Skip to main content

The Life Cycle of the Hair Follicle

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z

Abstract

Ηardy described the hair follicle as “a treasure waiting to be discovered by even more molecular biologists” [1]. And there is nothing more intriguing about hair follicle physiology than its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8(2):55–61.

    Article  CAS  PubMed  Google Scholar 

  2. Brockes JP, Kumar A. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol. 2008;24:525–49.

    Article  CAS  PubMed  Google Scholar 

  3. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113(Pt 1):5–10.

    Article  CAS  PubMed  Google Scholar 

  4. Saxena AK, Singh D, Gupta J. Role of stem cell research in therapeutic purpose—a hope for new horizon in medical biotechnology. J Exp Ther Oncol. 2010;8(3):223–33.

    PubMed  Google Scholar 

  5. Borth R. Endocrinology of the human menstrual cycle: opinions and hypotheses. Vitam Horm. 1967;25:123–35.

    Article  CAS  PubMed  Google Scholar 

  6. Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19(3):R132–42.

    Article  CAS  PubMed  Google Scholar 

  7. Linch CA. The ultrastructure of tissue attached to telogen hair roots. J Forensic Sci. 2008;53(6):1363–6.

    PubMed  Google Scholar 

  8. Jaks V, Kasper M, Toftgård R. The hair follicle-a stem cell zoo. Exp Cell Res. 2010;316(8):1422–8.

    Article  CAS  PubMed  Google Scholar 

  9. Arajo R, Fernandes M, Cavaco-Paulo A, Gomes A. Biology of human hair: know your hair to control it. Adv Biochem Eng Biotechnol. 2011;125:121–43.

    Google Scholar 

  10. Severaid JS. Pelage changes in the snowshoe hare, Lepus Americanus. J Mammalol. 1945;26:41–63.

    Article  Google Scholar 

  11. Hart JS. Seasonal variations in insulation of the fur. Can J Zool. 1957;34:53–7.

    Article  Google Scholar 

  12. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson E. Seasonal changes in the skin of mammals. Symp Zool Soc Lond. 1977;39:373–404.

    Google Scholar 

  14. Flux JC. Colour change of mountain hares (Lepus timidus scotius) in north-east Scotland. Zoology. 1970;162:345–58.

    Google Scholar 

  15. Dry FW. The coat of the mouse (Mus Musculus). J Genet. 1926;16:287–340.

    Article  Google Scholar 

  16. Botchkarev VA, Eichmüller S, Johansson O, Paus R. Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. J Comp Neurol. 1997;386(3):379–95.

    Article  CAS  PubMed  Google Scholar 

  17. Mecklenburg L, Tobin DJ, Müller-Röver S, Handjiski B, Wendt G, Peters EM, Pohl S, Moll I, Paus R. Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol. 2000;114(5):909–16.

    Article  CAS  PubMed  Google Scholar 

  18. Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV. A guide to studying human hair follicle cycling in vivo. J Invest Dermatol. 2016;136(1):34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chase HB. Growth of the hair. Physiol Rev. 1954;34(1):113–26.

    Article  CAS  PubMed  Google Scholar 

  20. Klingman AM. The human hair cycle. J Invest Dermatol. 1959;33:307–16.

    Google Scholar 

  21. Durward A, Rudall KM. Studies on hair growth in the rat. J Anat. 1949;83(4):325–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Plikus MV, Chuong CM. Complex hair cycle domain patterns and regenerative hair waves in living rodents. J Invest Dermatol. 2008;128(5):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki N, Hirata M, Kondo S. Traveling stripes on the skin of a mutant mouse. Proc Natl Acad Sci U S A. 2003;100(17):9680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson E. Quantitative studies of hair growth in the albino rat. I. Normal males and females. J Endocrinol. 1958;16(4):337–50.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson E. Moulting cycles. Mammal Rev. 1972;1:198–208.

    Article  Google Scholar 

  26. Pecoraro V, Astore I, Barman JM. Cycle of the scalp hair of the newborn child. J Invest Dermatol. 1964;43:145–7.

    Article  CAS  PubMed  Google Scholar 

  27. Saitoh M, Uzuka M, Sakamato M. Human hair cycles. J Invest Dermatol. 1970;54(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  28. Courtois M, Loussouarn G, Hourseau S, Grollier JF. Periodicity in the growth and shedding of hair. Br J Dermatol. 1996;134(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  29. Randall VA, Ebling FJ. Seasonal changes in human hair growth. Br J Dermatol. 1991;124(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  30. Cardinali DP. Melatonin and the endocrine role of the pineal organ. Curr Top Exp Endocrinol. 1974;2:107–28.

    Article  CAS  PubMed  Google Scholar 

  31. Wehr TA. Effect of seasonal changes in daylength on human neuroendocrine function. Horm Res. 1998;49(3–4):118–24.

    CAS  PubMed  Google Scholar 

  32. Yoneyama S, Hashimoto S, Honma K. Seasonal changes of human circadian rhythms in Antarctica. Am J Phys. 1999;277(4 Pt 2):R1091–7.

    CAS  Google Scholar 

  33. Wehr TA, Duncan WC Jr, Sher L, Aeschbach D, Schwartz PJ, Turner EH, Postolache TT, Rosenthal NE. A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry. 2001;58(12):1108–14.

    Article  CAS  PubMed  Google Scholar 

  34. Smals AG, Kloppenborg PW, Benraad TJ. Circannual cycle in plasma testosterone levels in man. J Clin Endocrinol Metab. 1976;42(5):979–82.

    Article  CAS  PubMed  Google Scholar 

  35. Reinberg A, Lagoguey M, Chauffournier JM, Cesselin F. Circannual and circadian rhythms in plasma testosterone in five healthy young Parisian males. Acta Endocrinol. 1975;80(4):732–4.

    CAS  Google Scholar 

  36. Bellastella A, Criscuolo T, Mango A, Perrone L, Sinisi AA, Faggiano M. Circannual rhythms of plasma luteinizing hormone, follicle-stimulating hormone, testosterone, prolactin and cortisol in prepuberty. Clin Endocrinol. 1983;19(4):453–9.

    Article  CAS  Google Scholar 

  37. Casey JH, Burger HG, Kent JR, Kellie AE, Moxham A, Nabarro J, Nabarro JD. Treatment of hirsutism by adrenal and ovarian suppression. J Clin Endocrinol Metab. 1966;26(12):1370–4.

    Article  CAS  PubMed  Google Scholar 

  38. Kunz M, Seifert B, Trüeb RM. Seasonality of hair shedding in healthy women complaining of hair loss. Dermatology. 2009;219(2):105–10.

    Article  PubMed  Google Scholar 

  39. Maurer M, Peters EM, Botchkarev VA, Paus R. Intact hair follicle innervation is not essential for anagen induction and development. Arch Dermatol Res. 1998;290(10):574–8.

    Article  CAS  PubMed  Google Scholar 

  40. Li L, Paus R, Slominski A, Hoffman RM. Skin histoculture assay for studying the hair cycle. In Vitro Cell Dev Biol. 1992;28A(11–12):695–8.

    Article  CAS  PubMed  Google Scholar 

  41. Unger WP. Hair transplantation. New York: Dekker; 1995. p. 1–33.

    Google Scholar 

  42. Paus R, Peters EM, Eichmuller S, Botchkarev VA. Neural mechanisms of hair growth control. J Investig Dermatol Symp Proc. 1997;2(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ansel JC, Armstrong CA, Song I, Quinlan KL, Olerud JE, Caughman SW, Bunnett NW. Interactions of the skin and nervous system. J Investig Dermatol Symp Proc. 1997;2(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  44. Sengel P. Epidermal-dermal interactions during formation of skin & cutaneous appendages. In: Goldsmith LA, editor. Biochemistry and physiology of the skin. NewYork: Oxford University Press; 1983. p. 102–31.

    Google Scholar 

  45. Peus D, Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin. 1996;14(4):559–72.

    Article  CAS  PubMed  Google Scholar 

  46. Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc. 2003;8(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  47. Van Scott EJ, Ekel TM. Geometric relationships between the matrix of the hair bulb and its dermal papilla in normal and alopecic scalp. J Invest Dermatol. 1958;31(5):281–7.

    PubMed  Google Scholar 

  48. Van Scott EJ, Ekel TM, Auberbach R. Determinants of rate and kinetics of cell division in scalp hair. J Invest Dermatol. 1963;41:269–73.

    Google Scholar 

  49. Oliver RF. Histological studies of whisker regeneration in the hooded rat. J Embryol Exp Morphol. 1966;16(2):231–44.

    CAS  PubMed  Google Scholar 

  50. Jahoda CA, Horne KA, Mauger A, Bard S, Sengel P. Cellular and extracellular involvement in the regeneration of the rat lower vibrissa follicle. Development. 1992;114(4):887–97.

    Article  CAS  PubMed  Google Scholar 

  51. Jahoda CA, Oliver RF, Reynolds AJ, Forrester JC, Horne KA. Human hair follicle regeneration following amputation and grafting into the nude mouse. J Invest Dermatol. 1996;107(6):804–7.

    Article  CAS  PubMed  Google Scholar 

  52. Nagorcka BN, Mooney JR. The role of a reaction—diffusion system in the formation of hair fibres. J Theor Biol. 1982;98(4):575–607.

    Article  CAS  PubMed  Google Scholar 

  53. Nagorcka BN, Mooney JR. The role of a reaction-diffusion system in the initiation of primary hair follicles. J Theor Biol. 1985;114(2):243–72.

    Article  CAS  PubMed  Google Scholar 

  54. Mooney JR, Nagorcka BN. Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J Theor Biol. 1985;115(2):299–317.

    Article  CAS  PubMed  Google Scholar 

  55. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451(7176):340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet. 2009;5(7):e1000573.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanioka M, Yamada H, Doi M, Bando H, Yamaguchi Y, Nishigori C, Okamura H. Molecular clocks in mouse skin. J Invest Dermatol. 2009;129(5):1225–31.

    Article  CAS  PubMed  Google Scholar 

  59. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol. 2004;14(15):1367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakao N, Ono H, Yamamura T, et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature. 2008;452(7185):317–22.

    Article  CAS  PubMed  Google Scholar 

  61. Ebling FJG. The hormonal control of hair growth. In: Orfanos CE, Happle R, editors. Hair and hair diseases. Berlin: Springer; 1990. p. 267–99.

    Chapter  Google Scholar 

  62. Paus R, Müller-Röver S, Botchkarev VA. Chronobiology of the hair follicle: hunting the “hair cycle clock”. J Investig Dermatol Symp Proc. 1999;4(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005;27(3):247–61. 73

    Article  CAS  PubMed  Google Scholar 

  64. Al-Nuaimi Y, Baier G, Watson RE, Chuong CM, Paus R. The cycling hair follicle as an ideal systems biology research model. Exp Dermatol. 2010;19(8):707–13.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal–epithelial interactions in the hair follicle. PLoS Biol. 2005;3(11):e331.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Alonso LC, Rosenfield RL. Molecular genetic and endocrine mechanisms of hair growth. Horm Res. 2003;60(1):1–13.

    CAS  PubMed  Google Scholar 

  67. Stenn KS, Prouty SM, Seiberg M. Molecules of the cycling hair follicle—a tabulated review. J Dermatol Sci. 1994;7(Suppl):S109–24.

    Article  CAS  PubMed  Google Scholar 

  68. McElwee K, Hoffmann R. Growth factors in early hair follicle morphogenesis. Eur J Dermatol. 2000;10(5):341–50.

    CAS  PubMed  Google Scholar 

  69. Paus R, Stenn KS, Link RE. Telogen skin contains an inhibitor of hair growth. Br J Dermatol. 1990;122(6):777–84.

    Article  CAS  PubMed  Google Scholar 

  70. Plasari G, Edelmann S, Hogger F, Dusserre Y, Mermod N, Calabrese A. Nuclear Factor I-C regulates TGF-{beta}-dependent hair follicle cycling. J Biol Chem. 2010;285(44):34115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sayama K, Kajiya K, et al. Inflammatory mediator TAK1 regulates hair follicle morphogenesis and anagen induction shown by using keratinocyte-specific TAK1-deficient mice. PLoS One. 2010;5(6):e11275.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang Y, Tomann P, et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell. 2009;17(1):49–61.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002;118(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  74. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116(6):769–78.

    Article  CAS  PubMed  Google Scholar 

  75. Chase HB. Cycles and waves of hair growth. In: Lyne AG, Short BF, editors. Biology of the skin and hair growth. Sydney: Angus & Robertson; 1965. p. 461–5.

    Google Scholar 

  76. Bernard BA. The human hair follicle, a bistable organ? Exp Dermatol. 2012;21(6):401–3.

    Article  CAS  PubMed  Google Scholar 

  77. Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol. 2006;126(7):1459–68.

    Article  CAS  PubMed  Google Scholar 

  78. Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J Cell Sci. 2001;114(Pt 19):3419–31.

    Article  CAS  PubMed  Google Scholar 

  79. Oh ST, Cho BK, Schramme A, Gutwein P, Tilgen W, Reichrath J. Hair-cycle dependent differential expression of ADAM 10 and ADAM 12: An immunohistochemical analysis in human hair follicles in situ. Dermatoendocrinol. 2009;1(1):46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.

    Article  CAS  PubMed  Google Scholar 

  81. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102(4):451–61.

    Article  CAS  PubMed  Google Scholar 

  82. Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide. Nat Biotechnol. 2000;18(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  83. Muller-Rover S, Handjiski B, Van der Veen C, Eichmuller S, Foitzik K, McKay I, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol. 2001;117(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  84. Tong X, Coulombe PA. Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion. Genes Dev. 2006;20(10):1353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Slominski A, Paus R, Plonka P, Chakraborty A, Maurer M, Pruski D, Lukiewicz S. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol. 1994;102(6):862–9.

    Article  CAS  PubMed  Google Scholar 

  86. Wessells NK, Roessner KD. Nonproliferation in dermal condensations of mouse vibrissae and pelage hairs. Dev Biol. 1965;12(3):419–33.

    Article  CAS  PubMed  Google Scholar 

  87. Pierard GE, de la Brassinne M. Modulation of dermal cell activity during hair growth in the rat. J Cutan Pathol. 1975;2(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  88. Segall A. Ueber die Entwicklung und den Wechsel der Haare beim Meerschweinschen (Cavia Cobaya Schreb). Arch Mikrobiol Anat. 1918;91:218–91.

    Article  Google Scholar 

  89. Higgins CA, GE, Jahoda CA. From telogen to exogen: mechanisms underlying formation and subsequent loss of the hair club fiber. J Invest Dermatol. 2009;129(9):2100–8.

    Article  CAS  PubMed  Google Scholar 

  90. Danilenko DM, Ring BD, Pierce GF. Growth factors and cytokines in hair follicle development and cycling: recent insights from animal models and the potentials for clinical therapy. Mol Med Today. 1996;2(11):460–7.

    Article  CAS  PubMed  Google Scholar 

  91. Kloepper JE, Sugawara K, Al-Nuaimi Y, et al. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture. Exp Dermatol. 2010;19(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  92. Cotsarelis G. The hair follicle: dying for attention. Am J Pathol. 1997;151(6):1505–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, Paus R. Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol. 1997;151(6):1601–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lockskin RA, Zakeri Z, Tilly JL. When cells die. New York: Wiley-Liss; 1998.

    Google Scholar 

  95. Watter D, Levin M. Signalling pathways in apoptosis. Amsterdam: Harwood; 1999.

    Book  Google Scholar 

  96. Soma T, Ogo M, Suzuki J, Takahashi T, Hibino T. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro. J Invest Dermatol. 1998;111(6):948–54.

    Article  CAS  PubMed  Google Scholar 

  97. Botchkarev VA, Botchkareva NV, et al. A new role for neurotrophins: involvement of brain-derived neurotrophic factor and neurotrophin-4 in hair cycle control. FASEB J. 1999;13(2):395–410.

    Article  CAS  PubMed  Google Scholar 

  98. Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto GP, Paus R. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J. 2000;14(5):752–60.

    Article  CAS  PubMed  Google Scholar 

  99. Botchkarev VA, Metz M, Botchkareva NV, Welker P, Lommatzsch M, Renz H, Paus R. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 act as “epitheliotrophins” in murine skin. Lab Investig. 1999;79(5):557–72.

    CAS  PubMed  Google Scholar 

  100. Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol. 2002;118(6):993–7.

    Article  CAS  PubMed  Google Scholar 

  101. Peters EM, Hansen MG, Overall RW, Nakamura M, Pertile P, Klapp BF, Arck PC, Paus R. Control of human hair growth by neurotrophins: brain-derived neurotrophic factor inhibits hair shaft elongation, induces catagen, and stimulates follicular transforming growth factor beta2 expression. J Invest Dermatol. 2005;124(4):675–85.

    Article  CAS  PubMed  Google Scholar 

  102. Paus R, Foitzik K, Welker P, Bulfone-Paus S, Eichmüller S. Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. J Invest Dermatol. 1997;109(4):518–26.

    Article  CAS  PubMed  Google Scholar 

  103. Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem. 2003;278(40):38665–74.

    Article  CAS  PubMed  Google Scholar 

  104. Panteleyev AA, Botchkareva NV, Sundberg JP, Christiano AM, Paus R. The role of the hairless (hr) gene in the regulation of hair follicle catagen transformation. Am J Pathol. 1999;155(1):159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yano K, Brown LF, Lawler J, Miyakawa T, Detmar M. Thrombospondin-1 plays a critical role in the induction of hair follicle involution and vascular regression during the catagen phase. J Invest Dermatol. 2003;120(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  106. Botchkarev VA, Welker P, Albers KM, Botchkareva NV, Metz M, Lewin GR, Bulfone-Paus S, Peters EM, Lindner G, Paus R. A new role for neurotrophin-3: involvement in the regulation of hair follicle regression (catagen). Am J Pathol. 1998;153(3):785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Botchkareva NV, Botchkarev VA, Welker P, et al. New roles for glial cell line-derived neurotrophic factor and neurturin: involvement in hair cycle control. Am J Pathol. 2000;156(3):1041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suzuki S, Ota Y, Ozawa K, Imamura T. Dual-mode regulation of hair growth cycle by two Fgf-5 gene products. J Invest Dermatol. 2000;114(3):456–63.

    Article  CAS  PubMed  Google Scholar 

  109. Foitzik K, Krause K, Conrad F, Nakamura M, Funk W, Paus R. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am J Pathol. 2006;168(3):748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schneider MR, Antsiferova M, Feldmeyer L, Dahlhoff M, Bugnon P, Hasse S, Paus R, Wolf E, Werner S. Betacellulin regulates hair follicle development and hair cycle induction and enhances angiogenesis in wounded skin. J Invest Dermatol. 2008;128(5):1256–65.

    Article  CAS  PubMed  Google Scholar 

  111. Adly MA, Assaf HA, Hussein MR. Expression pattern of p75 neurotrophin receptor protein in human scalp skin and hair follicles: Hair cycle-dependent expression. J Am Acad Dermatol. 2009;60(1):99–109.

    Article  PubMed  Google Scholar 

  112. Peters EM, Stieglitz MG, Liezman C, Overall RW, Nakamura M, Hagen E, Klapp BF, Arck P, Paus R. p75 neurotrophin receptor-mediated signaling promotes human hair follicle regression (Catagen). Am J Pathol. 2006;168(1):221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pena JC, Kelekar A, Fuchs EV, Thompson CB. Manipulation of outer root sheath cell survival perturbs the hair-growth cycle. EMBO J. 1999;18(13):3596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kealey T, Philpott M, Guy R. The regulatory biology of the human pilosebaceous unit. Baillieres Clin Obstet Gynaecol. 1997;11(2):205–27.

    Article  CAS  PubMed  Google Scholar 

  115. Lindner G, Menrad A, Gherardi E, Merlino G, Welker P, Handjiski B, Roloff B, Paus R. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 2000;14(2):319–32.

    Article  CAS  PubMed  Google Scholar 

  116. Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R. Τhe role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996;14(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  117. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491–7.

    Article  CAS  PubMed  Google Scholar 

  118. Johnson E. Inherent rhythms of activity in the hair follicle and their control. In: Lyne AG, Short BF, editors. Short biology of the skin and hair growth. Amsterdam: Elsevier; 1965. p. 491–505.

    Google Scholar 

  119. Paus R, Handjiski B, Czarnetzki BM, Eichmüller S. A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. J Invest Dermatol. 1994;103(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  120. Paus R, Maurer M, Slominski A, Czarnetzki BM. Mast cell involvement in murine hair growth. Dev Biol. 1994;163(1):230–40.

    Article  CAS  PubMed  Google Scholar 

  121. Sawaya ME, Blume-Peytavi U, Mullins DL, Nusbaum BP, Whiting D, Nicholson DW, Lotocki G, Keane RW. Effects of finasteride on apoptosis and regulation of the human hair cycle. J Cutan Med Surg. 2002;6(1):1–9.

    Article  PubMed  Google Scholar 

  122. Kumar S. Mechanisms mediating caspase activation in cell death. Cell Death Differ. 1999;6(11):1060–6.

    Article  CAS  PubMed  Google Scholar 

  123. Evan G, Littlewood T. A matter of life and cell death. Science. 1998;281(5381):1317–22.

    Article  CAS  PubMed  Google Scholar 

  124. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391(6662):43–50.

    Article  CAS  PubMed  Google Scholar 

  125. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000;74(2–3):281–6.

    Article  CAS  PubMed  Google Scholar 

  126. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem. 2000;275(40):31199–203.

    Article  CAS  PubMed  Google Scholar 

  127. De Weert J, Kint A, Geerts ML. Morphological changes in the proximal area of the rat’s hair follicle during early catagen. An electron-microscopic study. Arch Dermatol Res. 1982;272(1–2):79–92.

    PubMed  Google Scholar 

  128. Kligman AM. Pathologic dynamics of human hair loss. I. Telogen effuvium. Arch Dermatol. 1961;83:175–98.

    Article  CAS  PubMed  Google Scholar 

  129. Sugiyama S, Takahashi M, Kamimura M. The ultrastructure of the hair follicles in early and late catagen, with special reference to the alteration of the junctional structure between the dermal papilla and epithelial component. J Ultrastruct Res. 1976;54(3):359–73.

    Article  CAS  PubMed  Google Scholar 

  130. Ito M, Sato Y. Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle. Arch Dermatol Res. 1990;282(7):434–41.

    Article  CAS  PubMed  Google Scholar 

  131. Murphy GF. Histology of the skin. In: Elder D, Elenitsas R, Jaworsky C, Johnson Jr B, editors. Lever’s histopathology of the skin. 8th ed. Philadelphia: Lippincott-Raven; 1997. p. 5–50.

    Google Scholar 

  132. Olsen EA. Hair disorders. In: Freedberg IM, Eisen ZA, Wolff K, Austen FK, Goldsmith AL, Katz IS, Fitzpatrick BT, editors. Fitzpatrick’s dermatology in general medicine. 5th ed. New York: McGraw-Hill; 1999. p. 751–71.

    Google Scholar 

  133. Vandevelde C, Allaerts W. Trichilemmal keratinisation: a causal factor in loosening the murine telogen club hair from the trichilemmal sac. J Anat. 1984;138(Pt 4):745–56.

    PubMed  PubMed Central  Google Scholar 

  134. Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. J Invest Dermatol. 1991;96(5):77S–8S.

    Article  CAS  PubMed  Google Scholar 

  135. Ellis RA, Moretti G. Vascular patterns associated with catagen hair follicles in the human scalp. Ann N Y Acad Sci. 1959;83:448–57.

    Article  CAS  PubMed  Google Scholar 

  136. Pinkus H. Factors in the formation of club hair. In: Brown AC, Crounse RG, editors. Hair, trace elements and human illness. New York: Praeger Scientific; 1980. p. 147–54.

    Google Scholar 

  137. Straile WE. Possible functions of the external root sheath during growth of the hair follicle. J Exp Zool. 1962;150:207–23.

    Article  CAS  PubMed  Google Scholar 

  138. Stenn KS, Parimoo S, Prouty S. Growth of hair follicle: a cycling regenarating biological system. In: Chuong C-M, editor. Molecular basis of epithelial appendage morphogenesis. Austin: Landes; 1998. p. 111–30.

    Google Scholar 

  139. Parakkal PF. Role of macrophages in collagen resorption during hair growth cycle. J Ultrastruct Res. 1969;29(3):210–7.

    Article  CAS  PubMed  Google Scholar 

  140. Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc. 2015;90(4):1179–96.

    Article  PubMed  Google Scholar 

  141. Lin KK, Chudova D, Hatfield GW, Smyth P, Andersen B. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proc Natl Acad Sci U S A. 2004;101(45):15955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ohnemus U, Uenalan M, Inzunza J, Gustafsson JA, Paus R. The hair follicle as an estrogen target and source. Endocr Rev. 2006;27(6):677–706.

    Article  CAS  PubMed  Google Scholar 

  143. Müller K, Klein R, Miltner E, Wiegand P. Improved STR typing of telogen hair root and hair shaft DNA. Electrophoresis. 2007;28(16):2835–42.

    Article  PubMed  Google Scholar 

  144. Chuong C-M. Molecular basis of epithelial appendage morphogenesis. Molecular biology intelligence unit 1. Austin: R.G. Lands; 1998.

    Google Scholar 

  145. Koch PJ, Mahoney MG, Cotsarelis G, Rothenberger K, Lavker RM, Stanley JR. Desmoglein 3 anchors telogen hair in the follicle. J Cell Sci. 1998;111(Pt 17):2529–37.

    Article  CAS  PubMed  Google Scholar 

  146. Hanakawa Y, Li H, Lin C, Stanley JR, Cotsarelis G. Desmogleins 1 and 3 in the companion layer anchor mouse anagen hair to the follicle. J Invest Dermatol. 2004;123(5):817–22.

    Article  CAS  PubMed  Google Scholar 

  147. Kurzen H, Moll I, Moll R, Schafer S, Simics E, Amagai M, Wheelock MJ, Franke WW. Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation. 1998;63(5):295–304.

    Article  CAS  PubMed  Google Scholar 

  148. Ebling FJ, Johnson E. Systemic influence on activity of hair follicles in skin homografts. J Embryol Exp Morphol. 1961;9:285–93.

    CAS  PubMed  Google Scholar 

  149. Botchkarev VA, Botchkareva NV, Nakamura M, Huber O, Funa K, Lauster R, Paus R, Gilchrest BA. Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J. 2001;15(12):2205–14.

    Article  CAS  PubMed  Google Scholar 

  150. Rook A, Dawber RPR. Diseases of the hair and scalp. In: Rook A, Dawber RPR, editors. The comparative physiology, embryology and physiology of human hair. Oxford: Blackwell Publishing; 1982. p. 1–17.

    Google Scholar 

  151. Stenn KS, Parimoo S. Prouty S Growth of the hair follicle: a cycling and regenerating biological system. In: Chuong C-M, editor. Molecular basis of epithelial appendage morphogenesis. Austin: RG Landes Company; 1998. p. 111–30.

    Google Scholar 

  152. Stenn K. Exogen is an active, separately controlled phase of the hair growth cycle. J Am Acad Dermatol. 2005;52(2):374–5.

    Article  PubMed  Google Scholar 

  153. Piérard-Franchimont C, Piérard GE. Teloptosis, shedding biorhythms. Dermatology. 2001;203(2):115–7.

    Article  PubMed  Google Scholar 

  154. Milner Y, Sudnik J, Filippi M, Kizoulis M, Kashgarian M, Stenn K. Exogen, shedding phase of the hair growth cycle: characterization of a mouse model. J Invest Dermatol. 2002;119(3):639–44. Erratum in: J Invest Dermatol. 2003;120(6):1138–9.

    Google Scholar 

  155. Rebora A, Guarrera M. Kenogen. A new phase of the hair cycle? Dermatology. 2002;205(2):108–10.

    Article  PubMed  Google Scholar 

  156. Rebora A, Guarrera M. Teloptosis and kenogen: two new concepts in human trichology. Arch Dermatol. 2004;140(5):619–20.

    Article  PubMed  Google Scholar 

  157. Courtois M, Loussouarn G, Hourseau C, Grollier JF. Hair cycle and alopecia. Skin Pharmacol. 1994;7(1–2):84–9.

    Article  CAS  PubMed  Google Scholar 

  158. Courtois M, Loussouarn G, Hourseau C, Grollier JF. Ageing and hair cycles. Br J Dermatol. 1995;132(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  159. Guarrera M, Cipriani C, Rebora A. Delayed telogen replacement in a boy’s scalp. Dermatology. 1998;197(4):335–7.

    Article  CAS  PubMed  Google Scholar 

  160. Guarrera M, Rebora A. Kenogen in female androgenetic alopecia. A longitudinal study. Dermatology. 2005;210(1):18–20.

    Article  CAS  PubMed  Google Scholar 

  161. Plonka PM, Michalczyk D, Popik M, Handjiski B, Paus R. Electron paramagnetic resonance (EPR) spectroscopy for investigating murine telogen skin after spontaneous or depilation-induced hair growth. J Dermatol Sci. 2008;49(3):227–40.

    Article  CAS  PubMed  Google Scholar 

  162. Auber L, Burns M. Replacement of fibres in sheep. Nature. 1947;160(4076):836.

    Article  CAS  PubMed  Google Scholar 

  163. Chapman DM. The anchoring strengths of various chest hair root types. Clin Exp Dermatol. 1992;17(6):421–3.

    Article  CAS  PubMed  Google Scholar 

  164. Roersma ME, Douven LF, Lefki K, Oomens CW. The failure behavior of the anchorage of hairs during slow extraction. J Biomech. 2001;34(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  165. Kiderman A, Gur I, Ever-Hadani P. The effect of brushing on hair loss in women. J Dermatolog Treat. 2009;20(3):152–5.

    Article  PubMed  Google Scholar 

  166. Robbins C, Kamath Y. Hair breakage during combing. IV. Brushing and combing hair. J Cosmet Sci. 2007;58(6):629–36.

    PubMed  Google Scholar 

  167. Bourguignon L, Hoste B, Boonen T, Vits K, Hubrecht F. A fluorescent microscopy-screening test for efficient STR-typing of telogen hair roots. Forensic Sci Int Genet. 2008;3(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  168. Van Neste D, Leroy T, Conil S. Exogen hair characterization in human scalp. Skin Res Technol. 2007;13(4):436–43.

    Article  PubMed  Google Scholar 

  169. Higgins CA, Richardson GD, Westgate GE, Jahoda CA. Exogen involves gradual release of the hair club fibre in the vibrissa follicle model. Exp Dermatol. 2009;18(9):793–5.

    Article  PubMed  Google Scholar 

  170. Van Neste D. Natural scalp hair regression in preclinical stages of male androgenetic alopecia and its reversal by finasteride. Skin Pharmacol Physiol. 2006;19(3):168–76.

    Article  PubMed  Google Scholar 

  171. Hoffmann R, Van Neste D. Recent findings with computerized methods for scalp hair growth measurements. J Investig Dermatol Symp Proc. 2005;10(3):285–8.

    Article  PubMed  Google Scholar 

  172. Riedel-Baima B, Riedel A. Use of the TrichoScan to assess female pattern hair loss. Dermatol Surg. 2009;35(4):651–5.

    Article  CAS  PubMed  Google Scholar 

  173. Guarrera M, Ciulla MP. A quantitative evaluation of hair loss: the phototrichogram. J Appl Cosmetol. 1986;4(1):67–76.

    Google Scholar 

  174. Guarrera M, Rebora A. Anagen hairs may fail to replace telogen hairs in early androgenic female alopecia. Dermatology. 1996;192(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  175. Price ML, Griffiths WA. Normal body hair—a review. Clin Exp Dermatol. 1985;10(2):87–97.

    Article  CAS  PubMed  Google Scholar 

  176. Messenger AG, Sinclair R. Follicular miniaturization in female pattern hair loss: clinicopathological correlations. Br J Dermatol. 2006;155(5):926–30.

    Article  CAS  PubMed  Google Scholar 

  177. Rebora A. Pathogenesis of androgenetic alopecia. J Am Acad Dermatol. 2004;50(5):777–9.

    Article  PubMed  Google Scholar 

  178. Randall VA. Androgens and hair growth. Dermatol Ther. 2008;21(5):314–28.

    Article  PubMed  Google Scholar 

  179. D’Amico D, Vaccaro M, Guarneri F, Borgia F, Cannavo S, Guarneri B. Phototrichogram using videomicroscopy: a useful technique in the evaluation of scalp hair. Eur J Dermatol. 2001;11(1):17–20.

    PubMed  Google Scholar 

  180. Comaish S. Autoradiographic studies of hair growth in various dermatoses: investigation of a possible circadian rhythm in human hair growth. Br J Dermatol. 1969;81(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  181. Pecoraro V, Astore I, Barman J, Ignacioaraujo C. The normal trichogram in the child before the age of puberty. J Invest Dermatol. 1964;42:427–30.

    Article  CAS  PubMed  Google Scholar 

  182. Saitoh M, Uzuka M, Sakamoto M, et al. Rate of hair growth. In: Montagna W, Dobson RL, editors. Advances in biology of skin, Hair growth, vol. IX. Oxford: Pergamon; 1969. p. 183–201.

    Google Scholar 

  183. Myers RJ, Hamilton JB. Regeneration and rate of growth of hairs in man. Ann N Y Acad Sci. 1951;53(3):562–8.

    Article  CAS  PubMed  Google Scholar 

  184. Pelfini C, Cerimele D, Pisanu G. Aging of the skin and hair growth in man. In: Montagna W, Dobson RL, editors. Advances in biology of skin, Hair growth, vol. IX. Oxford: Pergamon; 1969. p. 153–60.

    Google Scholar 

  185. Van Neste DJ, Rushton DH. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls. Skin Res Technol. 2016;22(3):363–9.

    Article  PubMed  Google Scholar 

  186. Lynfield YL, Macwilliams P. Shaving and hair growth. J Invest Dermatol. 1970;55(3):170–2.

    Article  CAS  PubMed  Google Scholar 

  187. Randall VA. Androgens and hair: a biological paradox. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. 3rd ed. Berlin: University Press; 2004. p. 207–31.

    Google Scholar 

  188. Randall VA. Hormonal regulation of hair follicles exhibits a biological paradox. Semin Cell Dev Biol. 2007;18(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  189. Blume U, Ferracin J, Verschoore M, Czernielewski JM, Schaefer H. Physiology of the vellus hair follicle: hair growth and sebum excretion. Br J Dermatol. 1991;124(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  190. Seago SV, Ebling FJ. The hair cycle on the human thigh and upper arm. Br J Dermatol. 1985;113(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  191. Trotter M. The life cycles of hair in selected regions of the body. Am J Phys Anthropol. 1924;7(2):427–37.

    Article  Google Scholar 

  192. Saitoh M, Uzuka M, Sakamoto M. Human hair cycle. J Invest Dermatol. 1970;54(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  193. Barman JM, Astore I, Pecoraro V. The normal trichogram of the adult. J Invest Dermatol. 1965;44:233–6.

    Article  CAS  PubMed  Google Scholar 

  194. Guarrera M, Semino MT, Rebora A. Quantitating hair loss in women: a critical approach. Dermatology. 1997;194(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  195. Ihm CW, Lee JY. Evaluation of daily hair counts. Dermatologica. 1991;182(1):67.

    Article  CAS  PubMed  Google Scholar 

  196. Headington JT. Telogen effluvium. New concepts and review. Arch Dermatol. 1993;129(3):356–63.

    Article  CAS  PubMed  Google Scholar 

  197. Τrüeb RM. Systematic approach to hair loss in women. J Dtsch Dermatol Ges. 2010;8(4):284–97.

    Article  Google Scholar 

  198. Orfanos CE, Hertel H. Disorder of hair growth in hyperprolactinemia. Z Hautkr. 1988;63(1):23–6.

    CAS  PubMed  Google Scholar 

  199. Paus R. Control of the hair cycle and hair diseases as cycling disorders. Curr Opin Dermatol. 1996;14(3):543–58.

    Google Scholar 

  200. Stenn KS, Combates NJ, Eilertsen KJ, Gordon JS, Pardinas JR, Parimoo S, Prouty SM. Hair follicle growth controls. Dermatol Clin. 1996;14(4):543–58.

    Article  CAS  PubMed  Google Scholar 

  201. Andl T, Botchkareva NV. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp Dermatol. 2015;24(11):821–6.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Guarrera M, Rebora A. The higher number and longer duration of Kenogen hairs are the main cause of the hair rarefaction in androgenetic alopecia. Skin Appendage Disord. 2019;5(3):152–4.

    Article  PubMed  Google Scholar 

  203. Choi BY. Targeting Wnt/β-catenin pathway for developing therapies for hair loss. Int J Mol Sci. 2020;21(14):4915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Blume-Peytavi U, Hillmann K, Guarrera M. Hair growth assessment techniques. In: Blume-Peytavi U, Tosti A, Trüeb R, editors. Hair growth and disorders. Berlin: Springer; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). The Life Cycle of the Hair Follicle. In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-030-76111-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76111-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76110-3

  • Online ISBN: 978-3-030-76111-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics