Skip to main content

Scalable Reliability Analysis by Lazy Verification

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2021)

Abstract

This paper presents an iterative method to analyse system reliability models. The key idea is to analyse a partial state space of a reliability model in a conservative and an optimistic manner. By considering unexplored states as being always operational or, dually, already failed, our analysis yields sound upper- and lower-bounds on the system’s reliability. This approach is applied in an iterative manner until the desired precision is obtained. We present details of our approach for Boolean-logic driven Markov processes (BDMPs), an expressive fault tree variant intensively used in analysing energy systems. Based on a prototypical implementation on top of the probabilistic model checker Storm, we experimentally compare our technique to two alternative BDMP analysis techniques: discrete-event simulation obtaining statistical bounds, and a recent closed-form technique for obtaining pessimistic system lifetimes. Our experiments show that mostly only a fragment of the state space needs to be investigated enabling the reliability analysis of models that could not be handled before.

S. Khan—supported by a HEC-DAAD scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Known as confidence intervals.

  2. 2.

    https://www.lr.org/en/riskspectrum/support-and-downloads/#accordion-rsat3.4.5released(riskspectrumpsa1.4.0/rsat3.4.5)(15june2020) .

  3. 3.

    A cut set of an SFT is a set of basic events that cause the top event to fail.

  4. 4.

    https://github.com/rakhimov/scram.

  5. 5.

    https://www.edf.fr/en/the-edf-group/who-we-are/activities/research-and-development/design-codes/design-code-kb3.

  6. 6.

    https://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/.

  7. 7.

    https://dftbenchmarks.utwente.nl/.

  8. 8.

    https://www.lr.org/en/riskspectrum/.

  9. 9.

    https://github.com/moves-rwth/dft-bdmp.

References

  1. Ashok, P., Butkova, Y., Hermanns, H., Křetínský, J.: Continuous-time Markov decisions based on partial exploration. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 317–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_19

    Chapter  Google Scholar 

  2. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  3. Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model checking for performability. Math. Struct. Comput. Sci. 23(4), 751–795 (2013)

    Article  MathSciNet  Google Scholar 

  4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov Chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  Google Scholar 

  5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  6. Bouissou, M.: A generalization of dynamic fault trees through Boolean logic driven markov processes (BDMP). In: Proceedings of the 16th European Safety and Reliability Conference (ESREL) (2007)

    Google Scholar 

  7. Bouissou, M.: A simple yet efficient acceleration technique for Monte Carlo simulation. In: Proceedings of the 22nd European Safety and Reliability Conference (ESREL), pp. 27–36 (2013)

    Google Scholar 

  8. Bouissou, M.: A benchmark on reliability of complex discrete systems: emergency power supply of a nuclear power plant. arXiv:1703.06575 (2017)

  9. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic Driven Markov Processes. Rel. Eng. Sys. Safety 82(2), 149–163 (2003)

    Article  Google Scholar 

  10. Bouissou, M., Hernu, O.: Boolean approximation for calculating the reliability of a very large repairable system with dependencies among components. In: Proceedings of the 25th European Safety and Reliability Conference (ESREL) (2016)

    Google Scholar 

  11. Bouissou, M., Hernu, O.: Estimation de la fiabilite d’un systeme industriel. French Patent FR3044787A1, June 2017. https://worldwide.espacenet.com/patent/search/family/056321980/publication/FR3044787A1?q=FR3044787

  12. Bouissou, M., Khan, S., Katoen, J., Krcál, P.: Various ways to quantify BDMPs. In: MARS@ETAPS. EPTCS, vol. 316, pp. 1–14 (2020)

    Google Scholar 

  13. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54(5), 754–775 (2011)

    Article  Google Scholar 

  14. Brázdil, T., et al.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

    Chapter  Google Scholar 

  15. Collet, J., Bruyère, F.: An efficient tool for taking repairs into account in Boolean Models. In: Probabilistic Safety Assessment and Management, vol. 4 (1998)

    Google Scholar 

  16. Distefano, S., Puliafito, A.: Dynamic reliability block diagrams vs dynamic fault trees. In: Annual Reliability and Maintainability Symposium (RAMS), pp. 71–76. IEEE (2007)

    Google Scholar 

  17. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Rel. 41(3), 363–377 (1992)

    Article  Google Scholar 

  18. Durga Rao, K., Gopika, V., Sanyasi Rao, V., Kushwaha, H., Verma, A., Srividya, A.: Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)

    Article  Google Scholar 

  19. Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 37–50 (2019)

    Article  Google Scholar 

  20. Guck, D., Katoen, J.P., Stoelinga, M.I., Luiten, T., Romijn, J.: Smart railroad maintenance engineering with stochastic model checking. In: Proceedings of Railways, pp. 950–953. Saxe-Coburg Publications (2014)

    Google Scholar 

  21. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_5

    Chapter  Google Scholar 

  22. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. CoRR abs/2002.07080 (2020). https://arxiv.org/abs/2002.07080

  23. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: DSN, pp. 299–310. IEEE Computer Society (2016)

    Google Scholar 

  24. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees - a safety analysis model for software-controlled systems. Reliab. Eng. Syst. Saf. 92(11), 1521–1537 (2007)

    Article  Google Scholar 

  25. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016). https://doi.org/10.1145/2933575.2934574

  26. Khan, S., Katoen, J.-P., Bouissou, M.: A compositional semantics for repairable BDMPs. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 82–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54549-9_6

    Chapter  Google Scholar 

  27. Khan, S., Katoen, J.P., Bouissou, M.: Explaining Boolean-logic driven Markov processes using GSPNs. In: EDCC, pp. 119–126. IEEE (2020)

    Google Scholar 

  28. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  29. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inf. 14(1), 370–379 (2018)

    Article  Google Scholar 

  30. Volk, M., Weik, N., Katoen, J.-P., Nießen, N.: A DFT modeling approach for infrastructure reliability analysis of railway station areas. In: Larsen, K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 40–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27008-7_3

    Chapter  Google Scholar 

  31. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees. Ph.D. dissertation, University of Hull, Kingston upon Hull, UK (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, S., Katoen, JP., Volk, M., Bouissou, M. (2021). Scalable Reliability Analysis by Lazy Verification. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds) NASA Formal Methods. NFM 2021. Lecture Notes in Computer Science(), vol 12673. Springer, Cham. https://doi.org/10.1007/978-3-030-76384-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76384-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76383-1

  • Online ISBN: 978-3-030-76384-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics