Skip to main content

QOS of Data Networks Analyzing Based on the Fuzzy Knowledge Base

  • Conference paper
  • First Online:
Current Trends in Communication and Information Technologies (IPF 2020)

Abstract

With the rapid growth of data traffic from various information sources and the complexity of services increasing there is a current new trend in the ICT field that has been called the Big Data processing trend. There are a lot of up-to-day intelligent technics and systems used for overcoming this trend but the computational and data processing complexity under real-time requirements continues to be one of the important disadvantages for many engineering fields. The paper deals with an approach of Big Data stream structuring into fuzzy logic rules for fuzzy knowledge base development that has no large data processing complexity. To guarantee the correctness of the fuzzy knowledge base the metagraph theory apparatus is used based on control conflicting and duplicate rules under consideration of their logical inter-connections. Usage of the fuzzy knowledge base during Big Data stream processing helps to decrease data processing time for decision-making systems in real engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulema, M.: Big Data and Telecommunications [Electronic resource]. In: 4th International Black Sea Conference on Communications and Networking (2016). (Professor of Computer Information Systems Manhattan College, Riverdale New York, USA)

    Google Scholar 

  2. Wei Fan, A.B.: Mining big data: current status, and forecast to the future. ACM SIGKDD Explor. News 14(2), 1–5 (2012). https://doi.org/10.1145/2481244.2481246

  3. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Assoc. Comput. Mach. Commun. ACM 57(7), 86 (2014)

    Google Scholar 

  4. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014). https://doi.org/10.1007/s11036-013-0489-0

    Article  Google Scholar 

  5. Pedrycz, W.: Granular computing for data analytics: a manifesto of human-centric computing. IEEE/CAA J. Autom. Sinica 5(6), 1025–1034 (2018)

    Article  MathSciNet  Google Scholar 

  6. Globa, L., Svetsynska, I., Luntovskyy, A.: Case studies on big data. J. Theor. Appl. Comput. Sci. 10(2), 41–52 (2018)

    Google Scholar 

  7. Grebinichenko, M.V.: Methods of pre-processing of large data/M.V. Grebinichenko. Kyiv, 54 p. (2020) [in Ukrainian]

    Google Scholar 

  8. Pichkalev, A.V.: Generalized desirability function of Harrington for comparative analysis of technical means. Res. Sci. City №. 1 (1)/A.V. Pichkalev, January–March 2012

    Google Scholar 

  9. Yutaka Sasaki The truth of the F-measure/Y. Sasaki, 26 October 2007

    Google Scholar 

  10. What is big data? A consensual definition and a review of key research topics. In: De Mauro, A., Greco, M., Grimaldi, M. (eds.) 4th International Conference on Integrated Information, AIP Proceedings (2014)

    Google Scholar 

  11. Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance. John Wiley, Sons Ltd. (2015)

    Google Scholar 

  12. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1, 7–31 (1993)

    Google Scholar 

  13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Google Scholar 

  14. Espinosa, J., Vandewalle, J., Wertz, V.: Fuzzy Logic, Identification and Predictive Control, 263 p. Springer-Verlag, London (2005)

    Google Scholar 

  15. Piegat, A.: Fuzzy modeling and control. In: Piegat, A. (ed.) 2nd (edn.) 798 p. BINOM. Knowledge Laboratory, Moscow (2018). [in Russian]

    Google Scholar 

  16. Lyashenko, A.V.: Method of construction of fuzzy logical rules for big data. In: Lyashenko, A.V. Kyiv, 67 p. (2020). [in Ukrainian]

    Google Scholar 

  17. Savchuk, Z.R.: Application of fuzzy logical rules for analysis and structuring of big data. In: Savchuk, Z.R. Kyiv, 2020, 80 p. (2020). [in Ukrainian]

    Google Scholar 

  18. Zakharchuk, A.G.: Methods of fuzzy logic for data processing in the Internet of Things. In: Zakharchuk, A.G. (ed.) – Kyiv, 2019. – 97 p. (2019). [in Ukrainian]

    Google Scholar 

  19. Keberle, N.: Modeling of dynamic domains under use of the ontologies. Bull. Kharkiv Air Force Univ. 3, 121–127 (2009)

    Google Scholar 

  20. Konys, A., Rogoza, W.: Big data and ontologies. In: Talk at ACS International Conference 2016 in Międzyzdroje, October 2016, 3 p. (2016)

    Google Scholar 

  21. Kuiler, E.: From big data to knowledge: an ontological approach to big data analytics. Rev. Pol. Res. 31(4), 311–318 (2014). https://onlinelibrary.wiley.com/doi/full/10.1111/ropr.12077#reference

  22. Shtogrina, O.S.: Information Technology of creating and using fuzzy knowledge bases with the use of metagraphs : dis. candidate. technical sciences / O.S. Shtogrina. Kiev, 2016. – 157 p (2016). [in Ukrainian]

    Google Scholar 

  23. Savchuk, Z.R.: Means of visualization of complex logical structures. In: Savchuk, Z.R. (ed.) Proceedings of the International Scientific and Technical Conference “Prospects for Telecommunications”. 15–19 April 2019, pp. 261–263 (2019). [in Ukrainian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Globa or E. Siemens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Globa, L., Savchuk, Z., Vasylenko, O., Siemens, E. (2021). QOS of Data Networks Analyzing Based on the Fuzzy Knowledge Base. In: Vorobiyenko, P., Ilchenko, M., Strelkovska, I. (eds) Current Trends in Communication and Information Technologies. IPF 2020. Lecture Notes in Networks and Systems, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-030-76343-5_8

Download citation

Publish with us

Policies and ethics