Skip to main content

A Simulation-Optimization Approach for the Household Energy Planning Problem Considering Uncertainty in Users Preferences

  • Conference paper
  • First Online:
Production Research (ICPR-Americas 2020)

Abstract

Power supply is one of the basic needs in modern smart homes. Computer-aid tools help optimizing energy utilization, contributing to sustainable goals of modern societies. For this purpose, this article presents a mathematical formulation to the household energy planning problem and a specific resolution method to build schedules for using deferrable electric that can reduce the cost of the electricity bill while keeping user satisfaction at a satisfactory level. User satisfaction have a great variability, since it is based on human preferences, thus a stochastic simulation-optimization approach is applied for handling uncertainty in the optimization process. Results over instances based on real-world data show the competitiveness of the proposed approach, which is able to compute different compromise solution accounting for the trade-off between these two conflicting optimization criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaudin, M., Zareipour, H.: Home energy management systems: a review of modelling and complexity. Renew. Sustain. Energy Rev. 45, 318–335 (2015)

    Article  Google Scholar 

  2. Beeson, R.: Optimization with respect to multiple criteria. Ph.D. thesis, University of Southern California, Los Ángeles, United States of America, June 1972

    Google Scholar 

  3. Calvillo, C., Sánchez-Miralles, A., Villar, J.: Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 55, 273–287 (2016)

    Article  Google Scholar 

  4. Chavat, J., Graneri, J., Nesmachnow, S.: Household energy disaggregation based on pattern consumption similarities. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 54–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38889-8_5

    Chapter  Google Scholar 

  5. Chavat, J., Nesmachnow, S., Graneri, J.: Non-intrusive energy disaggregation by detecting similarities in consumption patterns. Revista Facultad de Ingeniería Universidad de Antioquia (2020)

    Google Scholar 

  6. Chen, X., Wei, T., Hu, S.: Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home. IEEE Trans. Smart Grid 4(2), 932–941 (2013)

    Article  Google Scholar 

  7. Colacurcio, G., Nesmachnow, S., Toutouh, J., Luna, F., Rossit, D.: Multiobjective household energy planning using evolutionary algorithms. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 269–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38889-8_21

    Chapter  MATH  Google Scholar 

  8. Goldberg, M.: Measure twice, cut once. IEEE Power Energ. Mag. 8(3), 46–54 (2010)

    Article  Google Scholar 

  9. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2020). http://www.gurobi.com

  10. Harding, M., Lamarche, C.: Empowering consumers through data and smart technology: experimental evidence on the consequences of time-of-use electricity pricing policies. J. Policy Anal. Manage. 35(4), 906–931 (2016)

    Article  Google Scholar 

  11. Hart, W., et al.: Pyomo-optimization modeling in Python, vol. 67. Springer Science & Business Media, 2 edn. (2017). https://doi.org/10.1007/978-3-319-58821-6

  12. Hemmati, R., Saboori, H.: Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels. Energy Buil. 152, 290–300 (2017)

    Article  Google Scholar 

  13. Jacomino, M., Le, M.: Robust energy planning in buildings with energy and comfort costs. 4OR 10(1), 81–103 (2012)

    Google Scholar 

  14. Kleywegt, A., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kolter, J., Johnson, M.: Redd: A public data set for energy disaggregation research. Workshop on data mining applications in sustainability, San Diego, CA. 25, 59–62 (2011)

    Google Scholar 

  16. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: scheduling of power demands for optimal energy management. In: Proceedings of the 2nd International Conference on Energy-efficient Computing and Networking, pp. 41–50 (2011)

    Google Scholar 

  17. Liang, H., Zhuang, W.: Stochastic modeling and optimization in a microgrid: a survey. Energies 7(4), 2027–2050 (2014)

    Article  Google Scholar 

  18. Lu, X., Zhou, K., Zhang, X., Yang, S.: A systematic review of supply and demand side optimal load scheduling in a smart grid environment. J. Clean. Prod. 203, 757–768 (2018)

    Article  Google Scholar 

  19. Luján, E., Otero, A.D., Valenzuela, S., Mocskos, E., Steffenel, A., Nesmachnow, S.: An integrated platform for smart energy management: the CC-SEM project. Revista Facultad de Ingeniería, Universidad de Antioquia 97, 41–55 (2019)

    Google Scholar 

  20. Nesmachnow, S., Colacurcio, G., Rossit, D., Toutouh, J., Luna, F.: Optimizing household energy planning in smart cities: a multiobjective approach. Revista Facultad de Ingeniería Universidad de Antioquia (2020). (in press)

    Google Scholar 

  21. Norkin, V., Pflug, G., Ruszczyński, A.: A branch and bound method for stochastic global optimization. Math. Program. 83(1–3), 425–450 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Porteiro, R., Nesmachnow, S., Hernández-Callejo, L.: Short term load forecasting of industrial electricity using machine learning. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 146–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38889-8_12

    Chapter  Google Scholar 

  23. Robinson, S.: Analysis of sample-path optimization. Math. Oper. Res. 21(3), 513–528 (1996)

    Article  MathSciNet  Google Scholar 

  24. Rossit, D.: Desarrollo de modelos y algoritmos para optimizar redes logísticas de residuos sólidos urbanos. Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, November 2018

    Google Scholar 

  25. Rossit, D., Toutouh, J., Nesmachnow, S.: Exact and heuristic approaches for multi-objective garbage accumulation points location in real scenarios. Waste Manage. 105, 467–481 (2020)

    Article  Google Scholar 

  26. Shapiro, A.: Monte Carlo simulation approach to stochastic programming. In: Proceeding of the 2001 Winter Simulation Conference (cat. no. 01CH37304), vol. 1, pp. 428–431. IEEE (2001)

    Google Scholar 

  27. Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comput. Optim. Appl. 24(2–3), 289–333 (2003)

    Article  MathSciNet  Google Scholar 

  28. Wang, C., Zhou, Y., Jiao, B., Wang, Y., Liu, W., Wang, D.: Robust optimization for load scheduling of a smart home with photovoltaic system. Energy Convers. Manage. 102, 247–257 (2015)

    Article  Google Scholar 

  29. Wang, J., Li, P., Fang, K., Zhou, Y.: Robust optimization for household load scheduling with uncertain parameters. Appl. Sci. 8(4), 575 (2018)

    Article  Google Scholar 

  30. Yahia, Z., Pradhan, A.: Optimal load scheduling of household appliances considering consumer preferences: an experimental analysis. Energy 163, 15–26 (2018)

    Article  Google Scholar 

  31. Yahia, Z., Pradhan, A.: Multi-objective optimization of household appliance scheduling problem considering consumer preference and peak load reduction. Sustain. Urban Areas 55, 102058 (2020)

    Google Scholar 

Download references

Acknowledgements

J. Toutouh research was partially funded by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 799078, by the Junta de Andalucía UMA18-FEDERJA-003, European Union H2020-ICT-2019-3, and the Systems that Learn Initiative at MIT CSAIL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gabriel Rossit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossit, D.G., Nesmachnow, S., Toutouh, J., Luna, F. (2021). A Simulation-Optimization Approach for the Household Energy Planning Problem Considering Uncertainty in Users Preferences. In: Rossit, D.A., Tohmé, F., Mejía Delgadillo, G. (eds) Production Research. ICPR-Americas 2020. Communications in Computer and Information Science, vol 1408. Springer, Cham. https://doi.org/10.1007/978-3-030-76310-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76310-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76309-1

  • Online ISBN: 978-3-030-76310-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics