Google Scholar 

  55. Bankova V, Popova MP, Bogdanov S, Sabatini A-G (2002) Chemical composition of European propolis: expected and unexpected results. Z Naturforsch C J Biosci 57:30–33

    Google Scholar 

  56. Park YK, Paredes-Guzman JF, Aguiar CL, Alencar SM, Fujiwara FY (2004) Chemical constituents in Baccharis dracunculifolia as the main botanical origin of Southeastern Brazilian propolis. J Agric Food Chem 52:1100–1103

    Article  PubMed  CAS  Google Scholar 

  57. Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742

    Article  CAS  Google Scholar 

  58. Teixeira ÉW, Negri G, Meira RM, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92

    Article  PubMed  PubMed Central  Google Scholar 

  59. Salatino A, Fernandes-Silva CC, Righi AA, Salatino MLF (2011) Propolis research and the chemistry of plant products. Nat Prod Rep 28:925–936

    Article  PubMed  CAS  Google Scholar 

  60. Daugsch A, Moraes CS, Fort P, Park YK (2008) Brazilian red propolis – chemical composition and botanical origin. Evid Based Complement Alternat Med 5:435–441. https://doi.org/10.1093/ecam/nem057

    Article  PubMed  Google Scholar 

  61. Piccinelli AL, Lotti C, Campone L, Cuesta-Rubio O, Campo Fernandez M, Rastrelli L (2011) Cuban and Brazilian red propolis: botanical origin and comparative analysis by high-performance liquid chromatography–photodiode array detection/electrospray ionization tandem mass spectrometry. J Agric Food Chem 59:6484–6491

    Article  PubMed  CAS  Google Scholar 

  62. Shahinozzaman M, Obanda DN, Tawata S (2020) Chemical composition and pharmacological properties of Macaranga-type Pacific propolis: a review. Phytother Res 35:207–222

    Article  PubMed  Google Scholar 

  63. Chen CN, Wu CL, Shy HS, Lin JK (2003) Cytotoxic prenylflavanones from Taiwanese propolis. J Nat Prod 66:503–506

    Article  PubMed  CAS  Google Scholar 

  64. Popova MP (2013) Structural basis of antimicrobial activity of Mediterranean propolis. In: Farooqi T, Farooqui AA (eds) Beneficial effects of propolis on human health. NOVA Science Publishers, New York

    Google Scholar 

  65. Melliou E, Chinou I (2004) Chemical analysis and antimicrobial activity of Greek propolis. Planta Med 70:515–519

    Article  PubMed  CAS  Google Scholar 

  66. Popova MP, Chinou IB, Marekov IN, Bankova VS (2009) Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 70:1262–1271

    Article  PubMed  CAS  Google Scholar 

  67. Popova MP, Trusheva B, Cutajar S, Bankova V (2012) Identification of the plant origin of the botanical biomarkers of Mediterranean type propolis. Nat Prod Commun 7:569–570

    PubMed  CAS  Google Scholar 

  68. Pujirahayu N, Suzuki T, Katayama T (2019) Cycloartane-type triterpenes and botanical origin of popolis of singless Indonesian bee Tetragonula sapiens. Plan Theory 8:57. https://doi.org/10.3390/plants8030057

    Article  CAS  Google Scholar 

  69. Herrera-López MG, Rubio-Hernández EI, Richomme P, Schinkovitz A, Calvo-Irabién LM, Rodríguez LMP (2020) Resorcinolic lipids from Yucatecan propolis. J Braz Chem Soc 31:186–192. https://doi.org/10.21577/0103-505320190156

    Article  Google Scholar 

  70. Li F, Awale S, Zhang H, Tezuka Y, Esumi H, Kadota S (2009) Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J Nat Prod 72:1283–1287

    Article  PubMed  CAS  Google Scholar 

  71. Trusheva B, Popova M, Koendhori EB, Tsvetkova I, Naydenski C, Bankova V (2011) Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Res 25:606–613

    Article  PubMed  CAS  Google Scholar 

  72. Fikri AM, Popova M, Sulaeman A, Bankova V (2020) Stingless bees and Mangifera indica: a close relationship? Indian J Nat Prod Resour 11:130–134

    CAS  Google Scholar 

  73. Popova M, Dimitrova R, Al-Lawati HT, Tsvetkova I, Najdenski H, Bankova V (2013) Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources. Chem Cent J 7:1–8

    Article  Google Scholar 

  74. Trusheva B, Stancheva K, Gajbhiye N, Dimitrova R, Popova M, Saraf R, Bankova V (2016) Two new prenylated stilbenes with an irregular sesquiterpenyl side chain from propolis from Fiji Islands. Rec Nat Prod 10:465

    CAS  Google Scholar 

  75. Sanpa S, Popova M, Tunkasiri T, Eitssayeam S, Bankova V, Chantawannakul P (2017) Chemical profiles and antimicrobial activities of Thai propolis collected from Apis mellifera. Chiang Mai J Sci 44:438–448

    CAS  Google Scholar 

  76. Gallardo DG, Fajardo M, Alonso YN, Echemendía LSM, Copello JM (2020) Physical-chemical characterization and thin layer chromatographic comparison of a local propolis with the Mangifera indica resin. Pharm Biosci J 8:15–12

    Article  CAS  Google Scholar 

  77. Negri G, Silva CCF, Coelho GR, Nascimento RMD, Mendonça RZ (2019) Cardanols detected in non-polar propolis extracts from Scaptotrigona aff postica (Hymenoptera, Apidae, Meliponini). Braz J Food Technol 22:e2018265

    Article  CAS  Google Scholar 

  78. Araujo M, Bufalo M, Conti B, Fernandes ARY Jr, Trusheva B, Bankova V, Sforcin JM (2015) The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in Northeast Brazil. J Mol Pathophysiol 4:12–20

    Article  Google Scholar 

  79. Popova M, Gerginova D, Trusheva B, Simova S, Tamfu AN, Ceylan O, Bankova V (2021) A preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods 10:997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Murase M, Kato M, Sun A, Ono T, Nakamura J, Sato T, Kumazawa S (2008) Rhus javanica var chinensis as a new plant origin of propolis from Okayama, Japan. Biosci Biotechnol Biochem 72:2782–2784

    Google Scholar 

  81. Shimomura K, Inu S, Sugiyama Y, Kurosawa M, Nakamura J, Choi SJ, Kumazawa S (2012) Identification of the plant origin of propolis from Jeju Island, Korea, by observation of honeybee behavior and phytochemical analysis. Biosci Biotechnol Biochem 76:2135–2138

    Article  PubMed  CAS  Google Scholar 

  82. Popova M, Trusheva B, Antonova D, Cutajar S, Mifsud D, Farrugia C, Bankova V (2011) The specific chemical profile of Mediterranean propolis from Malta. Food Chem 126:1431–1435

    Article  CAS  Google Scholar 

  83. Trusheva B, Todorov I, Ninova M, Najdenski H, Daneshmand A, Bankova V (2010) Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis. Chem Cent J 4:1–4. https://doi.org/10.1186/1752-153X-4-8

    Article  CAS  Google Scholar 

  84. Bankova V, Marcucci MC, Simova S, Nikolova N, Kujumgiev A, Popov S (1996) Antibacterial diterpenic acids from Brazilian propolis. Z Naturforsch C J Biosci 51:277–280

    Article  PubMed  CAS  Google Scholar 

  85. Alday E, Valencia D, Garibay-Escobar A, Domínguez-Esquivel Z, Piccinelli AL, Rastrelli L, Velazquez C (2019) Plant origin authentication of Sonoran Desert propolis: an antiproliferative propolis from a semi-arid region. Sci Nat 106:25

    Article  Google Scholar 

  86. Almutairi S, Edrada-Ebel R, Fearnley J, Igoli JO, Alotaibi W, Clements CJ, Watson DG (2014) Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia. Phytochem Lett 10:160–163

    Article  CAS  Google Scholar 

  87. Georgieva K, Popova M, Dimitrova L, Trusheva B, Thanh LN, Phuong DTL, Bankova V (2019) Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS One 14:e0216074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Isidorov VA, Szczepaniak L, Bakier S (2014) Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem 142:101–106

    Article  PubMed  CAS  Google Scholar 

  89. Falcão SI, Tomás A, Vale N, Gomes P, Freire C, Vilas-Boas M (2013) Phenolic quantification and botanical origin of Portuguese propolis. Ind Crop Prod 49:805–812

    Article  Google Scholar 

  90. Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A, Aquino RP, Rastrelli L (2013) Chemical composition and antioxidant activity of Algerian propolis. J Agric Food Chem 61:5080–5088

    Article  PubMed  CAS  Google Scholar 

  91. Cuesta-Rubio O, Frontana-Uribe BA, Ramírez-Apan T, Cárdenas J (2002) Polyisoprenylated benzophenones in Cuban propolis; biological activity of nemorosone. Z Naturforsch C J Biosci 57:372–378

    Article  PubMed  CAS  Google Scholar 

  92. Trusheva B, Popova M, Bankova V, Simova S, Marcucci MC, Miorin PL, Tsvetkova I (2006) Bioactive constituents of Brazilian red propolis. Evid Based Complement Alternat Med 3:249–254

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tomás-Barberán FA, García-Viguera C, Vit-Olivier P, Ferreres F, Tomás-Lorente F (1993) Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 34:191–196

    Article  Google Scholar 

  94. Ishizu E, Kumazawa S, Honda S, Ohta T, Vongsak B (2019) Component analysis and antiangiogenic activity of Thailand stingless bee propolis. Makara J Technol [Sl] 23:78–83

    Google Scholar 

  95. Sanpa S, Popova M, Bankova V, Tunkasiri T, Eitssayeam S, Chantawannakul P (2015) Antibacterial compounds from propolis of Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS One 10:e0126886

    Article  PubMed  PubMed Central  Google Scholar 

  96. Popova MP, Trusheva BS, Nedialkov PT, Tsvetkova I, Pardo-Mora DP, Najdenski H, Bankova VS (2020) New Δ-tocotrienol derivatives from Colombian propolis. Nat Prod Res 34:2779–2786

    Article  PubMed  CAS  Google Scholar 

  97. da Cunha MG, Rosalen PL, Franchin M, de Alencar SM, Ikegaki M, Ransom T, Beutler JA (2016) Antiproliferative constituents of geopropolis from the bee Melipona scutellaris. Planta Med 82:190–194

    PubMed  Google Scholar 

  98. Ccana-Ccapatinta GV, Mejía JAA, Tanimoto MH, Groppo M, Carvalho JCASD, Bastos JK (2020) Dalbergia ecastaphyllum (L) Taub and Symphonia globulifera Lf: the botanical sources of isoflavonoids and benzophenones in Brazilian red propolis. Molecules 25:2060

    Google Scholar 

  99. Duke CC, Tran VH, Duke RK, Abu-Mellal A, Plunkett GT, King DI, Bruhl JJ (2017) A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry 134:87–97

    Article  PubMed  CAS  Google Scholar 

  100. King DI, Hamid K, Tran VH, Duke RK, Duke C (2021) Kangaroo Island propolis types originating from two Lepidosperma species and Dodonaea humilis. Phytochemistry 188:112800

    Article  PubMed  CAS  Google Scholar 

  101. Inui S, Hosoya T, Kumazawa S (2014) Hawaiian propolis: comparative analysis and botanical origin. Nat Prod Commun 9:165–166

    PubMed  CAS  Google Scholar 

  102. Petrova A, Popova M, Kuzmanova C, Tsvetkova I, Naydenski H, Muli E, Bankova V (2010) New biologically active compounds from Kenyan propolis. Fitoterapia 81:509–514

    Article  PubMed  CAS  Google Scholar 

  103. Inui S, Hosoya T, Shimamura Y, Masuda S, Ogawa T, Kobayashi H, Kumazawa S (2012) Solophenols B–D and solomonin: new prenylated polyphenols isolated from propolis collected from the Solomon Islands and their antibacterial activity. J Agric Food Chem 60:11765–11770

    Article  PubMed  CAS  Google Scholar 

  104. Tran VH, Duke RK, Abu-Mellal A, Duke CC (2012) Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phytochemistry 81:126–132

    Article  PubMed  CAS  Google Scholar 

  105. Al-Ghamdi AA, Bayaqoob NI, Rushdi AI, Alattal Y, Simoneit BR, El-Mubarak AH, Al-Mutlaq KF (2017) Chemical compositions and characteristics of organic compounds in propolis from Yemen. Saudi J Biol Sci 24:1094–1103

    Article  PubMed  CAS  Google Scholar 

  106. Falcão SI, Lopes M, Vilas-Boas M (2019) A first approach to the chemical composition and antioxidant potential of Guinea-Bissau propolis. Nat Prod Commun 14. https://doi.org/10.1177/1934578X19844138

  107. Silva BB, Rosalen PL, Cury JA, Ikegaki M, Souza VC, Esteves A, Alencar SM (2008) Chemical composition and botanical origin of red propolis, a new type of Brazilian propolis. Evid Based Complement Alternat Med 5:313–316

    Article  PubMed  Google Scholar 

  108. Awale S, Shrestha SP, Tezuka Y, Ueda JY, Matsushige K, Kadota S (2005) Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity. J Nat Prod 68:858–864

    Article  PubMed  CAS  Google Scholar 

  109. Omar RM, Igoli J, Gray AI, Ebiloma GU, Clements C, Fearnley J, Watson DG (2016) Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma brucei. Phytochem Anal 27:107–115

    Article  PubMed  CAS  Google Scholar 

  110. Lotti C, Campo Fernandez M, Piccinelli AL, Cuesta-Rubio O, Marquez Hernandez I, Rastrelli L (2010) Chemical constituents of red Mexican propolis. J Agric Food Chem 58:2209–2213

    Article  PubMed  CAS  Google Scholar 

  111. Ferreira JM, Fernandes-Silva CC, Salatino A, Negri G (2017) Antioxidant activity of a geopropolis from northeast Brazil: chemical characterization and likely botanical origin. Evid Based Complement Alternat Med 2017:024721

    Article  Google Scholar 

  112. Popova M, Bankova V, Chimov A, Silva MV (2002) A scientific note on the high toxicity of propolis that comes from Myroxylon balsamum trees. Apidologie 33:87–88

    Article  Google Scholar 

  113. Agüero MB, Gonzalez M, Lima B, Svetaz L, Sanchez M, Zacchino S, Tapia A (2010) Argentinean propolis from Zuccagnia punctata Cav (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem 58:194–201

    Article  PubMed  Google Scholar 

  114. Solorzano ER, Bortolini C, Bogialli S, Di Gangi IM, Favaro G, Maldonado L, Pastore P (2017) Use of a LC-DAD-QTOF system for the characterization of the phenolic profile of the argentinean plant Zuccagnia punctata and of the related propolis: new biomarkers. J Funct Foods 33:425–435

    Article  CAS  Google Scholar 

  115. Lotti C, Piccinelli AL, Arevalo C, Ruiz I, Migliani De Castro GM, Figueira Reis De Sá L, Rastrelli L (2012) Constituents of Hondurian propolis with inhibitory effects on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. J Agric Food Chem 60:10540–10545

    Article  PubMed  CAS  Google Scholar 

  116. Savka MA, Dailey L, Popova M, Mihaylova R, Merritt B, Masek M, Bankova V (2015) Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis. Evid Based Complement Alternat Med 2015:472593

    Article  PubMed  PubMed Central  Google Scholar 

  117. Thanh LN, Oanh VTK, Thoa HT, Phuong DTL, Lien NTP, Giap TH et al (2018) Isolated triterpenes from stingless bee Lisotrigona furva propolis in Vietnam. J Apither Nat 1:73–73

    Google Scholar 

  118. Mukaide K, Honda S, Vongsak B, Kumazawa S (2021) Prenylflavonoids from propolis collected in Chiang Mai, Thailand. Phytochem Lett 43:88–93

    Article  CAS  Google Scholar 

  119. Greenaway W, Scaysbrook T, Whatley FR (1990) The composition and plant origins of propolis: a report of work at Oxford. Bee World 71:107–118

    Article  Google Scholar 

  120. Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Alternat Med 2:29–32

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang X, Hu H, Luo Z, Liu Y, Zhang H (2018) A plant origin of Chinese propolis: Populus canadensis Moench. J Apic Res 57:228–245

    Article  Google Scholar 

  122. Popova M, Silici S, Kaftanoglu O, Bankova V (2005) Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 12:221–228

    Article  PubMed  CAS  Google Scholar 

  123. Bankova V, Popova M, Bogdanov S, Sabatini A (2002) Chemical composition of European propolis: expected and unexpected results. Z Naturforsch C J Biosci 57:530–533

    Article  PubMed  CAS  Google Scholar 

  124. Christov R, Trusheva B, Popova M, Bankova V, Bertrand M (2006) Chemical composition of propolis from Canada, its antiradical activity and plant origin. Nat Prod Res 20:531–536

    Article  PubMed  CAS  Google Scholar 

  125. Aminimoghadamfarouj N, Nematollahi A (2017) Structure elucidation and botanical characterization of diterpenes from a specific type of bee glue. Molecules 22:1185

    Article  PubMed Central  Google Scholar 

  126. Athikomkulchai S, Awale S, Ruangrungsi N, Ruchirawat S, Kadota S (2013) Chemical constituents of Thai propolis. Fitoterapia 88:96–100

    Article  PubMed  CAS  Google Scholar 

  127. Agüero MB, Svetaz L, Sánchez M, Luna L, Lima B, López ML, Tapia A (2011) Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav (Zygophyllaceae) HPLC–MS and GC–MS characterization and antifungal activity. Food Chem Toxicol 49:1970–1978

    Article  PubMed  Google Scholar 

  128. Isidorov VA, Bakier S, Pirożnikow E, Zambrzycka M, Swiecicka I (2016) Selective behaviour of honeybees in acquiring European propolis plant precursors. J Chem Ecol 42:475–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Catchpole O, Mitchell K, Bloor S, Davis P, Suddes A (2015) Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia 106:167–174

    Article  PubMed  CAS  Google Scholar 

  130. Isla MI, Paredes-Guzman JF, Nieva-Moreno MI, Koo H, Park YK (2005) Some chemical composition and biological activity of northern Argentine propolis. J Agric Food Chem 53:1166–1172

    Article  PubMed  CAS  Google Scholar 

  131. Suleman T, Van Vuuren S, Sandasi M, Viljoen AM (2015) Antimicrobial activity and chemometric modelling of South African propolis. J Appl Microbiol 119:981–990

    Article  PubMed  CAS  Google Scholar 

  132. Ibrahim RS, Metwally AM (2017) Plant source of Egyptian propolis using multivariate-assisted digitally-enhanced TLC data analysis. J Nat Prod Plant Resour 73:20–25

    Google Scholar 

  133. Ismail TNNT, Sulaiman SA, Ponnuraj KT, Man CN, Hassan NB (2018) Chemical constituents of Malaysian Apis mellifera propolis. Sains Malays 47:117–122

    Article  CAS  Google Scholar 

  134. Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern medicine. Fitoterapia 73:S1–S6

    Article  PubMed  CAS  Google Scholar 

  135. Santos LM, Fonseca MS, Sokolonski AR, Deegan KR, Araújo RPC, Umsza-Guez MA, Barbosa JDV, Portela RD, Machado BAS (2020) Propolis: types, composition, biological activities, and veterinary product patent prospecting. J Sci Food Agric 100:1369–1382

    Article  PubMed  CAS  Google Scholar 

  136. Alvarenga L, Cardozo LFMF, Borges NA, Chermut TR, Ribeiro M, Leite M Jr, Shiels PG, Stenvinkel P, Mafra D (2021) To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 83:111094

    Article  PubMed  CAS  Google Scholar 

  137. Amoros M, Sauvager F, Girre L, Cormier M (1992) In vitro antiviral activity of propolis. Apidologie 23:231–240

    Article  Google Scholar 

  138. Asfaram S, Fakhar M, Keighobadi M, Akhtari J (2021) Promising anti-protozoan activities of propolis (bee glue) as natural product: a review. Acta Parasitol 66:1–12

    Article  PubMed  CAS  Google Scholar 

  139. Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015:206439

    Article  PubMed  PubMed Central  Google Scholar 

  140. Babatunde IR, Abdulbasit A, Oladayo MI, Olasile OI, Olamide FR, Gbolahan BW (2015) Hepatoprotective and pancreatoprotective properties of the Ethanolic extract of Nigerian propolis. J Intercult Ethnopharmacol 4:102–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Rusak G (2008) Bioactive constituents of propolis. In: Orsolic N, Basic I (eds) Scientific evidence of the use of propolis in ethnomedicine. Transworld Research Network, Trivandrum

    Google Scholar 

  142. Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Reyes-Reali J, Mendoza-Ramos MI, Méndez-Cruz AR, Nieto-Yañez O (2021) Effects of propolis on infectious diseases of medical relevance. Biology 10:428

    Article  PubMed  PubMed Central  Google Scholar 

  143. Przybyłek I, Karpiński TM (2019) Antibacterial properties of propolis. Molecules 24:2047

    Article  PubMed Central  Google Scholar 

  144. Almuhayawi MS (2020) Propolis as a novel antibacterial agent. Saudi J Biol Sci 27:3079–3086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Farre R, Frasquet I, Sanchez A (2004) Propolis and human health. Ars Pharm 45:21–43

    Google Scholar 

  146. Bankova V (2000) Determining quality in propolis samples. J Am Apither Soc 7:11

    Google Scholar 

  147. Raghukumar R, Vali L, Watson D, Fearnley J, Seidel V (2010) Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of ‘pacific propolis’ and isolated prenylflavanones. Phytother Res 24:1181–1187

    Article  PubMed  CAS  Google Scholar 

  148. Moise AR, Bobiş O (2020) Baccharis dracunculifolia and Dalbergia ecastophyllum, main plant sources for bioactive properties in green and red Brazilian propolis. Plan Theory 9:1619

    Google Scholar 

  149. Hashimoto T, Aga H, Tabuchi A, Shibuya T, Chaen H, Fukuda S, Kurimoto M (1998) Anti-Helicobacter pylori compounds in Brazilian propolis. Nat Med 5:518–520

    Google Scholar 

  150. Banskota AH, Tezuka Y, Adnyana IK, Ishii E, Midorikawa K, Matsushige K, Kadota S (2001) Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 8:16–23

    Article  PubMed  CAS  Google Scholar 

  151. Boyanova L, Gergova G, Nikolov R, Derejian S, Lazarova E, Katsarov N, Mitov I, Krastev Z (2005) Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J Med Microbiol 54:481–483

    Article  PubMed  Google Scholar 

  152. Orsi RDO, Fernandes A, Bankova V, Sforcin JM (2012) The effects of Brazilian and Bulgarian propolis in vitro against Salmonella Typhi and their synergism with antibiotics acting on the ribosome. Nat Prod Res 26:430–437

    Article  PubMed  CAS  Google Scholar 

  153. Asfour HZ (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  154. Holderna-Kedzia E, Kedzia B (1987) Investigation upon the combined action of propolis and antimycotic drugs on Candida albicans. Herba Pol 33:145–151

    Google Scholar 

  155. Pobiega K, Gniewosz M, Kraśniewska K (2017) Antimicrobial and antiviral properties of different types of propolis. Zesz Probl Postepow Nauk Roln 589:69–79

    Google Scholar 

  156. Serkedjieva J, Manolova N, Bankova V (1992) Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids). J Nat Prod 55:294–297

    Article  PubMed  CAS  Google Scholar 

  157. Amoros M, Lurton E, Boustie J, Girre L, Sauvager F, Cormier M (1994) Comparison of the anti-herpes simplex virus activities of propolis and 3-methyl-but-2-enyl caffeate. J Nat Prod 57:644–647

    Article  PubMed  CAS  Google Scholar 

  158. Harish Z, Rubinstein A, Golodner M, Elmaliah M, Mizrahchi Y (1997) Suppression of HIV-1 replication by propolis and its immunoregulatory effect. Drug Exp Clin Res 23:89–96

    CAS  Google Scholar 

  159. Ito J, Chang F-R, Wang H-K, Park YK, Ikegaki M, Kilgore N, Lee K-H (2001) Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J Nat Prod 64:1278–1281

    Article  PubMed  CAS  Google Scholar 

  160. Gekker G, Hu S, Spivak M, Lokensgard JR, Peterson PK (2005) Anti-HIV-1 activity of propolis in CD4+ lymphocyte and microglial cell cultures. J Ethnopharmacol 102:158–163

    Article  PubMed  CAS  Google Scholar 

  161. Ripari N, Sartori AA, Honorio MS, Conte FL, Tasca KI, Santiago KB, Sforcin JM (2021) Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol 73:281–299

    Article  PubMed  Google Scholar 

  162. Kujumgiev A, Bankova V, Igantova A, Popov S (1993) Antibacterial activity of propolis, some of its components and their analogs. Pharmazie 48:785–786

    PubMed  CAS  Google Scholar 

  163. Bonvehí JS, Coll FV (1994) The composition, active components and bacteriostatic activity of propolis in dietetics. J Am Oil Chem Soc 71:529–532

    Article  Google Scholar 

  164. Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114–117

    Article  PubMed  CAS  Google Scholar 

  165. Krol W, Sheller S, Czuba Z, Matsuno T, Zydowich G, Shani J, Mos M (1996) Inhibition of neutrophils’ chemiluminescence by ethanol extract of propolis (EEP) and its phenolic components. J Ethnopharmcol 55:19–25

    Article  CAS  Google Scholar 

  166. Cohen HA, Varsano I, Kahan E, Sarrell EM, Uziel Y (2004) Effectiveness of an herbal preparation containing Echinacea, propolis, and vitamin C in preventing respiratory tract infections in children. Arch Pediatr Adolesc Med 158:217–221

    Article  PubMed  Google Scholar 

  167. Gruneberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V, Nakanishi K (1988) Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230–232

    Article  Google Scholar 

  168. Watanabe MAE, Amarante MK, Conti BJ, Sforcin JM (2011) Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol 63:1378–1386

    Article  PubMed  CAS  Google Scholar 

  169. Matsuno T, Matsumoto Y, Saito M, Morikawa J (1997) Isolation and characterization of cytotoxic diterpenoidi from propolis. Z Naturforsch C J Biosci 52:702–704

    Article  PubMed  CAS  Google Scholar 

  170. Matsuno T, Saito M, Matsumoto Y, Morikawa J (1998) A new benzo-γ-pyran derivative isolated from propolis. Z Naturforsch C J Biosci 53:1037–1039

    Article  CAS  Google Scholar 

  171. Matsui T, Ebuchi S, Fujise T, Abesundara KJM, Doi S, Yamada H, Matsumoto K (2004) Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid. Biol Pharm Bull 27:1797–1803

    Article  PubMed  CAS  Google Scholar 

  172. Kubota Y, Umegaki K, Kobayashi K, Tanaka N, Kagota S, Nakamura K, Kunitomo M, Shinozuka K (2004) Anti-hypertensive effects of Brazilian propolis in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 31:29–30

    Article  Google Scholar 

  173. Sforcin JM (2016) Biological properties and therapeutic applications of propolis. Phytother Res 30:894–905

    Article  PubMed  Google Scholar 

  174. Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571

    Article  PubMed  CAS  Google Scholar 

  175. de Groot AC (2013) Propolis: a review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 24:263–282

    Article  PubMed  Google Scholar 

  176. Suárez D, Zayas D, Guisado F (2005) Propolis: patents and technology trends for health applications. J Bus Chem 2:1–11

    Google Scholar 

  177. Machado BAS, Cruz LS, Nunes SB, Guez MAU, Padilha FF (2012) Prospective study of propolis and related technologies in focus in patent documents deposited in Brazil. Rev GEINTEC 3:221–235

    Article  Google Scholar 

  178. Silveira MAD, De Jong D, Berretta AA, dos Santos Galvão EB, Ribeiro JC, Cerqueira-Silva T, da Hora Passos R (2021) Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: a randomized, controlled clinical trial. Biomed Pharmacother 138:111526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Ali AM, Kunugi H (2021) Propolis, bee honey, and their components protect against Coronavirus Disease 2019 (COVID-19): a review of in silico, in vitro, and clinical studies. Molecules 26:1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Zulhendri F, Felitti R, Fearnley J, Ravalia M (2021) The use of propolis in dentistry, oral health, and medicine: a review. J Oral Biosci 63:23–34

    Article  PubMed  Google Scholar 

  181. Abbasi AJ, Mohammadi F, Bayat M, Gema SM, Ghadirian H, Seifi H, Bahrami N (2018) Applications of propolis in dentistry: a review. Ethiop J Health Sci 28:505–512

    PubMed  PubMed Central  Google Scholar 

  182. Sardana D, InduShekar KR, Manchanda S, Saraf BG, Sheoran N (2013) Role of propolis in dentistry: review of the literature. Focus Altern Complement Ther 18:118–125

    Article  Google Scholar 

  183. Šuran J, Matanović K, Brozić D, Mašek T, Maćešić N, Radin L, Aladrović J, Božić E, Martinec BŠ, Lipar M, Smolec O, Benić M, Radić B, Bačić G (2016) Antimicrobial activity of propolis and its potential uses in veterinary medicine. Vet Stanica 47:381–385

    Google Scholar 

  184. Seven PT, Seven I (2008) Effect of dietary Turkish propolis as alternative to antibiotic on performance and digestibility in broilers exposed to heat stress. J Appl Anim Res 34:193–196

    Article  Google Scholar 

  185. Seven PT (2008) The effects of dietary Turkish propolis and vitamin C on performance, digestibility, egg production and egg quality in laying hens under different environ-mental temperatures. Asian-Australas J Anim Sci 21:1164–1170

    Article  CAS  Google Scholar 

  186. Aygun A, Sert D, Copur G (2012) Effects of propolis on eggshell microbial activity, hatchability, and chick performance in Japanese quail (Coturnix coturnix japonica) eggs. Poult Sci 91:1018–1025

    Article  PubMed  CAS  Google Scholar 

  187. Ítavo CCBF, Morais MG, Ramos CL, Ítavo LCV, Tomich TR, da Silva JA (2011) Green propolis extract as additive in the diet for lambs in feedlot. Rev Bras Zootecn 40:1991–1996

    Article  Google Scholar 

  188. Valero MV, Zeoula LM, de Moura LPP, C Júnior JBG, Sestari BB, do Prado IN (2015) Propolis extract in the diet of crossbred (½ Angus vs ½ Nellore) bulls finished in feedlot: animal performance, feed efficiency and carcass characteristics. Semin Cienc Agrar 36:1067–1078

    Article  Google Scholar 

  189. da Silva FGB, Yamamoto SM, da Silva EMS, Queiroz MAÁ, Gordiano LA, Formiga MA (2015) Propolis extract and sodium monensin on ruminal fermentation and hematological parameters in sheep. Acta Sci Anim Sci 37:273–280

    Article  Google Scholar 

  190. Li J, Kim IH (2014) Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Anim Sci J 85:698–705

    Article  PubMed  CAS  Google Scholar 

  191. Farag MR, Abdelnour SA, Patra AK, Dhama K, Dawood MA, Elnesr SS, Alagawany M (2021) Propolis: properties and composition, health benefits and applications in fish nutrition. Fish Shellfish Immun 115:179–188

    Article  CAS  Google Scholar 

  192. Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M (2021) The use of propolis as a functional food ingredient: a review. Trends Food Sci Technol 115:297–306. https://doi.org/10.1016/jtifs202106041

    Article  CAS  Google Scholar 

  193. Bankova V, Popova M, Trusheva B (2016) New emerging fields of application of propolis. Maced J Chem Chem Eng 35:1–11

    Article  Google Scholar 

  194. Silici S, Koç NA, Mutlu Sariguzel F, Sagdic O (2005) Mould inhibition in different fruit juices by propolis. Arch Leb 56:87–90

    Google Scholar 

  195. Mutton MJR, de Oliveira Filho JH, Costa GHG, Roviero JP, de Freita LA (2014) Green and brown propolis: efficient natural biocides for the control of bacterial contamination of alcoholic fermentation of distilled beverage. Food Sci Technol 34:767–772. https://doi.org/10.1590/1678-457X6469

    Article  Google Scholar 

  196. Candir EE, Ozdemir AE, Soylu EM, Sahinler N, Gül A (2009) Effects of propolis on storage of sweet cherry cultivar Aksehir Napolyon. Asian J Chem 21:2659–2666

    CAS  Google Scholar 

  197. Alvarez MV, Ponce AG, Mazzucotelli CA, Moreira MR (2015) The impact of biopreservatives and storage temperature in the quality and safety of minimally processed mixed vegetables for soup. J Sci Food Agric 95:962–971

    Article  PubMed  CAS  Google Scholar 

  198. Alkan S, Ertürk Ö, Türker İ (2020) Determination of microbial activity and quality traits of eggs coated with propolis. Turk J Agricult Food Sci Technol 8:1380–1384

    Article  Google Scholar 

  199. Yazgan H, Burgu A, Durmus M, Kosker AR (2020) The impacts of water and ethanolic extracts of propolis on vacuum packaged sardine fillets inoculated with Morganella psychrotolerans during chilly storage. J Food Saf 40:e12767

    Article  Google Scholar 

  200. Ucak I, Khalily R, Carrillo C, Tomasevic I, Barba FJ (2020) Potential of propolis extract as a natural antioxidant and antimicrobial in gelatin films applied to rainbow trout (Oncorhynchus mykiss) fillets. Foods 9:1584

    Article  PubMed Central  CAS  Google Scholar 

  201. Mascheroni E, Guillard V, Nalin F, Mora L, Piergiovanni L (2010) Diffusivity of propolis compounds in polylactic acid polymer for the development of anti-microbial packaging films. J Food Eng 98:294–301. https://doi.org/10.1016/jjfoodeng200912028

    Article  CAS  Google Scholar 

  202. Yong H, Liu J (2021) Active packaging films and edible coatings based on polyphenol-rich propolis extract: a review. Compr Rev Food Sci Food Saf 20:2106–2145

    Article  PubMed  CAS  Google Scholar 

  203. Sharaf S, El-Naggar ME (2018) Eco-friendly technology for preparation, characterization and promotion of honey bee propolis extract loaded cellulose acetate nanofibers in medical domains. Cellulose 25:5195–5204

    Article  CAS  Google Scholar 

  204. Abramiuc D, Ciobanu L, Muresan R, Chiosac M, Muresan A (2013) Antibacterial finishing of cotton fabrics using biologically active natural compounds. Fibers Polym 14:1826–1833

    Article  CAS  Google Scholar 

  205. Morsy AS, Soltan YA, Sallam SMA, Kreuzer M, Alencar SM, Abdalla AL (2015) Comparison of the in vitro efficiency of supplementary bee propolis extracts of different origin in enhancing the ruminal degradability of organic matter and mitigating the formation of methane. Animal Feed Sci Technol 199:51–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassya Bankova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Popova, M., Trusheva, B., Bankova, V. (2021). Chemistry and Applications of Propolis. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics