Skip to main content

Transcorneal Kinetics of Topical Drugs and Nanoparticles

  • Chapter
  • First Online:
Ophthalmic Product Development

Abstract

Topical drugs to the eye, common among ophthalmic drugs, access the anterior chamber via corneal or noncorneal pathways with penetration across the cornea, an oil:water:oil matrix, preferred by low-molecular-weight lipophilic drugs. The kinetics of their transcorneal penetration also depends on the barrier integrity of the corneal epithelium. Over the years, we have measured time-dependent ocular surface dynamics and transcorneal kinetics of several fluorescent molecules (employed as drug surrogates) and nanoparticles using custom-built fluorometers: spot fluorometer and confocal scanning microfluorometer (CSMF), respectively. The spot fluorometer has enabled novel approaches to assess the efficacy of different vehicles for enhanced bioavailability of topical drugs. It has also quantified the variability in the ocular surface dynamics of topical drops. On the other hand, the CSMF has led to a microscopic view of the transport of fluorescent dyes across the cornea, highlighting the cellular barriers and partitioning of dyes. The data accrued from these observations have enabled rational modeling of the spatiotemporal corneal pharmacokinetics of topical drugs. Unlike the compartmental models, our models incorporate the physicochemical properties of the drugs to explain the kinetics of their penetration. In this chapter, we review our unique experimental observations and describe the framework of our pharmacokinetic model for topical drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CSMF:

Confocal scanning microfluorometer

FITC:

Fluorescein isothiocyanate

Log P:

Logarithm (base 10) of octanol-water partition coefficient at pH 7.4

RhB:

Rhodamine B

SPR:

Structure permeability relationships

SRB:

Sulforhodamine B

References

  • Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida H, et al. Nanoparticles in ocular drug delivery systems for topical administration: promises and challenges. Curr Pharm Des. 2015;21(36):5212–24.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Trabado J, Diebold Y, Sanchez A. Designing lipid nanoparticles for topical ocular drug delivery. Int J Pharm. 2017;532(1):204–17.

    Article  CAS  PubMed  Google Scholar 

  • Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest Ophthalmol Vis Sci. 2008;49(1):320–32.

    Article  PubMed  Google Scholar 

  • Araie M. Carboxyfluorescein. A dye for evaluating the corneal endothelial barrier function in vivo. Exp Eye Res. 1986;42(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  • Ashton P, Clark DS, Lee VH. A mechanistic study on the enhancement of corneal penetration of phenylephrine by flurbiprofen in the rabbit. Curr Eye Res. 1992;11(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  • Avtar R, Tandon D. Modeling the drug transport in the anterior segment of the eye. Eur J Pharm Sci. 2008;35(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  • Azartash K, et al. Pre-corneal tear film thickness in humans measured with a novel technique. Mol Vis. 2011;17:756–67.

    PubMed  PubMed Central  Google Scholar 

  • Barar J, et al. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts. 2016;6(1):49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia L, et al. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv. 2016;13(12):1743–57.

    Article  CAS  PubMed  Google Scholar 

  • Boddu SH, Gupta H, Patel S. Drug delivery to the back of the eye following topical administration: an update on research and patenting activity. Recent Pat Drug Deliv Formul. 2014;8(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  • Brubaker RF, Maurice D, McLaren JW. Fluorometry of the anterior segment. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York: Springer Verlag; 1990. p. 248–80.

    Chapter  Google Scholar 

  • Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J Ocul Pharmacol Ther. 2013;29(2):200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiyasan W, Srinivas SP, Tiyaboonchai W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis. 2015;21:1224–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiyasan W, et al. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surf B Biointerfaces. 2017;149:288–96.

    Article  CAS  PubMed  Google Scholar 

  • Chaiyasan W, et al. Penetration of hydrophilic sulforhodamine b across the porcine cornea ex vivo. Int J Appl Pharmaceut. 2018;10(6):94–106.

    Article  CAS  Google Scholar 

  • Conroy CW, Maren TH. Corneal sequestration and delivery to ciliary process of six topically applied sulfonamides. J Ocul Pharmacol Ther. 1999;15(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29(6):596–609.

    Article  CAS  PubMed  Google Scholar 

  • Edward A, Prausnitz MR. Predicted permeability of the cornea to topical drugs. Pharm Res. 2001;18(11):1497–508.

    Article  CAS  PubMed  Google Scholar 

  • Edwards A, Prausnitz MR. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AICHE J. 1998;44(1):214–25.

    Article  CAS  Google Scholar 

  • Friedrich SW, Cheng YL, Saville BA. Theoretical corneal permeation model for ionizable drugs. J Ocul Pharmacol. 1993;9(3):229–49.

    Article  CAS  PubMed  Google Scholar 

  • Gaudana R, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta C, et al. Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea. Pharm Res. 2010;27(4):699–711.

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Chauhan A, Srinivas SP. Penetration of fluorescein across the rabbit cornea from the endothelial surface. Pharm Res. 2012;29(12):3325–34.

    Article  CAS  PubMed  Google Scholar 

  • Guss R, Johnson F, Maurice D. Rhodamine B as a test molecule in intraocular dynamics. Invest Ophthalmol Vis Sci. 1984;25(6):758–62.

    CAS  PubMed  Google Scholar 

  • Heikkinen EM, et al. Distribution of small molecular weight drugs into the porcine lens: studies on imaging mass spectrometry, partition coefficients, and implications in ocular pharmacokinetics. Mol Pharm. 2019;16(9):3968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka E, et al. Interferometry in the evaluation of precorneal tear film thickness in dry eye. Am J Ophthalmol. 2011;151(1):18–23 e1.

    Article  PubMed  Google Scholar 

  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser RJ, Maurice DM. The diffusion of fluorescein in the Lens. Exp Eye Res. 1964;3:156–65.

    Article  CAS  PubMed  Google Scholar 

  • Kidron H, et al. Prediction of the corneal permeability of drug-like compounds. Pharm Res. 2010;27(7):1398–407.

    Article  CAS  PubMed  Google Scholar 

  • King-Smith PE, et al. The thickness of the tear film. Curr Eye Res. 2004;29(4–5):357–68.

    Article  PubMed  Google Scholar 

  • Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32(8):2244–58.

    CAS  PubMed  Google Scholar 

  • Kompella UB, et al. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12(134–135):1185–98.

    CAS  PubMed  Google Scholar 

  • Kompella UB, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1(3):435–56.

    Article  CAS  PubMed  Google Scholar 

  • Kompella UB, et al. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res. 2020:100901.

    Google Scholar 

  • Laurence J, et al. A double-masked, placebo-controlled evaluation of timolol in a gel vehicle. J Glaucoma. 1993;2(3):177–82.

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Kompella UB, Lee VH. Systemic absorption pathways of topically applied beta adrenergic antagonists in the pigmented rabbit. Exp Eye Res. 1993;57(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  • Mashige KP. Ocular allergy. Health SA Gesondheid. 2017;22:112–22.

    Article  Google Scholar 

  • Maurice DM. Factors influencing the penetration of topically applied drugs. Int Ophthalmol Clin. 1980;20(3):21–32.

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM. Prolonged-action drops. Int Ophthalmol Clin. 1993;33(4):81–91.

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47(Suppl 1):S41–52.

    Article  PubMed  Google Scholar 

  • Maurice D, Singh T. A permeability test for acute corneal toxicity. Toxicol Lett. 1986;31(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM, Srinivas SP. Use of fluorometry in assessing the efficacy of a cation-sensitive gel as an ophthalmic vehicle: comparison with scintigraphy. J Pharm Sci. 1992;81(7):615–9.

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM, Srinivas SP. Fluorometric measurement of light absorption by the rabbit cornea. Exp Eye Res. 1994;58(4):409–13.

    Article  CAS  PubMed  Google Scholar 

  • McLaren JW, Ziai N, Brubaker RF. A simple three-compartment model of anterior segment kinetics. Exp Eye Res. 1993;56(3):355–66.

    Article  CAS  PubMed  Google Scholar 

  • McNamara NA, et al. Measurement of corneal epithelial permeability to fluorescein. A repeatability study. Invest Ophthalmol Vis Sci. 1997;38(9):1830–9.

    CAS  PubMed  Google Scholar 

  • Meza-Rios A, et al. Therapies based on nanoparticles for eye drug delivery. Ophthalmol Therapy. 2020;9(3):1–14.

    Article  Google Scholar 

  • Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missel PJ, Sarangapani R. Physiologically based ocular pharmacokinetic modeling using computational methods. Drug Discov Today. 2019;24(8):1551–63.

    Article  CAS  PubMed  Google Scholar 

  • Mitra AK, Mikkelson TJ. Mechanism of transcorneal permeation of pilocarpine. J Pharm Sci. 1988;77(9):771–5.

    Article  CAS  PubMed  Google Scholar 

  • Nelson MD, et al. Ocular tolerability of timolol in Gelrite in young glaucoma patients. J Am Optom Assoc. 1996;67(11):659–63.

    CAS  PubMed  Google Scholar 

  • Niamprem P, Srinivas SP, Tiyaboonchai W. Penetration of Nile red-loaded nanostructured lipid carriers (NLCs) across the porcine cornea. Colloids Surf B Biointerfaces. 2019a;176:371–8.

    Article  CAS  PubMed  Google Scholar 

  • Niamprem P, et al. Impact of nanostructured lipid carriers as an artificial tear film in a rabbit evaporative dry eye model. Cornea. 2019b;38(4):485–91.

    Article  PubMed  Google Scholar 

  • Rai Udo J, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.

    Article  PubMed  CAS  Google Scholar 

  • Ranta VP, et al. Ocular pharmacokinetic modeling using corneal absorption and desorption rates from in vitro permeation experiments with cultured corneal epithelial cells. Pharm Res. 2003;20(9):1409–16.

    Article  CAS  PubMed  Google Scholar 

  • Ratna S, Rina LDN. Glaucoma and dry eye disease: the role of preservatives in glaucoma medications. Med J Indones. 2011;20(4):302–5.

    Google Scholar 

  • Sasaki H, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16(1):85–146.

    Article  CAS  PubMed  Google Scholar 

  • Schoenwald RD, Huang HS. Corneal penetration behavior of beta-blocking agents I: physiochemical factors. J Pharm Sci. 1983;72(11):1266–72.

    Article  CAS  PubMed  Google Scholar 

  • Schoenwald RD, Ward RL. Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. J Pharm Sci. 1978;67(6):786–8.

    Article  CAS  PubMed  Google Scholar 

  • Schulz A, et al. Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing. Org Biomol Chem. 2009;7(9):1884–9.

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki Y. Molecular design for enhancement of ocular penetration. J Pharm Sci. 2008;97(7):2462–96.

    Article  CAS  PubMed  Google Scholar 

  • Srinivas SP. In situ measurement of fluorescein release by collagen shields in human eyes. Curr Eye Res. 1994;13(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  • Srinivas SP, Maurice DM. A microfluorometer for measuring diffusion of fluorophores across the cornea. IEEE Trans Biomed Eng. 1992;39(12):1283–91.

    Article  CAS  PubMed  Google Scholar 

  • Srinivas SP, et al. Corneal epithelial permeability to fluorescein in humans by a multi-drop method. PLoS One. 2018a;13(6):e0198831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivas SP, et al. Penetration of fluorescent silica nanoparticles into the cornea. Mater Today Proc. 2018b;5:11072–9.

    Google Scholar 

  • Sudhir RR, et al. Ocular spot Fluorometer equipped with a lock-in amplifier for measurement of aqueous flare. Transl Vis Sci Technol. 2018;7(6):32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev. 2003;55(12):1631–49.

    Article  CAS  PubMed  Google Scholar 

  • Werkmeister RM, et al. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(8):5578–83.

    Article  PubMed  Google Scholar 

  • Worth AP, Cronin MT. Structure-permeability relationships for transcorneal penetration. Altern Lab Anim. 2000;28(3):403–13.

    Article  CAS  PubMed  Google Scholar 

  • Wu NC, Chiang CH, Lee AR. Studies of carbonic anhydrase inhibitors: physicochemical properties and bioactivities of new thiadiazole derivatives. J Ocul Pharmacol. 1993;9(2):97–108.

    Article  PubMed  Google Scholar 

  • Yamamura K, et al. Characterization of ocular pharmacokinetics of beta-blockers using a diffusion model after instillation. Pharm Res. 1999;16(10):1596–601.

    Article  CAS  PubMed  Google Scholar 

  • Yavuz B, Kompella UB. Ocular drug delivery. Handb Exp Pharmacol. 2017;242:57–93.

    Article  CAS  PubMed  Google Scholar 

  • Yiu G, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman Primates. Mol Ther Methods Clin Dev. 2020;16:179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida F, Topliss JG. Unified model for the corneal permeability of related and diverse compounds with respect to their physicochemical properties. J Pharm Sci. 1996;85(8):819–23.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99(2):241–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangly P. Srinivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivas, S.P. et al. (2021). Transcorneal Kinetics of Topical Drugs and Nanoparticles. In: Neervannan, S., Kompella, U.B. (eds) Ophthalmic Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-76367-1_6

Download citation

Publish with us

Policies and ethics