Skip to main content

Multifunctional Nanoparticles for Targeting Cancer Nanotheranostics

  • Chapter
  • First Online:
Cancer Nanotheranostics

Abstract

This chapter focuses on the potential of various multifunctional nanostructures widely employed for cancer nanotheranostics. In specific, nanomaterials such as magnetic-based hybrid nanostructures are widely investigated for both diagnostic and therapeutic agents. Magnetic nanoparticles are always having special attention among researchers in the area of cancer treatment and therapies. So, in this chapter, we have included the recent advancements of hybrid nanosystems and their versatile functionalities which extend their outstanding behavior aiming to increase its possibility in clinical applications. Herein, we represent the brief explanation and the versatility of nanomaterials which has a huge impact and its roles in the field of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, A., Khan, F., Mishra, R. K., & Khan, R. (2019). Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. Journal of Medicinal Chemistry, 62, 10475–10496.

    Article  CAS  PubMed  Google Scholar 

  • Alegret, N., Criado, A., & Prato, M. (2017). Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical applications. Current Medicinal Chemistry, 24, 529–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, A. N. (2018). Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus, 8, 20170056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. Journal of Pathology, 196, 254–265.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, L. C., Stebe, K. J., & Lee, D. (2016). Clickable Janus particles. Journal of the American Chemical Society, 138, 11437–11440.

    Article  CAS  PubMed  Google Scholar 

  • Bray, F., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  • Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., et al. (2017). Rational design of branched au–Fe3O4 Janus nanoparticles for simultaneous trimodal imaging and photothermal therapy of cancer cells. Chemistry A Europe Journal, 23, 17204–17208.

    Article  CAS  Google Scholar 

  • Chen, H. Y., et al. (2020). Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomaterialia, 112, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional Graphene Nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chemical Reviews, 117, 1826–1914.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H. W., Tsao, H. Y., Chiang, C. S., & Chen, S. Y. (2020). Advances in magnetic nanoparticle-mediated Cancer immune-Theranostics. Advanced Healthcare Materials, 2001451, 1–20.

    Google Scholar 

  • Chugh, H., et al. (2018). Role of gold and silver nanoparticles in cancer nano-medicine. Artificial Cells, Nanomedicine Biotechnology, 46, 1210–1220.

    Article  CAS  Google Scholar 

  • Das, P., Fatehbasharzad, P., Colombo, M., Fiandra, L., & Prosperi, D. (2019). Multifunctional magnetic gold nanomaterials for cancer. Trends in Biotechnology, 37, 995–1010.

    Article  CAS  PubMed  Google Scholar 

  • Dehvari, K., Lin, P. T., & Chang, J. Y. (2018). Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. Journal of Materials Chemistry B, 6, 4676–4686.

    Article  CAS  PubMed  Google Scholar 

  • Dhas, N. L., Raval, N. J., Kudarha, R. R., Acharya, N. S., & Acharya, S. R. (2018). Core-shell nanoparticles as a drug delivery platform for tumor targeting. In Inorganic frameworks as smart nanomedicines (pp. 387–448). William Andrew. https://doi.org/10.1016/B978-0-12813661-4.00009-2

    Google Scholar 

  • Dixon, S. J., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149, 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efremova, M. V., et al. (2018). Magnetite-gold nanohybrids as ideal all-in-one platforms for theranostics. Scientific Reports, 8, 1–19.

    Article  CAS  Google Scholar 

  • Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556.

    Article  CAS  PubMed  Google Scholar 

  • Fan, J., Cheng, Y., & Sun, M. (2020). Functionalized gold nanoparticles: Synthesis, properties and biomedical applications. Chemical Record. tcr.202000087. https://doi.org/10.1002/tcr.202000087

  • Fang, R. H., Kroll, A. V., Gao, W., & Zhang, L. (2018). Cell membrane coating nanotechnology. Advanced Materials, 30, e1706759.

    Article  PubMed  CAS  Google Scholar 

  • Farzin, A., Etesami, S. A., Quint, J., Memic, A., & Tamayol, A. (2020). Magnetic nanoparticles in cancer therapy and diagnosis. Advanced Healthcare Materials, 9, 1–29.

    Article  CAS  Google Scholar 

  • Gonzalez-Rodriguez, R., Campbell, E., & Naumov, A. (2019). Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/ fluorescence imaging and cancer sensing. PLoS One, 14, 1–18.

    Article  Google Scholar 

  • Hu, C. M. J., et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 108, 10980–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., et al. (2016). Multifunctional Fe 3 O 4 @ au core/shell nanostars: A unique platform for multimode imaging and photothermal therapy of tumors. Scientific Reports, 6, 28325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Q., et al. (2020). Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small, 16, 1–17.

    Google Scholar 

  • Knežević, N., Gadjanski, I., & Durand, J. O. (2019). Magnetic nanoarchitectures for cancer sensing, imaging and therapy. Journal of Materials Chemistry B, 7, 9–23.

    Article  PubMed  Google Scholar 

  • Li, J., et al. (2018a). Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomaterials Science, 6, 1834–1845.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., He, Y., Zhang, S., Qin, J., & Wang, J. (2018b). Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B, 8, 14–22.

    Article  PubMed  Google Scholar 

  • Liang, C., et al. (2020). Facile approach to prepare rGO@Fe3O4 microspheres for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. Nanoscale Research Letters, 15, 1–11.

    Article  CAS  Google Scholar 

  • Lin, K., et al. (2020). Facile phase transfer of hydrophobic Fe3O4@Cu2-: XS nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window. Journal of Materials Chemistry B, 8, 1202–1211.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Luo, J., Chen, X., Liu, W., & Chen, T. (2019). Cell membrane coating technology: A promising strategy for biomedical applications. Nano-micro letters (Vol. 11). Springer.

    Google Scholar 

  • Liu, L., Wang, Y., Guo, X., Zhao, J., & Zhou, S. A. (2020). Biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small, 16, 1–12.

    Article  Google Scholar 

  • Luo, Y., et al. (2019). Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chemical Communications, 55, 1963–1966.

    Article  PubMed  Google Scholar 

  • Manisekaran, R. (2018). Design and evaluation of plasmonic/magnetic Au-MFe2O4 (M-Fe/Co/Mn) core-shell nanoparticles functionalized with doxorubicin for cancer therapeutics. Springer Theses vol. 4. Springer International Publishing.

    Book  Google Scholar 

  • Mukherjee, S., Liang, L., & Veiseh, O. (2020). Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics, 12, 147.

    Article  CAS  PubMed Central  Google Scholar 

  • Navya, P. N., et al. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castillo, J. E., Gallo-Villanueva, R. C., Madou, M. J., & Perez-Gonzalez, V. H. (2020). Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coordination Chemistry Reviews, 425, 213489.

    Article  CAS  Google Scholar 

  • Peng, J., Liang, X., & Calderon, L. (2019). Progress in research on gold nanoparticles in cancer management. Medicine (United States), 98, e15311.

    CAS  Google Scholar 

  • Pereira-Silva, M., et al. (2020). Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opinion on Drug Delivery, 17, 1515–1518.

    Article  PubMed  Google Scholar 

  • Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., & Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8, 123–137.

    Article  CAS  Google Scholar 

  • Raza, F., et al. (2019). Cancer nanomedicine: Focus on recent developments and self-assembled peptide nanocarriers. Journal of Materials Chemistry B, 7, 7639–7655.

    Article  CAS  PubMed  Google Scholar 

  • Rees, J. A., et al. (2018). Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents. Scientific Reports, 8, 2–10.

    Article  CAS  Google Scholar 

  • Rodzinski, A., et al. (2016). Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Scientific Reports, 6, 1–14.

    Article  CAS  Google Scholar 

  • Seeta Rama Raju, G., Benton, L., Pavitra, E., & Yu, J. S. (2015). Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chemical Communications, 51, 13248–13259.

    Article  CAS  PubMed  Google Scholar 

  • Shahbazi, R., Ozpolat, B., & Ulubayram, K. (2016). Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine, 11, 1287–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A. V., et al. (2018). Anisotropic gold nanostructures: Optimization via in silico modeling for hyperthermia. ACS Applied Nano Materials, 1, 6205–6216.

    Article  CAS  Google Scholar 

  • Stephen, Z. R., Kievit, F. M., & Zhang, M. (2011). Magnetite nanoparticles for medical MR imaging. Materials Today, 14, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. W., Alkilany, A. M., Hamaly, M. A., & Canonico-May, S. (2017). Biomedical applications of anisotropic gold nanoparticles. In Nanostructure science and technology (pp. 399–426). Springer. https://doi.org/10.1007/978-3-319-59662-4_13

    Chapter  Google Scholar 

  • Syama, S., & Mohanan, P. V. (2019). Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Letters, 11, 1–31.

    Article  CAS  Google Scholar 

  • Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2019). Gold nanoparticles in Cancer treatment. Molecular Pharmaceutics, 16, 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Tian, F., et al. (2016). Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials, 106, 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Urries, I., et al. (2014). Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale, 6, 9230–9240.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Burg, S. H., Arens, R., Ossendorp, F., Van Hall, T., & Melief, C. J. M. (2016). Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nature Reviews. Cancer, 16, 219–233.

    Article  PubMed  CAS  Google Scholar 

  • van der Meel, R., et al. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14, 1007–1017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinothini, K., et al. (2020). A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New Journal of Chemistry, 44, 5265–5277.

    Article  CAS  Google Scholar 

  • Wang, L., et al. (2008). Core@shell nanomaterials: Gold-coated magnetic oxide nanoparticles. Journal of Materials Chemistry, 18, 2629–2635.

    Article  CAS  Google Scholar 

  • Wu, M., et al. (2019). Cell membrane camouflaged nanoparticles: A new biomimetic platform for cancer photothermal therapy. International Journal of Nanomedicine, 14, 4431–4448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, M., et al. (2019). Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surfaces B Biointerfaces, 176, 462–470.

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob, S. B., Adnan, R., Rameez Khan, R. M., & Rashid, M. (2020). Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Frontiers in Chemistry, 8, 376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarepour, A., Zarrabi, A., & Khosravi, A. (2017). SPIONs as nano-theranostics agents. Springer Briefs in Applied Sciences and Technology, 1–44. https://doi.org/10.1007/978-981-10-3563-0_1.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manisekaran, R., Acosta-Torres, L.S., García-Contreras, R., Santoyo-Salazar, J. (2021). Multifunctional Nanoparticles for Targeting Cancer Nanotheranostics. In: Saravanan, M., Barabadi, H. (eds) Cancer Nanotheranostics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-76263-6_2

Download citation

Publish with us

Policies and ethics