
115 6

How to Do the
Deconstruction of
Bioimage Analysis
Workflows: A Case Study
with SurfCut
Marion Louveaux and Stéphane Verger

Contents

6.1 Introduction – 117
6.1.1 A Workflow and Its Components – 117
6.1.2 What Is Deconstruction? – 117
6.1.3 A Case of Study of Workflow Deconstruction: SurfCut – 118
6.1.4 What Is SurfCut? – 118
6.1.5 What Was SurfCut Developed for? – 119
6.1.6 Other Similar Tools – 120

6.2 Dataset – 121

6.3 Tools – 121

6.4 Workflow – 121
6.4.1 Step 1. Identification of Components in the Textual

Description – 122
6.4.2 Step 2. Drawing a Workflow Scheme – 123
6.4.3 Step 3. Assessment of Prerequisites and Limitations – 124
6.4.4 Step 4. Identification of Components in the Code – 128
6.4.5 Step 5. Code Refactoring – 131

This Chapter has been reviewed by Mafalda Sousa, I3S - Advanced Light Microscopy,
University of Porto.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows–Advanced Components andMethods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_6

6.4.6 Step 6. Replacing a Component: Shift Mask in the Z-Axis
Direction – 135

6.4.7 Step 7. Benchmarking: Comparison of Two Alternative
Components – 138

6.4.8 Step 8. Linking to Another Workflow: FibrilTool – 142

6.5 Analysis of the Results: Presentation and
Discussion – 142

6.6 Concluding Remarks – 143

References – 144

How to do the Deconstruction of Bioimage Analysis …
117 6

What YouWill Learn in This Chapter
Published bioimage analysis workflows are designed for a specific biology use case and
often hidden in the material and methods section of a biology paper. The art of the bioim-
age analyst is to find these workflows, deconstruct them and tune them to a new use case
by replacing or modifying components of the workflow and/or linking them to other work-
flows.
In this chapter, you will learn how to adapt a published workflow to your needs. More
precisely, youwill learn how to: deconstruct a bioimage analysisworkflow into components;
evaluate the fit of each component to your needs; replace one element by another one of
your choice; benchmark this new workflow against the original one; and link it to another
workflow. Our target for workflow deconstruction is SurfCut, an ImageJ macro for the
projection of 3D surface tissue.1

6.1 Introduction

6.1.1 AWorkflow and Its Components

Bioimage analysis workflows and components are defined as follows (Miura and
Tosi, 2016): (1) A workflow is a set of components assembled in some specific order
to process biological images and estimate some numerical parameters relevant to
the biological system under study; (2) Components are implementations of certain
image processing and analysis algorithms. Each component alone does not solve a
bioimage analysis problem. Components may take forms of a single menu item in
image processing software, a plugin, a module, an add-on, or a class in an image
processing library. Workflows take image data as input, and output either processed
images or numerical values. A workflow can be a combination of components from
the same or different software packages and can, for example, come under the form of
a script that calls components in a sequence, or a detailed step-by-step instruction on
how to chain a sequence of components (Miura and Tosi, 2017; Miura et al., 2020).

6.1.2 What Is Deconstruction?

Bioimage Analysis Workflows are designed for specific purpose, so usually, they can-
not be used as a general tool for different problems. Then how can we learn how
to create bioimage analysis workflows? One way is to do everything from scratch.
Another way is to learn from other bioimage analysis workflows, modify them, and
reassemble components to create something new for a specific purpose.We call this (a
workflow) "deconstruction". The process of deconstruction was initially proposed by
Jacques Derrida, a French philosopher, as a criticism against the modern philosophy.
Instead of constructing ideas, which implicitly builds on hidden but solid principles
as the base of such construction, deconstruction is a way of shifting ideas by crit-

1 This chapter was communicated by Mafalda Sousa, I3S—Advanced Light Microscopy, University of
Porto, Portugal.

6

118 M. Louveaux and S. Verger

ical thinking, sometimes denial, and in other times the restructuring of preexisting
principles.

The deconstruction of bioimage analysis workflow was introduced as a pedagogic
method for the Bioimage Analyst School of NEUBIAS. Deconstructing a workflow
means identifying and isolating each of its components in order to assess their quality
and possibly replace them with more suitable components. In addition to using it as
a powerful pedagogical tool, one of the main interest in deconstructing a workflow
is to avoid spending time and effort "re-inventing the wheel", and instead to re-use,
optimize or adapt an existing method to the new users’ needs.

6.1.3 A Case of Study of WorkflowDeconstruction: SurfCut

The ImageJmacro "SurfCut" was chosen as a study case for workflow deconstruction
during the NEUBIAS training school TS15 (Bordeaux, March 2020). Interestingly,
this led to numerous new ideas and ways to implement SurfCut. Some trainees added
GPU processing capability with CLIJ (Haase et al., 2020), while others completely re-
wrote the workflow in Python2 andMatlab3 and benchmarked the different versions
(SurfCut, GPU-SurfCut, Python-SurfCut and Matlab-SurfCut). Furthermore, this
deconstruction session, along with the writing of this book chapter, also prompted
us to develop a new version of the SurfCut macro, SurfCut2, including a complete
refactoring of the code (as described in this book chapter), bug-fixing, and addition
of new functions.4 In this chapter, we explain in detail the procedure for workflow
deconstruction based on these experiences, using SurfCut as an example target work-
flow.

6.1.4 What Is SurfCut?

SurfCut is an ImageJ macro that allows the numerical extraction of a thin, curved,
layer of signal in a 3D confocal stack by taking as reference the surface of a 3D bio-
logical object present in the volume of the stack (Erguvan et al., 2019). The macro is
written in the ImageJ1.x(IJ1) macro language, and runs on the Fiji platform (Schin-
delin et al., 2012). Using built-in ImageJ functions, the biological object in the image
is blurred, segmented, filled, shifted in the Z-axis at two different depths and used as
a mask to erase unwanted raw signals at a chosen distance from the surface of the
detected object (. Fig. 6.1, and detailed description in 7 Sect. 6.4). The whole work-
flow can be viewed as a sort of ‘‘object surface’’-guided signal filtering method. This
allows the removal of unwanted signals relative to the surface of the biological object
and the extraction of specific structures from the 3D stack, such as the cell contours
(. Fig. 6.1) or outer epidermal cortical microtubules. As such, this workflow has
already been incorporated as a component of larger workflows, as a preprocessing
step for cell segmentation or cortical microtubule signal quantification (Baral et al.,
2021; Erguvan et al., 2019; Takatani et al., 2020).

2 7 https://pypi.org/project/surfcut/.

3 7 https://github.com/martinschatz-cz/surfcut-matlab.

4 7 https://github.com/VergerLab/SurfCut2.

https://pypi.org/project/surfcut/
https://github.com/martinschatz-cz/surfcut-matlab
https://github.com/VergerLab/SurfCut2

How to do the Deconstruction of Bioimage Analysis …
119 6

. Fig. 6.1 Overview of SurfCut principle and output, applied on Arabidopsis thaliana cotyledon
epidermal cells stained with propidium iodide and imaged in 3D with a confocal microscope. Top
panel is a combination of half of the raw confocal signal (grey) and half of the "SurfCut-extracted"
signal (red), partially overlapped and tilted in 3D to show the relationship between the raw signal
and output. Bottom left panel is a max-intensity projection of the raw signal. Bottom right panel is a
max-intensity projection of the "SurfCut-extracted" signal, highlighting how the process efficiently
preserves the cell contour (anticlinal) signal in the epidermal layer while removing signal from the
periclinal cell contours

6.1.5 WhatWas SurfCut Developed for?

SurfCut was originally developed as a pre-processing tool to filter out unwanted sig-
nals and perform a Z-projection prior to 2D segmentation of epidermal plant cells.
The so-called ‘‘puzzle-shaped pavement cells’’of the leaf epidermis harbor very partic-
ular shapes (. Fig. 6.1). This is a very interesting system to study the morphogenesis
of single cells in a tissue context. To understand how these cell shapes emerge, a proper
shape quantification with several genetic backgrounds, or under specific treatment
conditions, is required. Many methods were developed to quantify and compare cell
shapes based on 2D cell contours (Möller et al., 2017; Sánchez-Corrales et al., 2018;
Wu et al., 2016). As the leaf epidermis is a 3D curved surface, a Z projection is required
prior to the use of any of these tools. Given the lack of available user-friendly tools

6

120 M. Louveaux and S. Verger

to perform a proper extraction of 2D cell contours from 3D confocal stacks, we
developed SurfCut (Erguvan et al., 2019).

Although the SurfCut macro was written in the context of a biological project
and could have ended (somewhat hidden) in the "Material and method"—section of
a larger biological publication (still being finalized at the time of writing this chapter
but available as a preprint (Malivert et al., 2021)), we decided to publish it separately
(Erguvan et al., 2019), to assign aDOI to the code and provide image data, also identi-
fied with a DOI (Erguvan and Verger, 2019), to enable testing of the macro.We think
that the publishing of this type of macro gives more visibility to the bioimage analysis
workflows and, by giving all the space needed to the description of the workflow,
ensures a greater reproducibility.

6.1.6 Other Similar Tools

Before developing SurfCut, we had identified in our bibliographical searches other
workflows performing apparently similar outputs, but none of them fitted exactly our
needs. As described in Erguvan et al. (2019), we were originally using the software
MorphoGraphX (MGX) (Barbier de Reuille et al., 2015) that provides a very accu-
rate solution to our problem (Erguvan et al., 2019; Verger et al., 2018), but requires
too many manual steps and does not easily allow batch processing. In addition, Mer-
ryproj (Barbier de Reuille et al., 2005), SurfaceProject (Band et al., 2014), LSM-W2
(Zubairova et al., 2019) and Smooth 2Dmanifold (Shihavuddin et al., 2017) were dis-
cussed in Erguvan et al. (2019) and were found inadequate for our purpose. After the
independent publication of the SurfCut macro, we discovered other workflows that
our first search had not revealed, such as the ImageJ macro identifyuppersurfacev2
(Galea et al., 2018),5 or the ImageJ plugin MinCostZSurface (Li et al., 2006).6 We
also identified more advanced workflows that would not have fitted our needs for
simplicity (Candeo et al., 2016; Heemskerk and Streichan, 2015; Schmid et al., 2013).
Furthermore, since the publication of SurfCut, additional workflows, such as the
ImageJ plugins Ellipsoid Surface Projection (Viktorinová et al., 2019), SheetMesh-
Projection7 (Wada and Hayashi, 2020) and LocalZProjector (Herbert et al., 2021)
were developed to serve a similar purpose. In total, there are at least ten different
workflows that can perform the type of signal layer extraction that SurfCut per-
forms. While all these tools allow the generation of relatively similar output, almost
all of them use a different approach. In addition, they are tailored to specific needs,
such that some of these tools outperform others on a certain type of images, thus
offering a large choice of alternative workflow components to perform this specific
pre-processing step.

In the following sections, we present how to deconstruct SurfCut (Erguvan et al.
2019), i.e. how to identify its different components in the reference publication and
in the code. We then explain how to refactor the code, replace one component and

5 7 https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/
publications see section "Published ImageJ/Fiji macro".

6 7 https://imagej.net/Minimum_Cost_Z_surface_Projection.

7 7 https://signaling.riken.jp/en/en-tools/imagej/1743/.

https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://imagej.net/Minimum_Cost_Z_surface_Projection
https://signaling.riken.jp/en/en-tools/imagej/1743/

How to do the Deconstruction of Bioimage Analysis …
121 6

benchmark the new workflow against the original one. Finally, we explore how to
integrate this workflow with other workflows.

6.2 Dataset

The SurfCut macro was released with test image data of around 535 Mb. This data
set was uploaded to Zenodo with a thorough description of the imaging conditions,
and identified with its DOI: 7 http://doi.org/10.5281/zenodo.2577053 (Erguvan and
Verger, 2019).

6.3 Tools

5 Fiji: Download and install Fiji on your computer (7 https://imagej.net/Fiji/
Downloads)

5 ImageJ macro SurfCut: Download the "SurfCut.ijm" macro file to your computer
(7 https://github.com/sverger/SurfCut). To run the macro in Fiji either click on
Plugins>Macro>Run and select "SurfCut.ijm", or drag and drop "SurfCut.ijm"
into the Fiji window and click run.

5 ImageJ macro SurfCut2: Download the "SurfCut2.ijm" macro file to your com-
puter (7 https://github.com/VergerLab/SurfCut2). Follow the same instructions
as for the ImageJ macro SurfCut.

5 ImageJ macro used for exercises in this chapter can be found at: 7 https://github.
com/NEUBIAS/neubias-springer-book-2021

6.4 Workflow

In this section, we propose a step-by-step deconstruction and modification of the
SurfCut workflow. The concepts and exercises in each step can be generalised to any
kind of bioimage analysis workflow.

We take the following steps for the deconstruction of the workflow:
5 Step 1: Identify components in the description of a workflow and in the code;
5 Step 2: Draw a workflow scheme;
5 Step 3: Identify limitations on input format, processing capabilities, simplicity to

re-use;
5 Step 4: Identify block of codes corresponding to components;
5 Step 5: Refactor code;
5 Step 6: Replace a component of the workflow;
5 Step 7: Compare the performance of the original workflow with a modified one;
5 Step 8: Link this workflow with another workflow.

http://doi.org/10.5281/zenodo.2577053
https://imagej.net/Fiji/Downloads
https://imagej.net/Fiji/Downloads
https://github.com/sverger/SurfCut
https://github.com/VergerLab/SurfCut2
https://github.com/NEUBIAS/neubias-springer-book-2021
https://github.com/NEUBIAS/neubias-springer-book-2021

6

122 M. Louveaux and S. Verger

6.4.1 Step 1. Identification of Components in the Textual
Description

When working with a published workflow, the first step is to identify the components
in the text of the publication and the order in which they are used. Nowadays, pub-
lished workflows are often accompanied by a detailed user manual and/or a "readme"
if the code is released on GitHub or GitLab. This text can also contain additional
information on the components and on the links between them.

?Exercise 1
1. Read Erguvan et al. (2019) and underline in the text all elements describing the

components of the SurfCut workflow. Then summarize the result as an ordered
list of components.

2. Which additional useful information relative to the components can you find on

the GitHub repository of the SurfCut macro8?

vSolution to Exercise 1
1. All text elements describing the components of the SurfCutmacro inErguvan et al.

(2019) are on page 3 in the Methods section, in the "2D cell contour extraction
with SurfCut" paragraph:
5 "The macro has two modes: (1) ‘‘Calibrate,’’ [...], and (2) ‘‘Batch,’’ [...]".
5 "The stack is first converted to 8 bit."
5 "De-noising of the raw signal is then performed using the Gaussian Blur

function."
5 "The signal is then binarized using the Threshold function."
5 "an equivalent of the ‘‘edge detect’’ process from MGX9 is performed [...];

each slice from the binarized stack, starting from the top slice, is successively
projected (Z-project) [...]. This ultimately creates a new binary stack in which
all the binary signals detected in the upper slices appear projected down on
the lower slices, effectively filling the holes in the binary object."

5 "This new stack is then used as amask shifted in the Z direction, to subtract the
signal from the original stack above and below the chosen values depending
on the desired depth of signal extraction."

5 "The cropped10 stack is finally projected along the Z-axis using the maximal
fluorescence intensity in order to obtain a 2D image."

The SurfCut workflow has 6 components: (1) bit-depth conversion, (2) denois-
ing, (3) thresholding and binarization, (4) edge detection, (5) masking, and (6)
Z-projection (. Fig. 6.2). The workflow can be run one component at a time, to
allow for selection of parameters per component (calibrate mode), or automati-
cally (batch mode).

8 7 https://github.com/sverger/SurfCut.

9 MorphoGraphX.

10 The exact term is "masked".

https://github.com/sverger/SurfCut

How to do the Deconstruction of Bioimage Analysis …
123 6

. Fig. 6.2 Output of each processing step of the SurfCut workflow

2. In the GitHub repository of the SurfCut macro, a careful reading of the "readme"

and user guide11 identifies and confirms the components found in the text of the
publication. Note that dialog boxes to interact with the user are not considered
as components of the workflow.

6.4.2 Step 2. Drawing aWorkflow Scheme

We identified above the workflow components from the text. Let us now draw a
schemeof theworkflow.Aworkflow scheme summarizes and links all the components
of a workflow. This scheme will serve as a guide to get an overview of the workflow,
and identify those components in the code that can be refined after Step 4, if needed.
. Figure 6.3 is a graphical scheme of a general bioimage analysis workflow.

?Exercise 2
Utilizing information found in Exercise 1, draw the scheme of the SurfCut workflow:
start drawing one box per component following the guidelines in Step 1. Then identify
each component by a short informative name and link components with each other, so
that the input of a component is an output of the previous component.

. Fig. 6.3 Workflow scheme example

11 7 https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf .

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf

6

124 M. Louveaux and S. Verger

. Fig. 6.4 SurfCut workflow scheme

vSolution to Exercise 2
The SurfCut macro has two modes: (1) "calibrate", where the components are executed
one-by-one and only once, and (2) "batch", where the complete workflow is repeated on
several images.We draw a batch component to illustrate the batchmode.We then draw
the 6 components of the workflow inside the batch component and link them in the
order in which they appear in the text: Component 1 performs the conversion to 8-bit
pixel representation, Component 2 performs the denoising, etc. In the text, we will now
refer to components using the following wording: Component 1 "8 bits conversion",
Component 2 "Denoising", etc (. Fig. 6.4). For simplicity of the scheme, we ignored
import and export components (such as User-Interface for file selection or saving of
results). These can be included as well, especially if the import or export components
correspond to non-trivial steps (e.g. specific data format).

6.4.3 Step 3. Assessment of Prerequisites and Limitations

In the two previous steps, we identified the components of the workflow described
in the publication and drew a workflow scheme. We now have an overview of the
workflow and can make more confident assessment on if the workflow is appropriate
to solve our biological question or not. To determine if we can use the workflow as it
is, if it is sufficient to only change a couple of the components to adapt the workflow
to our data, or if the workflow is not adequate at all for our data, we need to make
some additional (final) checks:
5 Data format compatibility: Is the input format (.tif, .png, .czi...) and type of data

(2D, 3D, time-series) that we have compatible with the format and type required
by the workflow?

5 Processing capacity: Is the amount and size of the data compatible with the work-
flow (fully manual workflow or very slow workflow versus high content screening
data; included calibration step requiring a minimum of 30 images versus 5 images
available only...)?

How to do the Deconstruction of Bioimage Analysis …
125 6

5 Data content compatibility: Are the type of biological data and markers that we
have to workwith compatible with what is considered in the workflow (membrane
marker versus nuclear marker, epithelial marker versus whole tissue marker, flat
versus curved tissue...)?

5 Output adequacy: Will the output data generated by the workflow (new images,
numerical values, plots...) be actuallyuseful forwhatwe intend todo (get biological
results, benchmark the workflow against another, embed in a larger workflow...)?

If the answer is no to one, or several of these questions, the next question to answer
is: Could one, or several of the components be replaced by amore adapted or efficient
one(s)? Here we assume that the macro language and the use of ImageJ/Fiji is not an
obstacle for any bioimage analyst. For other more advanced or less known languages,
as well as more exotic software, another sequence of preliminary checks would be:
5 Language: In which language is this workflow written?
5 Platform: On which platform can I execute it?
5 Inter-operability: How complex will it be to link this workflow to my other tools

written in another language or executed on another platform?
5 Code migration capability: In case I need to make some modifications to the

workflow, do I have other options than fully rewriting it in my favorite language?

?Exercise 3
1. Install the SurfCut macro and execute it on the associated data.
2. Identify, based on the text of the reference publication, the "readme" in theGithub

repository and the user guide, all elements restricting the datasets of certain type
to be used with SurfCut.

3. For each use case below, download the dataset and explain if and why the dataset
could be processed directly with SurfCut, without any workflow modification,
using the checks defined above. We assume that the output of the workflow (a
2D projection) is what we need.

(a) Use case 1: 3D light sheet microscopy images of aTribolium epithelium (Vorkel
et al., 2020).
Dataset: 7 https://zenodo.org/record/3981193#.Xzo8pTU6-60, take
"Strausberg_Tribolium_LAGFP_tailpole_runC0opticsprefused301310.tif".
This dataset was used as an example to showcase another projection tool.12

(b) Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc, Valon and Staneva, 2020).
Dataset: 7 https://zenodo.org/record/4114074#.X5AJAe06-60. Take the
image named "notum2_GFP.tif".

(c) Use case 3: 3D light sheet microscopy images of single cells (Driscoll et al.,
2019).
Dataset:7 https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/do-
wnload), in the folder called "testData". Each image is associated with a text
file describing the imaging conditions (AcqInfo.txt).There are three examples of
MV3 melanoma cells ("krasMV3") and one example
of conditionally immortalized hematopoietic precursors to dendritic

12 7 https://clij.github.io/assistant/sphere_projection.

https://zenodo.org/record/3981193#.Xzo8pTU6-60
https://zenodo.org/record/4114074#.X5AJAe06-60
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://clij.github.io/assistant/sphere_projection

6

126 M. Louveaux and S. Verger

cells ("lamDendritic"). Associated GitHub repository: 7 https://github.com/
DanuserLab/u-shape3D and research article:7 https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7238333/.

(d) Use case 4: light sheet image of a gastric cancer spheroid (Rocha et al., 2020).
Dataset: 7 https://zenodo.org/record/4244952#.X6L_ZIj7SHs.

vSolution to Exercise 3
1. See 7 Sects. 6.2 and 6.3, as well as the installation instructions and the userguide

on the GitHub repository.13

2. Prerequisites
Pre-requisites and limitations found in the main text of the publication:
5 "the acquired signal must be strong and continuous enough at the edge of

the sample in order for the signal to be detected and segmented from the
backgroundnoisebya simple conversion toabinary image." (Methods section,
in "Confocal microscopy")

5 "avoid the presence of artifacts, e.g., from stained cell debris or bacteria at the
surface of the sample." (Methods section, in "Confocal microscopy")

5 "The first slice of the stack should be the top surface of the sample in order for
theprocess toworkproperly." (Methods section, in "2Dcell contour extraction
with SurfCut")

5 "a new method (SurfCut) to extract cell contours or specific thin layers of
a signal at a distance from the surface of samples in 3D confocal stacks."
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX14 and SurfCut")

5 "the associated error can become important for samples with high curvature."
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX and SurfCut")

5 "In principle, this tool may be used on any 3D stack (e.g., confocal or light-
sheet microscopy) originating from either animal, fungi, or plant systems."
(Conclusions section)

5 "SurfCut is particularly well suited for tissues with a low curvature " (Conclu-
sions section)

5 "SurfCut is very well suited for high-throughput pavement cell contour extrac-
tionand further quantification. [...] Besides, SurfCut canalsobeused to extract
other types of signals, such as cortical microtubules, allowing a suppression of
the background noise coming from the signal below." (Conclusions section)

5 "SurfCut can be a very useful tool for the 2D representation (from image-
based screening protocols to publication figures) of 3D confocal data in which
overlapping signal from different depths in the stack hinders the visualization
of signal or structures of interest." (Conclusions section)

Prerequisites and limitations found in the "readme" of the GitHub repository:15

13 7 https://github.com/sverger/SurfCut.

14 MorphoGraphX.

15 7 https://github.com/sverger/SurfCut/blob/master/README.md.

https://github.com/DanuserLab/u-shape3D
https://github.com/DanuserLab/u-shape3D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://zenodo.org/record/4244952#.X6L_ZIj7SHs
https://github.com/sverger/SurfCut
https://github.com/sverger/SurfCut/blob/master/README.md

How to do the Deconstruction of Bioimage Analysis …
127 6

5 "This can, for example, be used to extract the cell contours of the epidermal
layer of cells." (Description section)

5 "SurfCut [...] is in principle only adequate for sample with a relatively simple
geometry." (How it works section)

5 "3D confocal stacks in .tif format, in which the top of the stack should also
be the top of the sample." (Prerequisites section)

Prerequisites and limitations found in the user guide:16

5 "Our image analysis pipeline was developed to extract cell contours or specific
layers of signal in confocal images of plant samples, but can in principle be
used on any 3D fluorescence microscopy stack (e.g. confocal or light-sheet
microscopy) originating from either animal, fungi or plant systems, stained
or expressing a fluorescent reporter highlighting the cell contours (typically,
a protein at the plasma membrane). For a better-quality output, it is recom-
mended to use a Z interval of maximum 1μm." (Procedure section, A. Image
Acquisition)

5 "if your signal is very heterogeneous, e.g. for cortical microtubules, a higher
[Gaussian blur radius] value can help homogenize the signal and obtain a good
surface detection." (Procedure section, C. Calibration, step 6.)

5 "The voxel properties of your image in micrometers, are automatically filled
based on the metadata of the image. If no data is found, these values will all
be set to 1." (Procedure section, C. Calibration, step 10.)

5 "Remember that the stack should be in .tif and that the top of the stack should
also be the top of the sample." (Procedure section, D. Running the script in
batch mode, step 18.)

3. Use cases
5 Use case 1: 3D light sheet microscopy images of a Tribolium epithelium.

We have a 3D stack, .tif format, we know the pixel size, and the life-actin GFP
marker signal delimits well a relatively thin epidermal layer. However, these
are time-lapse data (SurfCut can process only one time-point at a time), and
the tissue is very curvy. The data could be processed by first extracting each
individual time points and then analysing the images in a batch after having
defined the proper parameters in the calibrate mode. However, SurfCut is not
recommended in this case due to the high curvature of the tissue.

5 Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc), image named "notum2_GFP.tif"
We have a 3D stack, in .tif format.We know the pixel size from the description
of the Zenodo upload, and the E-Cadherin marker delimits well a relatively
thin epidermal layer, which is only slightly curved. SurfCut is appropriate
here, since the tissue is not too curvy. Moreover, SurfCut can help remove
noise above and below the epidermis and hence render a sharper projection of
the cell contours. After adding the pixel size specified in the description of the
dataset to the metadata of the image, we can process the image with SurfCut
using the following parameters: gaussian blur of radius 3; threshold of 50; top
= 6; bottom = 11.

16 7 https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf .

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf

6

128 M. Louveaux and S. Verger

5 Use case 3: 3D light sheet microscopy images of single cells.
Wehave3Dstacks, .tif format, andweknowthepixel size fromtheAcqInfo.txt
file. However, these are 3D closed objects with quite some relief. Here SurfCut
is not appropriate to project the 3D stacks, it would deform the cells toomuch.

5 Use case 4: 3D light sheet images of a gastric cancer spheroid.
We have a 3D stack in .tif format. However, the stack contains the first bright
and blurry slice that needs to be removed first, the proper voxel size needs to
be set based on the information found in the description of the dataset, and
the z resolution is rather low (5 micron) compared to the x and y (1 micron).
SurfCut can help remove noise around the spheroid, as well as the blur from
inside, and render a sharper projection of the surface. We can process the
stack with SurfCut using the following parameters: Gaussian blur of radius 3;
threshold of 20; top = 0; and bottom = 25.

6.4.4 Step 4. Identification of Components in the Code

In the previous steps, we identified the components of the workflow from the text,
drew a workflow scheme (see . Fig. 6.4) and checked the prerequisites in terms of
data input. If the workflow could be reused as it is, we could have stopped there. Now,
we assume that we need to modify the workflow to adapt it to our needs. Hence we
need to get a more in-depth knowledge of the code.

Each programming language has a different syntax, but there should always be
comments, variables with meaningful names, functions, and other common recog-
nizable items. They can help you understand the structure of the workflow in the
code. Read first the comments around the code to identify the different components
of the workflow, as found in step 1 and 2 (see . Fig. 6.4). Each component should
ideally match with a block of code containing one or several built-in or custom func-
tions, some loops and conditional statements etc. To further understand the order of
execution of the workflow, identify also the different input and output variables.

SurfCut contains several defects often found in real codes, and especially in ImageJ
macros.17 We will see, for instance, in the exercise below that, in SurfCut, some com-
ponents are spread over several blocks of code and intermingled with other compo-
nents. We will see also that some components in SurfCut are made of several built-in
functions that are not wrapped in one bigger function. Of course, a modular code
with clearly separated blocks of code and one function per component is easier to
read and understand, but SurfCut is representative of ImageJ macros. This lack of
structure comes from two elements: (i) macro authors are seldom software develop-
ers and hence lack good code writing practices (commenting, wrapping components
into functions...) and (ii) most macro authors rely on the macro recorder to find the
proper functions to use. The macro recorder prints the macro commands correspond-
ing to the steps done manually by the user through the graphical user interface of
ImageJ/Fiji. Whereas some components correspond to a single ImageJ macro built-
in function (e.g. a Gaussian blur), other require several functions (e.g. Edge detect).
The modular structure with components is lost when using the macro recorder. In
addition to these defects, SurfCut contains many repetitions of code lines. This is due

17 7 https://imagej.nih.gov/ij/developer/macro/macros.html.

https://imagej.nih.gov/ij/developer/macro/macros.html

How to do the Deconstruction of Bioimage Analysis …
129 6

to the presence of two types of workflows in one code, the calibrate and the batch
workflows, and the lack of optimization in the code to reuse functionalities of one
workflow in the other rather than copy functionalities.

As explained in the introduction, we took into account all these defects and carried
out a complete refactoring of the code (as described in Step 5 and 6 of this book
chapter), fixed bugs, and created new functions to reach a new version of SurfCut,
called SurfCut2.18 We alsomade a simpler version of themacro, called SurfCut2-Lite.
We propose two alternatives to the exercises below, corresponding to two levels of
difficulty. For the beginner level, use the SurfCut2-Lite code19 and do the exercises
4.1, 6, 7 and 8 (skip exercise 4.2 and 5, which are already implemented in the code of
SurfCut2-Lite). For the advanced level, use the code of the original SurfCut macro
and follow all the steps and exercises proposed.

?Exercise 4
Using either SurfCut2-Lite code ("beginner level") or SurfCut code ("advanced level"):
1. Identify blocks of code corresponding to the different components identified in

Step 1 and Step 2.
2. Extract in a separate text file a minimal version of the macro corresponding to the

workflow only: remove user interfaces, "for" loops used to run the batch mode,
and "while" loops (in this case, they are not a part of the workflow). Keep only
the essential elements the workflow and group elements corresponding to a given
component together. Identify the different components of the workflow using the
comments present in the macro.

vSolution to Exercise 4
"Beginner Level": Response to Task 1, Considering SurfCut2-Lite Code
1. The workflow appears once, and can be identified at the early part of the macro,

in the form of a suite of user-defined functions (line 51−68; similar to the solu-
tion of Exercise 5.2). Further, all the components of the workflow are organized
as user-defined functions, between line 112 and 222 of the macro (Component
1: line 114−118; Component 2: 120−124; Component 3: 126−131, Component 4:
133−156; Ccomponent 5: 158−207; Component 6: 209−215; similar to exercise 5.1
solution). Note that the Component 5 was split into two user-defined functions
(ZAxisShifting and masking), which can be useful and will be explained later in
this book chapter.

"Advanced Level": Response to Tasks 1 and 2, Considering the Original SurfCut Code
1. In the original SurfCut code, theworkflow is present twice:Once in the "Calibrate"

mode, in which most of the steps are intertwined with user input and interaction,
and once in the "Batch"mode, in which the backbone of themacro is embedded in
a batch processing "for" loop. The most easily identifiable backbone of the work-
flow is present between lines 403 and 463 of the macro (Component 1: line 403;
Component 2: 404; Component 3: 407−409, Component 4: 418−431; Component

18 7 https://github.com/VergerLab/SurfCut2.

19 7 https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijm.

https://github.com/VergerLab/SurfCut2
https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijm

6

130 M. Louveaux and S. Verger

5: 433−453; Component 6: 462−463), within the "Batch" mode part of the code.
In the "Calibrate" part of the code, equivalent code blocks can be found at lines
68−88 and 161−200.

2. The code below shows a possible solution for the extraction of the minimally
required code for the core functionalities of SurfCut. Each component is labeled
in a corresponding comment by its corresponding number (see . Fig. 6.4).

1 //=Component1=// 8bit conversion
2 run("8-bit");
3

4 //=Component2=// Denoising
5 run("Gaussian Blur...", "sigma=&Rad stack");
6

7 //=Component3=// Binarization
8 setThreshold(0, Thld);
9 run("Convert to Mask", "method=Default background=Light");

10 run("Invert", "stack");
11

12 //=Component4=// Edge detection
13 print (slices);
14 for (img=0; img<slices; img++){
15 print("Edge detect projection" + img + "/" + slices);
16 slice = img+1;
17 selectWindow(list[j]);
18 run("Z Project...", "stop=&slice projection=[Max

Intensity]");↪→
19 }
20 print("Concatenate images");
21 run("Images to Stack", "name=Stack title=[]");
22 wait(1000);
23 selectWindow(list[j]);
24 close();
25

26 //=Component5=// Masking
27 //Substraction2
28 print("Substraction2");
29 selectWindow("Stack");
30 run("Duplicate...", "title=Stack-1 duplicate range=1-&slices");
31 open(dir+File.separator+list[j]);
32 wait(1000);
33 run("8-bit");
34 run("Invert", "stack");
35 imageCalculator("Subtract create stack", "Stack-1",list[j]);
36 //Substraction1
37 print("Substraction1");
38 selectWindow("Stack");
39 run("Invert", "stack");
40 getDimensions(w, h, channels, slices, frames);
41 Slice1 = Cut2 +1 - Cut1;
42 Slice2 = slices - Cut1;
43 run("Duplicate...", "title=Stack-2 duplicate

range=&Slice1-&Slice2");↪→
44 selectWindow("Result of Stack-1");
45 run("Invert", "stack");

How to do the Deconstruction of Bioimage Analysis …
131 6

46 imageCalculator("Subtract create stack", "Stack-2","Result of
Stack-1");↪→

47

48 //=Component6=//Z projection
49 print("Project and save SurfCutProj");
50 run("Z Project...", "projection=[Max Intensity]");

SurfCutCrudeExtractedWorkflow.ijm

Code available in the GitHub repository of this book.20

6.4.5 Step 5. Code Refactoring

InStep 4,we identified thebasic components of theworkflow in the code and extracted
a minimal version of the code. To simplify the later replacement of a component
in the code, we propose an optional step: refactoring the code. This step aims at
reorganizing the code in order to improve its design and re-usability without changing
its input or behavior. The refactored code will be constituted of several user-defined
functions, each corresponding to one component of the workflow. The replacement
of a component is then equivalent to replacing a function.

Here, we also suggest to split one of the components into two, as a part of the
refactoring process. Indeed, while some of the workflow components described in the
publication text (and identified in Step 1 and Step 2) correspond to single ImageJ built-
in functions, Component 4, "Edge detection", and Component 5, "Masking", with
implementation inspired by the algorithm used in the software MorphoGraphX, cor-
respond to many lines of code directly coming from the macro recorder. To improve
the organization and re-usability of the code, here we suggest splitting the code corre-
sponding to Component 5, "Masking", in two components. The purpose of Compo-
nent 5 is to extract a layer of signal in the original stack, using the mask created in the
preceding "edge-detection" step. This works by successively shifting the mask down
and subtracting the signal twice: once above and once below the signal of interest. So,
in fact, it is not only a masking step, but also a Z-axis shifting of the mask preced-
ing the masking. Here, we propose to keep roughly the same process, but reorganize
the order in which the steps are taken and separate these two steps: to first create a
layer mask by two successive Z-axis shifts of the original mask and subtraction from
one-another (Component 5a), and then to do the masking itself (Component 5b).

Overall, such a substantial refactoring costs some time and brainpower, but can
strongly improve the workflow and ultimately simplify the replacement of compo-
nents or their parts, as we will see in the next step.

?Exercise 5 ("Advanced Level" Only, Using the Original SurfCut Code)
1. Inspect each component extracted in Step 4, identify unnecessary or disorganized

lines of code and optimize the code of each component by simplifying, cutting,
and reorganising the code lines.

20 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm

6

132 M. Louveaux and S. Verger

Convert each component into a user-defined function.21

As discussed above, re-implement Component 5 of the workflow into two steps:
(5a) Layer mask creation, and (5b) Raw signal masking.

2. Write, or extract from the original SurfCut macro, the lines corresponding to the
definition of the input and the parameters necessary to run the code.
Make a working macro including the definition of parameters at the beginning
and the fully refactored version of the workflow (optimized code, user-defined
functions, and with Component 5 split in two parts).

vSolution to Exercise 5
1. Apossible refactoringof the initial code into functions,with the re-implementation

of Component 5 in two parts, is shown below. Some of the variable names have
been homogenized, some unnecessary code lines (e.g. wait(1000);) have been
removed, and all the components have been transformed into simple user-defined
functions. To get a better insight, compare the code proposed below with the
equivalent code extracted from the SurfCut macro in Step 4.

33 //=Component1=//
34 function BitConversion(){
35 print ("Pre-processing");
36 run("8-bit");
37 };
38

39 //=Component2=//
40 function Denoising(Rad){
41 //Gaussian blur (uses the variable "Rad" to define the

sigma of the gaussian blur)↪→
42 print ("Gaussian Blur");
43 run("Gaussian Blur...", "sigma=&Rad stack");
44 };
45

46 //=Component3=//
47 function Binarization(Thld){
48 //Object segmentation (uses the variable Thld to define

the threshold applied)↪→
49 print ("Threshold segmentation");
50 setThreshold(0, Thld);
51 run("Convert to Mask", "method=Default

background=Light");↪→
52 };
53

54 //=Component4=//
55 function EdgeDetection(imgName){
56 print ("Edge detect");
57 //Get the dimensions of the image to know the number of

slices in the stack and thus the number of loops to
perform

↪→
↪→

58 getDimensions(w, h, channels, slices, frames);
59 print (slices);
60 run("Invert", "stack");

21 7 https://imagej.nih.gov/ij/developer/macro/macros.html.

https://imagej.nih.gov/ij/developer/macro/macros.html

How to do the Deconstruction of Bioimage Analysis …
133 6

61 for (img=0; img<slices; img++){
62 //Display progression in the log
63 print("Edge detect projection" + img + "/" +

slices);↪→
64 slice = img+1;
65 selectWindow(imgName);
66 //Successively projects stacks with increasing

slice range (1-1, 1-2, 1-3, 1-4,...)↪→
67 run("Z Project...", "stop=&slice

projection=[Max Intensity]");↪→
68 };
69 //Make a new stack from all the Z-projected images

generated in the loop above↪→
70 run("Images to Stack", "name=Mask title=[]");
71 selectWindow(imgName);
72 close();
73 //Close binarized image generated in component2

(imgName), but keeps the image (Mask) generated
after the edge detect.

↪→
↪→

74 };
75

76 //=Component5a=//
77 function ZAxisShifting(Cut1, Cut2){
78 print ("Layer mask creation");
79 ///First Z-axis shift
80 //Get dimension w and h, and pre-defined variable Cut1

depth to create an new "empty" stack↪→
81 getDimensions(w, h, channels, slices, frames);
82 newImage("Add1", "8-bit white", w, h, Cut1);
83 //Duplicate and invert Mask while removing bottom

slices corresponding to the Z-axis shift (Cut1
depth)

↪→
↪→

84 Slice1 = slices - Cut1;
85 selectWindow("Mask");
86 run("Duplicate...", "title=Mask1Sub duplicate

range=1-&Slice1");↪→
87 run("Invert", "stack");
88 //Add newly created empty slices (Add1) at begining of

Mask1Sub, thus recreating a stack with the original
dimensions of the image and in whcih the mask is
shifted in the Z-axis.

↪→
↪→
↪→

89 run("Concatenate...", " title=[Mask1] image1=[Add1]
image2=[Mask1Sub] image3=[-- None --]");↪→

90 ///Second Z-axis shift
91 //Use image dimension w and h from component3 and

pre-defined variable Cut2 depth to create an new
"empty" stack

↪→
↪→

92 newImage("Add2", "8-bit black", w, h, Cut2);
93 //Duplicate Mask while removing bottom slices

corresponding to the Z-axis shift (Cut2 depth)↪→
94 Slice2 = slices - Cut2;
95 selectWindow("Mask");
96 run("Duplicate...", "title=Mask2Sub duplicate

range=1-&Slice2");↪→
97 //Add newly created empty slices (Add2) at begining of

Mask2Sub,↪→

6

134 M. Louveaux and S. Verger

98 run("Concatenate...", " title=[mask2] image1=[Add2]
image2=[Mask2Sub] image3=[-- None --]");↪→

99 //Subtract both shifted masks to create a layer mask
100 imageCalculator("Add create stack", "Mask1","mask2");
101 close("Mask");
102 close("Mask1");
103 close("Mask2");
104 selectWindow("Result of Mask1");
105 rename("LayerMask");
106 //Close original and shifted masks ("Mask", "Mask1" and

"Mask2"), but keeps the newly created "layerMask"
resulting from the subtraction of the two shifted
masks.

↪→
↪→
↪→

107 };
108

109 //=Component5b=//
110 function Masking(imgPath, imgName){
111 print ("Cropping stack");
112 //Open raw image
113 open(imgPath);
114 run("Grays");
115 //Apply LayerMask to raw image
116 imageCalculator("Subtract create stack", imgName,

"LayerMask");↪→
117 close("LayerMask");
118 };
119

120 //=Component6=//
121 function ZProjections(imgName){
122 selectWindow("Result of " + imgName);
123 run("Z Project...", "projection=[Max Intensity]");
124 rename("SurfCut projection");
125 selectWindow(imgName);
126 run("Z Project...", "projection=[Max Intensity]");
127 rename("Original projection");
128 };

SurfCutWorkflowFunc.ijm

Code available in the GitHub repository of this book.22

2. The code for opening an image and getting the variable names can be found in
lines 32−38 of the original SurfCut macro. Variables related to the radius of the
Gaussian blur filter, threshold for the segmentation, and top and bottom depths
(in micron) for masking can be found in lines 42−45 and 149−150. These variables
are used for the definition of Cut1 and Cut2 (the actual values of the Z-axis shifts,
depending on the thickness of the stack slice steps). The values of Cut1 and Cut2
depend on the stack slice thickness, which, in the macro, is extracted from the
metadata of the image (line 96). For simplicity, we can here define it directly in
the code.

22 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm

How to do the Deconstruction of Bioimage Analysis …
135 6

In the solution below, the parameters identified above are called at the beginning
of the macro. The functions defined in the answer to Question 1 (above) are
successively called, giving a clear overview and easy reading of the workflow.

1 ///Parameters
2 Rad = 3;
3 Thld = 20;
4 Top = 6;
5 Bot = 8;
6 Dpt = 0.5;
7 Cut1= Top/Dpt;
8 Cut2= Bot/Dpt;
9

10 ///Open a stack and get names
11 open();
12 imgDir = File.directory;
13 print(imgDir);
14 imgName = getTitle();
15 print(imgName);
16 imgPath = imgDir+imgName;
17 print(imgPath);
18

19 ///SurfCut Workflow User-Defined Functions
20 BitConversion(); //Component1
21 Denoising(Rad); //Component2
22 Binarization(Thld); //Component3
23 EdgeDetection(imgName); //Component4
24 ZAxisShifting(Cut1, Cut2); //Component5a
25 Masking(imgPath, imgName); //Component5b
26 ZProjections(imgName); //Component6
27

28 ///End
29 print("=== Done ===");

SurfCutWorkflowFunc.ijm

Code available in the GitHub repository of this book.23

6.4.6 Step 6. Replacing a Component: Shift Mask in the Z-Axis
Direction

Now we have a well organized and flexible workflow. It is time to inspect it in detail
and determine if the different components are best adapted to our needs. As an
example, we will now examine the Component 5a "Layer mask creation" created
during the refactoring of the SurfCut macro code (line 76−107); this component is
included in the SurfCut2-Lite code (line 158−197). In the current implementation, we
use a sequential Z-axis shift of the mask to make a layer-mask. But in principle, as
discussed in (Erguvan et al., 2019), a 3D erosion, although more computationally
demanding, would be more suitable for samples with high curvature. Let us try to

23 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm

6

136 M. Louveaux and S. Verger

replace the Component 5a with a procedure which uses a 3D erosion instead of a
Z-axis shift.

?Exercise 6
1. Find how to perform a 3D erosion on a binary object using Fiji.
2. Write a function similar to the existing Component 5a, but performing a 3D

erosion on the mask, instead of Z-axis shift (to be used to replace Component 5a).
3. Modify the refactored version of SurfCut or SurfCut2-Lite to include both alter-

natives for processing (Z-axis shift and erosion) with a conditional statement.

vSolution to Exercise 6
1. 3D erosion operation is available in Fiji Plugins>Process>Erode(3D). The macro

recorder canbe used to record the corresponding code.Alternatively,we can apply
the erosion operation from the 3D suite plugin (Ollion et al., 2013).24

2. Below we propose a user-defined function that takes as input parameter two
"erosiondepths", i.e. twodistances (in pixels ormicrons) from the surface, defining
theupper and lowerboundaryof the signal tobe extracted.This functionprocesses
the binary stack ("Mask") obtained with the EdgeDetect. The mask is eroded by
several erosion steps using a "for" loop. The number of steps depends on the
value of the first erosion depth. The image resulting from this first erosion is then
duplicated and eroded further to reach the second defined value of erosion depth.
The first eroded stack is then inverted (in terms of binary values), and these two
eroded stacks (binary values) are summed, forming a layer mask ("LayerMask")
that can then be used in Component 5b.

116 //=Component5a=//
117 function Erosion(Ero1, Ero2){
118 print ("Layer mask creation - Erosion");
119 //Erosion 1
120 selectWindow("Mask");
121 run("Duplicate...", "title=Mask-Ero1 duplicate");
122 print("Erosion1");
123 print(Ero1 + " erosion steps");
124 for (erode1=0; erode1<Ero1; erode1++){
125 print("Erode1");
126 run("Erode (3D)", "iso=255");
127 };
128 //Erosion 2 (here instead of restarting from the

original mask, the eroded mask is duplictaed and
further eroded. In this case Ero2 corresponds

↪→
↪→

129 //to the number of additional steps of erosion, or the
thickness of the future layer mask)↪→

130 selectWindow("Mask-Ero1");
131 run("Duplicate...", "title=Mask-Ero2 duplicate");
132 print("Erosion2");
133 print(Ero2 + " erosion steps");

24 7 https://imagej.net/3D_ImageJ_Suite.

https://imagej.net/3D_ImageJ_Suite

How to do the Deconstruction of Bioimage Analysis …
137 6

134 for (erode2=0; erode2<Ero2; erode2++){
135 print("Erode2");
136 run("Erode (3D)", "iso=255");
137 };
138 selectWindow("Mask-Ero1");
139 run("Invert", "stack");
140 //Subtract both shifted masks to create a layer mask
141 imageCalculator("Add create stack",

"Mask-Ero1","Mask-Ero2");↪→
142 close("Mask");
143 close("Mask-Ero1");
144 close("Mask-Ero2");
145 selectWindow("Result of Mask-Ero1");
146 rename("LayerMask");
147 //Close original and eroded masks ("Mask", "Mask-Ero1"

and "Mask-Ero2"), but keeps the newly created
"layerMask" resulting from the subtraction of the
two eroded masks.

↪→
↪→
↪→

148 };

SurfCutWorkflowFuncErode.ijm

Code available in the GitHub repository of this book.25

3. In the example below, we added the new component 5a as a function. We either
call the Z-shift or erode function, using a conditional "if" and "else if" statement
(lines 27−31 below). In addition, we defined new variables necessary for the new
erode function and for the conditional statement (lines 9−11): Ero1 and Ero2
which are calculated from the values Cut1 and Cut2, and MODE, in which the
user can define whether to process the macro with the Z-axis shift, or using the
erosion.

1 ///Parameters
2 Rad = 3;
3 Thld = 20;
4 Top = 6;
5 Bot = 8;
6 Dpt = 0.5;
7 Cut1= Top/Dpt;
8 Cut2= Bot/Dpt;
9 Ero1 = Cut1;

10 Ero2 = Cut2-Cut1;
11 MODE = "erode"; //(or "Z-shift")
12

13 ///Open a stack and get names
14 open();
15 imgDir = File.directory;
16 print(imgDir);
17 imgName = getTitle();
18 print(imgName);

25 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm

6

138 M. Louveaux and S. Verger

19 imgPath = imgDir+imgName;
20 print(imgPath);
21

22 ///SurfCut Workflow User-Difined Functions
23 BitConversion(); //Component1
24 Denoising(Rad); //Component2
25 Binarization(Thld); //Component3
26 EdgeDetection(imgName); //Component4
27 if (MODE=="erode"){ //Component5a
28 Erosion(Ero1, Ero2);
29 } else if (MODE=="Z-shift"){
30 ZAxisShifting(Cut1, Cut2);
31 };
32 Masking(imgPath, imgName); //Component5b
33 ZProjections(imgName); //Component6
34

35 ///End
36 print("=== Done ===");

SurfCutWorkflowFuncErode.ijm

Code available in the GitHub repository of this book.26

6.4.7 Step 7. Benchmarking: Comparison of Two Alternative
Components

Benchmarking is assessment of benefits and drawbacks of different algorithms and
evaluation of their performance in terms of a range of criteria: speed, memory usage
when dealing with, e.g., 2D or 3D stacks, and quality of the result (e.g., Howmuch the
projection deforms the image? How well does the selected filter extract the features
of interest in the image?). Benchmarking can be performed for two (or more) similar
components, or two (or more) similar workflows. Here, we would like to assess if the
change of a component that we made in Step 6 is beneficial for the workflow.

In Step 6, we suggested an alternative code for layer mask creation. We will now
benchmark this new workflow against the original one. First, we can look at the
output and qualitatively assess if the workflow generates the expected result. Sec-
ond, and importantly—we will quantitatively assess the impact of the change on the
performances of the workflow, mainly evaluating if the processing time is a limiting
factor. This can be done very quickly by adding timestamps in the script, and calcu-
lating the time elapsed between the beginning and the end of the workflow execution.
Furthermore, using nested "for" loops, it is also possible to iteratively test how differ-
ent parameters affect the workflow processing time: Erode or Z-shift, and increasing
depth of masking. The values can also be recorded in a text file to make a direct
comparison of the performance after running the benchmark.

26 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm

How to do the Deconstruction of Bioimage Analysis …
139 6

vExercise 7
1. Find out how to add a timestamp in the macro.
2. Implement a way to quantify the processing time of the macro.
3. Implement a way to record the processing times in a text file.
4. Implement nested "for" loops to iteratively test theErode and theZ-shift, aswell as

the increasing depth of masking, starting from 1 (Top) and 2 (Bot), and reaching
5 (Top) and 6 (Bot) (1−2, 2−3, 3−4, 4−5, 5−6). Furthermore, a simple way to
decrease processing time in ImageJ macros is to use the "setBatchMode" function.
It allows the processing of the images to be carried out without displaying the
images, which can improve processing time by up to a factor of 20. Implement an
additional nested loop to test how much the "setBatchMode" function improves
the performances of the macro.

5. Run thismodified version of SurfCut on the provided SurfCut data (see7 Section
6.2) and compare the performances of the two components.

vSolution to Exercise 7
1. Within the ImageJ built-in functions, there are at least two ways to add a

time-stamp: "GetDateAndTime" and "GetTime". The latter is more practical to
calculate the elapsed time, because it gives a value in milliseconds, instead of
hours:minutes:seconds:milliseconds (which is less practical for further analysis).

2. "GetTime" can be added right before and right after the execution of the workflow
of interest. Subtracting the value given at the first time point from the value
obtained at the second time point gives the elapsed time.

51 T0 = getTime();

[Workflow]
67 T1 = getTime();
68 T=T1-T0;
69 print(T + "msec");

SurfCutWorkflowBenchmark.ijm

3. A text file can be created with the built-in function "File.open", it can be closed
using the function "File.close", and text can be added to the closed file with the
function File.append. Note that, while the text can also be written directly in an
open text file with the "print" function, only one file can be opened at a time, which
can be limiting in some situations (e.g. if other parameters are being recorded by
the macro in another text file).
Create file (with Headers):

13 f = File.open(imgDir + File.separator + "MultiBenchmark.txt");
14 print(f, "Mode\tBatch\tTop\tBot\tTime(msec)");
15 File.close(f);

Append file with recorded data:
70 File.append(MODE + "\t"+ BATCH + "\t" + Top + "\t" + Bot

+ "\t" + T, imgDir + File.separator +
"MultiBenchmark.txt");

↪→
↪→

SurfCutWorkflowBenchmark.ijm

4. Three nested "for" loops need to be implemented to iteratively test the three types
of parameters of interest. This requires to slightly reorganise where the variables
are defined, since a number of them are now defined in the "for" loops. A text file

6

140 M. Louveaux and S. Verger

is saved containing the output of all the time elapse measurements along with the
parameter used at each iteration. The SurfCut 2D projection is also saved in each
case, in order to assess the quality of the output. A possible complete solution is
shown below.

1 ///Open a stack and get names
2 open();
3 imgDir = File.directory;
4 print(imgDir);
5 imgName = getTitle();
6 print(imgName);
7 imgPath = imgDir+imgName;
8 print(imgPath);
9 selectWindow(imgName);

10 close();
11

12 //Make tab separated file to record the benchmarking data
13 f = File.open(imgDir + File.separator + "MultiBenchmark.txt");
14 print(f, "Mode\tBatch\tTop\tBot\tTime(msec)");
15 File.close(f);
16

17 //Nested "for" loops
18 //Loop parameters
19 mode = newArray("Z-Shift", "erode");
20 batch = newArray(true, false);
21 TopDepth = 5;
22

23 //Nested loops
24 //loop between Z-shift and erode
25 for (Mode = 0; Mode<mode.length; Mode++){
26 //loop between "setBatchMode" true and false
27 for (Batch = 0; Batch<batch.length; Batch++){
28 //loop through increasing depths for cutting
29 for (Top = 1; Top < TopDepth; Top++){
30

31 ///Parameters
32 Rad = 3;
33 Thld = 20;
34 Bot = Top+1; //Automatically make mask layer thickness to

1 micron↪→
35 Dpt = 0.5;
36 Cut1= Top/Dpt;
37 Cut2= Bot/Dpt;
38 Ero1 = Cut1;
39 Ero2 = Cut2-Cut1;
40 MODE = mode[Mode];
41 BATCH = batch[Batch];
42

43 print("Mode : " + MODE + " Batch : " + BATCH + " Top = "
+ Top + " Bot = " + Bot);↪→

44

45 setBatchMode(BATCH);
46

47 //Open predefined image for precessing in the loop
48 open(imgPath);
49

50 //Benchmark T0
51 T0 = getTime();

How to do the Deconstruction of Bioimage Analysis …
141 6

52

53 ///SurfCut Workflow User-Defined Functions
54 BitConversion(); //Component1
55 Denoising(Rad); //Component2
56 Binarization(Thld); //Component3
57 EdgeDetection(imgName); //Component4
58 if (MODE=="erode"){ //Component5a
59 Erosion(Ero1, Ero2);
60 } else if (MODE=="Z-Shift"){
61 ZAxisShifting(Cut1, Cut2);
62 };
63 Masking(imgPath, imgName); //Component5b
64 ZProjections(imgName); //Component6
65

66 //Benchmark T1
67 T1 = getTime();
68 T=T1-T0;
69 print(T + "msec");
70 File.append(MODE + "\t"+ BATCH + "\t" + Top + "\t" + Bot

+ "\t" + T, imgDir + File.separator +
"MultiBenchmark.txt");

↪→
↪→

71

72 //Save SurfCut output
73 selectWindow("SurfCut projection");
74 saveAs("Tiff", imgDir + File.separator +

"SurfCutBenchmark_mode-"+ MODE + "_Batch-"+ BATCH +
"_Top-" + Top + "_Bot-" + Bot + ".tif");

↪→
↪→

75

76 run("Close All");
77

78 //End of nested loops
79 };
80 };
81 };
82

83 ///End
84 print("=== Done ===");

SurfCutWorkflowBenchmark.ijm

Code available in the GitHub repository of this book.27

5. With theErode component, the processing time increases linearlywith the number
of erosion steps required. This is not the case with the Z-axis shift component.
However, the accuracy and quality of the result for samples with higher curvature
are in principle improved with the Erode process, as described in Erguvan et al.,
2019.

27 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm

6

142 M. Louveaux and S. Verger

6.4.8 Step 8. Linking to Another Workflow: FibrilTool

As described in the introduction and the reference publication, SurfCut was designed,
and has been used, as a pre-processing step for cell segmentation and cortical
microtubule (CMT) signal analysis with another ImageJ macro called FibrilTool
(Boudaoud et al., 2014). In this case, SurfCut and FibrilTool are two components of
a workflow. However, the output of SurfCut cannot be directly taken as the input
of FibrilTool. As a final exercise, we will analyse how these two components can be
linked in a workflow, by adding one, or several, intermediate components.

?Exercise 8
1. Identify the type of input required for the FibrilTool macro.
2. Identify the missing steps between the SurfCut output and the FibrilTool input,

required to connect the two components.
3. How would you implement these missing steps?
4. Last but not least, consider whether the required tools already exist, or you need

to implement them de novo.

vSolution to Exercise 8
1. FibrilTool takes as input an ImageJ ROI and a corresponding image containing

the fibrilar structure to analyse (e.g. CMTs).
2. Surfcut can directly generate one of the FibriTool inputs: the preprocessed CMT

image. It can also generate the cell contour image. The missing step here is the
generation of ROIs from this cell contour image. Finally, the originally published
version of FibrilTool takes and analyses ROIs manually one by one. Since many
ROIs per image can be created, FibrilTool could be automatized to analyse all
these ROIs automatically, one after the other.

3. For generation of ROIs from a cell contour image, a simple Analyze particle func-
tionmaybe sufficient.However, to ensurebetter results, awatershed segmentation
could be used. For FibrilTool automation, a "for" loop can be implemented to
analyse automatically all ROIs generated in the preceding step.

4. The second part of the user guide of SurfCut describes these additional workflow
components. Previously, an automated version of Fibriltool that uses ROIset.zip
as input, instead of individual ROIs, was implemented: "FibrilToolBatch.ijm"
(Louveaux and Boudaoud, 2018). We then implemented a macro called "segmen-
tation4FTBatch.ijm".28 This macro uses the MorpholibJ morphological segmen-
tation tool (Arganda-Carreras et al., 2020; Legland et al., 2016) to segment the
cell contours extracted from SurfCut, and other ImageJ functions to ultimately
generate a ROIset.zip used as input for FibrilToolBatch.

6.5 Analysis of the Results: Presentation and Discussion

In this chapter,we performed the deconstructionof the ImageJmacroSurfCut in eight
steps. In Step 1, we identified 6 main components: 8bit conversion, Gaussian blur

28 7 https://github.com/sverger/Segmentation4FTBatch.

https://github.com/sverger/Segmentation4FTBatch

How to do the Deconstruction of Bioimage Analysis …
143 6

denoising, threshold binarization, "edge detect", signal masking, and Z-projection,
by reading the available description of the workflow (Erguvan et al., 2019). We also
learned that the macro has (i) a single processing mode ("Calibrate"), with many user
interactions and (ii) a "batch" mode.

In Step 2, we inferred a first workflow scheme, using the findings of Step 1.
In Step 3, we went back to reading the textual description, in order to identify

which type of data can be used as input to the workflow. We found that 3D confocal
stacks of amoderately curved tissuewere the characteristic type of input of thismacro.

In Step 4 we went through the code in the macro and identified the ~50 lines of
codes that compose the backbone of the workflow. We found that the components
were much more interwoven in the code than in the corresponding text description.
We also found that some of the workflow components (as described in the available
macro description) correspond to roughly a single ImageJ built-in function, while
others are custom multi-line implementations of processes within the macro.

In Step 5, we cleaned the code by removing all the batch-loops, user interactions
and accessory code lines, and separated all of the identified components into user-
defined functions. While being optional, the clear separation of components in code
blocks provided amuchmore readable and re-usable version of the macro, that could
be further modified without the risk of breaking the whole workflow.

In Step 6, after deeply deconstructing and refactoring the macro, we replaced one
of the critical steps of the workflow. We identified how to interfere with the SurfCut
initial process, and we replaced the Z-axis shift of the mask by multiple steps of 3D
erosion.

In Step 7, we benchmarked this new implementation and revealed that erosion, in
principle, provides a more accurate extraction of layer signal, especially for curved
samples; however the processing time increases linearly with the number of erosion
steps required. This is not the case for the Z-axis shift.

Finally, in Step 8, we explored the possibility to embed SurfCut in a larger work-
flow, andwe took the example of a combinationwith anothermacro calledFibrilTool.
We identified a missing component to link both workflows: the creation of regions of
interest (ROIs) from the segmentation of the cell contours generated by SurfCut.

6.6 Concluding Remarks

We think that an important part of the work of a bioimage analyst is assessment of the
relevance of a publishedworkflow, and—if suitable—its adaptation and optimization
to own needs. Such an approach, instead of coding everything from scratch, can save
a lot of time. In this chapter, we proposed a generic way to deconstruct a workflow
published in a scientific paper. The deconstruction was performed in eight steps,
starting with reading the paper, and reaching inspection and modification of the
code. Not only this can help to gain time by avoiding to "reinvent the wheel", but, in
our opinion, reviewing and modifying the code of someone else helps reflecting on
one’s own code and coding practices.

We chose a representative example of a workflow rather than an ideal case, to
underline the challenges that the deconstruction canbring.Mainly, a poorly organised
code can make identification of the components and their replacement challenging.
To address the issue, we suggested an optional re-factorisation step. Reorganising

6

144 M. Louveaux and S. Verger

the code into separate blocks, or functions corresponding to components, is optional
but has many benefits and should not be underestimated. First, by simplifying the
structure of the code, components are easier to identify and replace. Second, this
practice leads to better understanding of the workflow. Third, it minimizes the risk
of introducing errors. In our opinion, one should always weigh the pros and the cons
of refactoring a code, before modifying it. We also introduced a benchmarking step
to insist on the fact that the benefits of workflow modifications should be assessed,
and modified workflows published along with some explanations and justifications
of the changes made.

Take-HomeMessage

Deconstructing a workflow written and designed by someone else can be a challenging
task. In this chapter, through successive steps, we propose one possible approach to
this problem. By looking at the available description of the workflow (step 1), drawing
a workflow scheme identifying the different components (step 2) and assessing the
prerequisites and limitations in terms of input data (step 3), we can get good initial
understanding of what the workflow does, and if it is suitable for the problem we
are trying to solve. We can then start to inspect the code. By identifying the basic
components of the workflow in the code (step 4), if necessary, refactoring the code (step
5) to make it more readable, reusable and easier to modify, we can get an in-depth
knowledge of the workflow and its code.
We can then use and adapt the code to our needs, by replacing or modifying one or
several of the components of the workflow (step 6) and assessing if this was beneficial
by benchmarking (step 7). In addition, we have gained sufficient information on the
studied workflow to be able to link it, or its parts, with other existing workflows (step
8).

Acknowledgements We would like to thank Kota Miura for inviting us to write
this book chapter and reviewing it, Mafalda Sousa for reviewing the chapter and
providing data for the Exercise number 3, all the trainees of the NEUBIAS training
school 15 who worked on the deconstruction of the SurfCut macro and gave us the
idea to write this chapter, our co-authors on the SurfCut publication Özer Erguvan
and Olivier Hamant, without whom this work would not exist, and Robert Haase,
Léo Valon, Ralitza Staneva, and Meghan Driscoll for publicly sharing datasets that
could be taken as example in the Exercise number 3.

References
Arganda-Carreras I, Legland D, Rueden C, Mikushin D, Eglinger J, Burri O, Schindelin J, Helfrich S,

Fiedler CC (2020) ijpb/MorphoLibJ: MorphoLibJ 1.4.2.1. https://doi.org/10.5281/zenodo.3826337
Band LR,Wells DM, Fozard JA, Ghetiu T, French AP, PoundMP,WilsonMH, Yu L, LiW, Hijazi HI,

Oh J, Pearce SP, Perez-AmadorMA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman
TC, Pridmore TP, Swarup R, King JR, Bennett MJ (2014) Systems Analysis of Auxin Transport in
the Arabidopsis Root Apex. Plant Cell 26(3):862−875. https://doi.org/10.1105/tpc.113.119495

Baral A, Aryal B, Jonsson K, Morris E, Demes E, Takatani S, Verger S, Xu T, Bennett M, Hamant O,
BhaleraoRP (2021) Externalmechanical cues reveal a katanin-independentmechanismbehind auxin-

https://doi.org/10.5281/zenodo.3826337
https://doi.org/10.1105/tpc.113.119495

How to do the Deconstruction of Bioimage Analysis …
145 6

mediated tissue bending in plants. Dev Cell 56(1):67−80.e3, https://doi.org/10.1016/j.devcel.2020.12.
008. https://linkinghub.elsevier.com/retrieve/pii/S1534580720309837

Barbier de Reuille P, Bohn-Courseau I, Godin C, Traas J (2005) A protocol to analyse cellular dynamics
during plant development: a protocol to analyse cellular dynamics. Plant J 44(6):1045−1053. https://
doi.org/10.1111/j.1365-313X.2005.02576.x

Barbier de Reuille P, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G,
BajpaiN, Strauss S,WeberA,KissA,BurianA,HofhuisH, SapalaA,LipowczanM,HeimlicherMB,
Robinson S, Bayer EM, Basler K, Koumoutsakos P, Roeder AHK,Aegerter-Wilmsen T, Nakayama
N,TsiantisM,HayA,KwiatkowskaD,Xenarios J,KuhlemeierC, SmithRS (2015)MorphoGraphX:
a platform for quantifying morphogenesis in 4D. eLife 4:e05864. https://doi.org/10.7554/eLife.05864

Boudaoud A, Burian A, Borowska-Wykret D, Uyttewaal M, Wrzalik R, Kwiatkowska D, Hamant O
(2014) FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat
Protoc 9(2):457−463. https://doi.org/10.1038/nprot.2014.024

Candeo A, Sana I, Ferrari E, Maiuri L, D’Andrea C, Valentini G, Bassi A (2016) Virtual unfolding of
light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine. J Biomed
Optics 21(05):1. https://doi.org/10.1117/1.JBO.21.5.056001. https://www.spiedigitallibrary.org/
journals/journal-of-biomedical-optics/volume-21/issue-05/056001/Virtual-unfolding-of-light-sheet-
fluorescence-microscopy-dataset-for-quantitative/10.1117/1.JBO.21.5.056001.full

Driscoll MK, Welf ES, Jamieson AR, Dean KM, Isogai T, Fiolka R, Danuser G (2019) Robust and
automated detection of subcellular morphological motifs in 3D microscopy images. Nat Methods
16(10):1037−1044. https://doi.org/10.1038/s41592-019-0539-z

ErguvanO,Verger S (2019)Dataset of confocalmicroscopy stacks fromplant samples—ImageJ SurfCut:
a user-friendly, high- throughput pipeline for extracting cell contours from 3D confocal stacks. BMC
Biol 17:38. https://doi.org/10.5281/zenodo.2577053

Erguvan O, Louveaux M, Hamant O, Verger S (2019) ImageJ SurfCut: a user-friendly pipeline for high-
throughput extraction of cell contours from 3D image stacks. BMC Biol 17(1):38. https://doi.org/10.
1186/s12915-019-0657-1

GaleaGL,NychykO,MoleMA,MouldingD, SaveryD,NikolopoulouE,HendersonDJ,GreeneNDE,
Copp AJ (2018) Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina
bifida in mouse embryos. Dis Model Mech 1(3):dmm032219. https://doi.org/10.1242/dmm.032219

Haase R, Royer LA, Steinbach P, Schmidt D, Dibrov A, Schmidt U,WeigertM,Maghelli N, Tomancak
P, Jug F, Myers EW (2020) CLIJ: GPU-accelerated image processing for everyone. Nature Methods
17(1):5−6. https://doi.org/10.1038/s41592-019-0650-1

Heemskerk I, Streichan SJ (2015) Tissue cartography: compressing bio-image data by dimensional reduc-
tion. Nature Methods 12(12):1139−1142. https://doi.org/10.1038/nmeth.3648

Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for
mathematical morphology with ImageJ. Bioinformatics 32(22):3532−3534. https://doi.org/10.1093/
bioinformatics/btw413

Li K, Wu X, Chen D, Sonka M (2006) Optimal surface segmentation in volumetric images—a graph-
theoretic approach. IEEE Trans Pattern Anal Mach Intell 28(1):119−134. https://doi.org/10.1109/
TPAMI.2006.19

Louveaux M, Boudaoud A (2018) FibrilTool Batch: an automated version of the ImageJ/Fiji plugin
FibrilTool. https://doi.org/10.5281/zenodo.2528872

Miura K, Tosi S (2016) Introduction. Wiley-VCH, Weinheim, pp 1−3
Miura K, Tosi S (2017) Epilogue: a framework for bioimage analysis. Wiley, London, p 269−284. https://

doi.org/10.1002/9781119096948.ch11
Miura K, Paul-Gilloteaux P, Tosi S, Colombelli J (2020) Workflows and components of bioimage anal-

ysis. Springer, Berlin, p 1−7. Learning Materials in Biosciences. https://doi.org/10.1007/978-3-030-
22386-1_1

Möller B, Poeschl Y, Plötner R, Bürstenbinder K (2017) PaCeQuant: a tool for high-throughput quan-
tification of pavement cell shape characteristics. Plant Physiol 175(3):998−1017. https://doi.org/10.11
04/pp.17.00961

Ollion J, Cochennec J, Loll F, Escudé C, Boudier T (2013) TANGO: a generic tool for high-throughput
3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840−1841. https://doi.
org/10.1093/bioinformatics/btt276

Rocha S, Carvalho J, Oliveira C (2020) Gastric cancer spheroid. http://doi.org/10.5281/zenodo.4244952

https://doi.org/10.1016/j.devcel.2020.12.008
https://doi.org/10.1016/j.devcel.2020.12.008
https://linkinghub.elsevier.com/retrieve/pii/S1534580720309837
https://doi.org/10.1111/j.1365-313X.2005.02576.x
https://doi.org/10.1111/j.1365-313X.2005.02576.x
https://doi.org/10.7554/eLife.05864
https://doi.org/10.1038/nprot.2014.024
https://doi.org/10.1117/1.JBO.21.5.056001
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-21/issue-05/056001/Virtual-unfolding-of-light-sheet-fluorescence-microscopy-dataset-for-quantitative/10.1117/1.JBO.21.5.056001.full
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-21/issue-05/056001/Virtual-unfolding-of-light-sheet-fluorescence-microscopy-dataset-for-quantitative/10.1117/1.JBO.21.5.056001.full
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-21/issue-05/056001/Virtual-unfolding-of-light-sheet-fluorescence-microscopy-dataset-for-quantitative/10.1117/1.JBO.21.5.056001.full
https://doi.org/10.1038/s41592-019-0539-z
https://doi.org/10.5281/zenodo.2577053
https://doi.org/10.1186/s12915-019-0657-1
https://doi.org/10.1186/s12915-019-0657-1
https://doi.org/10.1242/dmm.032219
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1038/nmeth.3648
https://doi.org/10.1093/bioinformatics/btw413
https://doi.org/10.1093/bioinformatics/btw413
https://doi.org/10.1109/TPAMI.2006.19
https://doi.org/10.1109/TPAMI.2006.19
https://doi.org/10.5281/zenodo.2528872
https://doi.org/10.1002/9781119096948.ch11
https://doi.org/10.1002/9781119096948.ch11
https://doi.org/10.1007/978-3-030-22386-1_1
https://doi.org/10.1007/978-3-030-22386-1_1
https://doi.org/10.1104/pp.17.00961
https://doi.org/10.1104/pp.17.00961
https://doi.org/10.1093/bioinformatics/btt276
https://doi.org/10.1093/bioinformatics/btt276
http://doi.org/10.5281/zenodo.4244952

6

146 M. Louveaux and S. Verger

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona
A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676−682.
http://doi.org/10.1038/nmeth.2019

Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos CP, Roeder I, Aanstad P, Huisken J
(2013) High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat
Commun 4(1):2207. http://doi.org/10.1038/ncomms3207

Shihavuddin A, Basu S, Rexhepaj E, Delestro F, Menezes N, Sigoillot SM, Del Nery E, Selimi F,
SpasskyN, Genovesio A (2017) Smooth 2Dmanifold extraction from 3D image stack. Nat Commun
8(1):15554. http://doi.org/10.1038/ncomms15554

Sánchez-Corrales YE, Hartley M, Van Rooij J, Marée AF, Grieneisen VA (2018) Morphometrics
of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA). Development
145(6):dev156778. http://doi.org/10.1242/dev.156778

Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H (2020) Microtubule response to
tensile stress is curbed by NEK6 to buffer growth variation in the arabidopsis hypocotyl. Curr Biol
30(8):1491−1503.e2. https://doi.org/10.1016/j.cub.2020.02.024

Valon L, StanevaR (2020)Dataset of examples ofDrosophila epithelia at different developmental stages.
https://doi.org/10.5281/zenodo.4114074

Verger S, Long Y, Boudaoud A, Hamant O (2018) A tension-adhesion feedback loop in plant epidermis.
eLife 7:e34460. https://doi.org/10.7554/eLife.34460

Viktorinová I, Haase R, Pietzsch T, Henry I, Tomancak P (2019) Analysis of actomyosin dynamics
at local cellular and tissue scales using time-lapse movies of cultured drosophila egg chambers.
J Vis Exp (148):e58587. https://doi.org/10.3791/58587. https://www.jove.com/video/58587/analysis-
actomyosin-dynamics-at-local-cellular-tissue-scales-using

Vorkel D, Haase R, Myers E (2020) Strausberg_tribolium_la-GFP_tailpole_run (Excerpt timepoints
291−340). https://doi.org/10.5281/zenodo.3981193

Wada H, Hayashi S (2020) Net, skin and flatten, ImageJ plugin tool for extracting surface profiles from
curved 3D objects. Micropublication Biol p 3. https://doi.org/10.17912/micropub.biology.000292

Wu TC, Belteton S, Pack J, Szymanski DB, Umulis D (2016) LobeFinder: a convex hull-based method
for quantitative boundary analyses of lobed plant cells. Plant Physiol 171(4):2331−2342. https://doi.
org/10.1104/pp.15.00972

Zubairova US, Verman PY, Oshchepkova PA, Elsukova AS, Doroshkov AV (2019) LSM-W2: laser
scanning microscopy worker for wheat leaf surface morphology. BMC Syst Biol 13(S1):22. https://
doi.org/10.1186/s12918-019-0689-8

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third partymaterial in this chapter are included in the chapter’s CreativeCommons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://doi.org/10.1038/nmeth.2019
http://doi.org/10.1038/ncomms3207
http://doi.org/10.1038/ncomms15554
http://doi.org/10.1242/dev.156778
https://doi.org/10.1016/j.cub.2020.02.024
https://doi.org/10.5281/zenodo.4114074
https://doi.org/10.7554/eLife.34460
https://doi.org/10.3791/58587
https://www.jove.com/video/58587/analysis-actomyosin-dynamics-at-local-cellular-tissue-scales-using
https://www.jove.com/video/58587/analysis-actomyosin-dynamics-at-local-cellular-tissue-scales-using
https://doi.org/10.5281/zenodo.3981193
https://doi.org/10.17912/micropub.biology.000292
https://doi.org/10.1104/pp.15.00972
https://doi.org/10.1104/pp.15.00972
https://doi.org/10.1186/s12918-019-0689-8
https://doi.org/10.1186/s12918-019-0689-8
http://creativecommons.org/licenses/by/4.0/

	6 How to Do the Deconstruction of Bioimage Analysis Workflows: A Case Study with SurfCut
	6.1 Introduction
	6.1.1 A Workflow and Its Components
	6.1.2 What Is Deconstruction?
	6.1.3 A Case of Study of Workflow Deconstruction: SurfCut
	6.1.4 What Is SurfCut?
	6.1.5 What Was SurfCut Developed for?
	6.1.6 Other Similar Tools

	6.2 Dataset
	6.3 Tools
	6.4 Workflow
	6.4.1 Step 1. Identification of Components in the Textual Description
	6.4.2 Step 2. Drawing a Workflow Scheme
	6.4.3 Step 3. Assessment of Prerequisites and Limitations
	6.4.4 Step 4. Identification of Components in the Code
	6.4.5 Step 5. Code Refactoring
	6.4.6 Step 6. Replacing a Component: Shift Mask in the Z-Axis Direction
	6.4.7 Step 7. Benchmarking: Comparison of Two Alternative Components
	6.4.8 Step 8. Linking to Another Workflow: FibrilTool

	6.5 Analysis of the Results: Presentation and Discussion
	6.6 Concluding Remarks
	References

