Skip to main content

Drugs Resistance Management

  • Chapter
  • First Online:
Biochemistry of Drug Resistance

Abstract

Drug resistance is affecting people worldwide. Drug resistance reduces the efficiency of medicine incurring a disease. An antibiotic resistance results from overuse of antibiotic in bacterial infections. In designing the drug, understanding of underlying antibiotic resistance factors is important which may include inactivation by specific enzymes, alternation in target site or metabolic pathways and reduction in the accumulation of drug molecules. It usually develops when microbes multiply and find route of fighting out drug molecules. Other reasons may include attitude towards the prescription, carelessness in precautions employed for infections, and lack of attention of both government and patients. Resistance can be combated using specific enzymes in activating the resistant genes. Surgery or medicinal intake controls antibiotic resistance in HIV. Vaccines also manage sensitivity of microbes to the drug. Generations of antibiotics are needed which recognize pathogen-associated molecular pathways (PAMPS). Alternations in drugs dosage or utilizing drugs combinations increase the efficacy of treatment. Drug resistance mechanisms must therefore be controlled for preventing the spread of many acute diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup, F. M. (2004). Monitoring of Antimicrobial resistance among food animals: Principles and limitations. Journal of Veterinary Medicine, Series B, 51(8–9), 380–388.

    Article  CAS  Google Scholar 

  • Aarestrup, F. M. (2005). Veterinary drug usage and Antimicrobial resistance in Bacteria of animal origin. Basic & Clinical Pharmacology & Toxicology, 96(4), 271–281.

    Article  CAS  Google Scholar 

  • Ahmed, A. M., Ishida, Y., & Shimamoto, T. (2009). Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan. Journal of Applied Microbiology, 106(2), 402–409.

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew, M. J., et al. (2005). A linear model for managing the risk of antimicrobial resistance originating in food animals. Risk Analysis, 25(1), 99–108.

    Article  PubMed  Google Scholar 

  • Berens, N., et al. (2003). Plasmodium falciparum: correlation of in vivo resistance to chloroquine and antifolates with genetic polymorphisms in isolates from the south of Lao PDR. Tropical Medicine & International Health, 8(9), 775–782.

    Article  Google Scholar 

  • Bloland, P. B., & WHO (2001). Drug resistance in malaria, World Health Organization.

    Google Scholar 

  • Boden, D., et al. (1999). HIV-1 drug resistance in newly infected individuals. JAMA, 282(12), 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, T., et al. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 390(6658), 404–407.

    Article  CAS  PubMed  Google Scholar 

  • Bousema, J. T., et al. (2003). Treatment failure of pyrimethamine-sulphadoxine and induction of Plasmodium falciparum gametocytaemia in children in western Kenya. Tropical Medicine & International Health, 8(5), 427–430.

    Article  CAS  Google Scholar 

  • Bridges, D. J., Molyneux, M., & Nkhoma, S. (2009). Low level genotypic chloroquine resistance near Malawi’s northern border with Tanzania. Tropical Medicine & International Health, 14(9), 1093–1096.

    Article  Google Scholar 

  • Cannon, R. D., et al. (2009). Efflux-mediated antifungal drug resistance. Clinical Microbiology Reviews, 22(2), 291–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavel, F., & Hance, A. J. (2004). HIV drug resistance. New England Journal of Medicine, 350(10), 1023–1035.

    Article  CAS  PubMed  Google Scholar 

  • Cokal, Y., et al. (2009). Campylobacter spp. and their antimicrobial resistance patterns in poultry: An epidemiological survey study in Turkey. Zoonoses and Public Health, 56(3), 105–110.

    Google Scholar 

  • Congpuong, K., et al. (2005). Molecular epidemiology of drug resistance markers of Plasmodium falciparum malaria in Thailand. Tropical Medicine & International Health, 10(8), 717–722.

    Article  CAS  Google Scholar 

  • Croft, S. L. (2001). Monitoring drug resistance in leishmaniasis. Tropical Medicine & International Health, 6(11), 899–905.

    Article  CAS  Google Scholar 

  • Croft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical Microbiology Reviews, 19(1), 111–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro, U., & Buttiëns, H. (2001). History and importance of antimalarial drug resistance. Tropical Medicine & International Health, 6(11), 845–848.

    Article  Google Scholar 

  • Damiano, J. S., et al. (1999). Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, the Journal of the American Society of Hematology, 93(5), 1658–1667.

    CAS  Google Scholar 

  • Danis, M., & Bricaire, F. (2003). The new drug combinations: Their place in the treatment of uncomplicated Plasmodium falciparum malaria. Fundamental & Clinical Pharmacology, 17(2), 155–160.

    Article  CAS  Google Scholar 

  • Dive, D., & Biot, C. (2008). Ferrocene conjugates of chloroquine and other antimalarials: The development of ferroquine, a new antimalarial. ChemMedChem, 3(3), 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Do, N. T., et al. (2006). Antimicrobial resistance phenotypes of ETEC isolates from Piglets with Diarrhea in North Vietnam. Annals of the New York Academy of Sciences, 1081(1), 543–545.

    Google Scholar 

  • Englen, M. D., et al. (2007). Prevalence and antimicrobial resistance of Campylobacter in US dairy cattle. Journal of Applied Microbiology, 102(6), 1570–1577.

    Article  CAS  PubMed  Google Scholar 

  • Fojo, T., & Bates, S. (2003). Strategies for reversing drug resistance. Oncogene, 22(47), 7512–7523.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast, 15(14), 1541–1553.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53(1), 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Guven, K., et al. (2010). Occurrence and characterization of Staphylococcus aureus isolated from meat and dairy products consumed in Turkey. Journal of Food Safety, 30(1), 196–212.

    Google Scholar 

  • Hastings, I. M. (2007). Molecular markers as indicators of antimalarial drug failure rates. Tropical Medicine & International Health, 12(11), 1298–1301.

    Article  Google Scholar 

  • Haynes, R. K., et al. (2006). Artemisone—A highly active antimalarial drug of the artemisinin class. Angewandte Chemie International Edition, 45(13), 2082–2088.

    Article  CAS  PubMed  Google Scholar 

  • Helmbach, H., et al. (2001). Drug-resistance in human melanoma. International Journal of Cancer, 93(5), 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R., et al. (2006). Drug resistance in Mycobacterium tuberculosis. Current Issues in Molecular Biology, 8(2), 97–112.

    CAS  PubMed  Google Scholar 

  • Kamya, M. R., et al. (2002). Increasing antimalarial drug resistance in Uganda and revision of the national drug policy. Tropical Medicine & International Health, 7(12), 1031–1041.

    Article  CAS  Google Scholar 

  • Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology, 20(10), 477–481.

    Article  CAS  PubMed  Google Scholar 

  • Kühne, M., et al. (2000). Stability of Tetracycline in water and liquid manure. Journal of Veterinary Medicine Series A, 47(6), 379–384.

    Article  PubMed  Google Scholar 

  • Li, X.-Z., & Nikaido, H. (2004). Efflux-mediated drug resistance in bacteria. Drugs, 64(2), 159–204.

    Article  CAS  PubMed  Google Scholar 

  • Longley, D., & Johnston, P. (2005). Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 205(2), 275–292.

    Article  CAS  Google Scholar 

  • Lu, Q., et al. (2016). Pathogen and antimicrobial resistance profiles of culture-proven neonatal sepsis in Southwest China, 1990–2014. Journal of Paediatrics and Child Health, 52(10), 939–943.

    Article  PubMed  Google Scholar 

  • Ma, J., Dong, C., & Ji, C. (2010). MicroRNA and drug resistance. Cancer Gene Therapy, 17(8), 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Manohar, S., Khan, S. I., & Rawat, D. S. (2013). 4-Aminoquinoline-Triazine-based hybrids with improved in vitro antimalarial activity against CQ-sensitive and CQ-resistant strains of Plasmodium falciparum. Chemical Biology & Drug Design, 81(5), 625–630.

    Article  CAS  Google Scholar 

  • Massa, H. M., Cripps, A. W., & Lehmann, D. (2009). Otitis media: Viruses, bacteria, biofilms and vaccines. Medical Journal of Australia, 191(S9), S44–S49.

    Article  PubMed  Google Scholar 

  • McArthur, A. G., & Tsang, K. K. (2017). Antimicrobial resistance surveillance in the genomic age. Annals of the New York Academy of Sciences, 1388(1), 78–91.

    Article  PubMed  Google Scholar 

  • Meads, M. B., Gatenby, R. A., & Dalton, W. S. (2009). Environment-mediated drug resistance: A major contributor to minimal residual disease. Nature Reviews Cancer, 9(9), 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Menegon, M., et al. (2009). Monitoring for multidrug-resistant Plasmodium falciparum isolates and analysis of pyrimethamine resistance evolution in Uige province, Angola. Tropical Medicine & International Health, 14(10), 1251–1257.

    Google Scholar 

  • Mockenhaupt, F. P., et al. (2000). Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana. Tropical Medicine & International Health, 5(3), 167–173.

    Article  CAS  Google Scholar 

  • Morris, D. O., et al. (2006). Screening of Staphylococcus aureus, Staphylococcus intermedius, and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: A retrospective review of 749 isolates (2003–04). Veterinary Dermatology, 17(5), 332–337.

    Article  PubMed  Google Scholar 

  • Ohl, C. A., & Luther, V. P. (2011). Antimicrobial stewardship for inpatient facilities. Journal of Hospital Medicine, 6(S1), S4–S15.

    Article  PubMed  Google Scholar 

  • Pablos-Mendez, A., et al. (1998). Global surveillance for antituberculosis-drug resistance, 1994–1997. New England Journal of Medicine, 338(23), 1641–1649.

    Article  CAS  PubMed  Google Scholar 

  • Pastan, I., & Gottesman, M. (1987). Multiple-drug resistance in human cancer. New England Journal of Medicine, 316(22), 1388–1393.

    Article  CAS  PubMed  Google Scholar 

  • Pfaller, M. A. (2012). Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. The American Journal of Medicine, 125(1), S3–S13.

    Article  CAS  PubMed  Google Scholar 

  • Prentice, H. G., et al. (2001) Oral ciprofloxacin plus colistin: Prophylaxis against bacterial infection in neutropenic patients. A strategy for the prevention of emergence of antimicrobial resistance. British Journal of Haematology, 115(1), 46–52.

    Google Scholar 

  • Ranjbar, R., Yadollahi Farsani, F., & Safarpoor Dehkordi, F. (2019). Antimicrobial resistance and genotyping of vacA, cagA, and iceA alleles of the Helicobacter pylori strains isolated from traditional dairy products. Journal of Food Safety, 39(2), e12594.

    Google Scholar 

  • Sahu, N. K., Sahu, S., & Kohli, D. V. (2008). Novel molecular targets for antimalarial drug development. Chemical Biology & Drug Design, 71(4), 287–297.

    Article  CAS  Google Scholar 

  • Sandgren, A., et al. (2009). Tuberculosis drug resistance mutation database. PLoS Medicine, 6(2), e1000002.

    Article  PubMed Central  CAS  Google Scholar 

  • Schmidt, D., & Löscher, W. (2005). Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia, 46(6), 858–877.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, A. B. S., Valderramos, S. G., & Fidock, D. A. (2005). pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Molecular Microbiology, 57(4), 913–926.

    Article  CAS  PubMed  Google Scholar 

  • Stonsaovapak, S., & Boonyaratanakornkit, M. (2010). Prevalence and antimicrobial resistance of listeria species in food products in Bangkok Thailand. Journal of Food Safety, 30(1), 154–161.

    Article  CAS  Google Scholar 

  • Struzycka, I., et al. (2019). Knowledge of antibiotics and antimicrobial resistance amongst final year dental students of Polish medical schools—A cross-sectional study. European Journal of Dental Education, 23(3), 295–303.

    Article  PubMed  Google Scholar 

  • Sundar, S. (2001). Drug resistance in Indian visceral leishmaniasis. Tropical Medicine & International Health, 6(11), 849–854.

    Article  CAS  Google Scholar 

  • Takechi, M., et al. (2001). Therapeutic efficacy of sulphadoxine/pyrimethamine and susceptibility in vitro of P. falciparum isolates to sulphadoxine-pyremethamine and other antimalarial drugs in Malawian children. Tropical Medicine & International Health, 6(6), 429–434.

    Google Scholar 

  • Tew, K. D. (1994). Glutathione-associated enzymes in anticancer drug resistance. Cancer Research, 54(16), 4313–4320.

    CAS  PubMed  Google Scholar 

  • Thakur, M. D., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thu, A. M., et al. (2017). Combating multidrug-resistant Plasmodium falciparum malaria. The FEBS Journal, 284(16), 2569–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thyagarajan, S., et al. (2003). Geographical difference in antimicrobial resistance pattern of Helicobacter pylori clinical isolates from Indian patients: Multicentric study. Journal of Gastroenterology and Hepatology, 18(12), 1373–1378.

    Google Scholar 

  • Townsend, D. M., & Tew, K. D. (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 22(47), 7369–7375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisman, J. L., et al. (2006). Searching for new antimalarial therapeutics amongst Known Drugs. Chemical Biology & Drug Design, 67(6), 409–416.

    Article  CAS  Google Scholar 

  • Wernsdorfer, W. H. (1994). Epidemiology of drug resistance in malaria. Acta Tropica, 56(2–3), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • White, N. (1998). Preventing antimalarial drug resistance through combinations. Drug Resistance Updates, 1(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  • White, N. (1999). Antimalarial drug resistance and combination chemotherapy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1384), 739–749.

    Google Scholar 

  • White, N. J. (2004). Antimalarial drug resistance. The Journal of Clinical Investigation, 113(8), 1084–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T. C., Marr, K. A., & Bowden, R. A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews, 11(2), 382–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2000). Anti-tuberculosis drug resistance in the world, World Health Organization.

    Google Scholar 

  • Zheng, T., et al. (2010). Role of microRNA in anticancer drug resistance. International Journal of Cancer, 126(1), 2–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Najam-ul-Haq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, N. et al. (2021). Drugs Resistance Management. In: Ahmed, S., Chandra Ojha, S., Najam-ul-Haq, M., Younus, M., Hashmi, M.Z. (eds) Biochemistry of Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-030-76320-6_21

Download citation

Publish with us

Policies and ethics