Skip to main content

Calibration of Low-Cost Particulate Matter Sensors with Elastic Weight Consolidation (EWC) as an Incremental Deep Learning Method

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

Urban air quality is an important problem of our time. Due to their high costs and therefore low spacial density, high precision monitoring stations cannot capture the temporal and spatial dynamics in the urban atmosphere, low-cost sensors must be used to setup dense measurement grids. However, low-cost sensors are imprecise, biased and susceptible to environmental influences. While neural networks have been explored for their calibration, issues include the amount of data needed for training, requiring sensors to be co-located with reference stations for extensive periods of time. Also re-calibrating them with new data can lead to catastrophic forgetting. We propose using Elastic Weight Consolidation (EWC) as an incremental calibration method. By exploiting the Fisher-Information-Matrix it enables the network to compensate for different sources of error, both pertaining to the sensor itself, as well as caused by varying environmental conditions. Models are pre-calibrated with data of 40 h measurement on a low-cost SDS011 PM sensor and then re-calibrated on another SDS011 sensor. Our evaluation on 1.5 years of real world data shows that a model using EWC with a time period of data of 6 h for re-calibration is more precise than models without EWC, even those with longer re-calibration periods. This demonstrates that EWC is suitable for on-the-fly collaborative calibration of low-cost sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As basis for our implementation, we used the GitHub repositories https://github.com/fmfn/BayesianOptimization (Bayesian Optimization) and https://github.com/ariseff/overcoming-catastrophic (EWC algorithm).

References

  1. Barcelo-Ordinas, J.M., Garcia-Vidal, J., Doudou, M., Rodrigo-Muñoz, S., Cerezo-Llavero, A.: Calibrating low-cost air quality sensors using multiple arrays of sensors. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2018)

    Google Scholar 

  2. Benna, M.K., Fusi, S.: Computational principles of biological memory. arXiv preprint arXiv:1507.07580 (2015)

  3. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  4. Budde, M., et al.: SmartAQnet: remote and in-situ sensing of urban air quality. In: Proceedings of SPIE Remote Sensing of Clouds and the Atmosphere XXII, vol. 10424, p. 104240C (2017)

    Google Scholar 

  5. Budde, M., et al.: Potential and limitations of the low-cost SDS011 particle sensor for monitoring urban air quality. ProScience 5, 6–12 (2018)

    Google Scholar 

  6. Budde, M., Zhang, L., Beigl, M.: Distributed, low-cost particulate matter sensing: scenarios, challenges, approaches. ProScience 1, 230–236 (2014)

    Google Scholar 

  7. Castell, N., et al.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99, 293–302 (2017)

    Article  Google Scholar 

  8. Cavaliere, A., et al.: Development of low-cost air quality stations for next generation monitoring networks: calibration and validation of PM2.5 and PM10 sensors. Sensors 18(9), 2843 (2018)

    Article  Google Scholar 

  9. Cheng, Y., et al.: AirCloud: a cloud-based air-quality monitoring system for everyone. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 251–265. ACM (2014)

    Google Scholar 

  10. Diaz-Bone, R.: Statistik für Soziologen. UTB GmbH (2018)

    Google Scholar 

  11. Dutta, P., et al.: Common sense: participatory urban sensing using a network of handheld air quality monitors. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys 2009, pp. 349–350. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1644038.1644095

  12. Fusi, S., Drew, P.J., Abbott, L.F.: Cascade models of synaptically stored memories. Neuron 45(4), 599–611 (2005)

    Article  Google Scholar 

  13. Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., Newton (2017)

    Google Scholar 

  14. Grimm Aerosol Technik: Model EDM180. https://www.grimm-aerosol.com/products-en/environmental-dust-monitoring/approved-pm-monitor/edm180/

  15. Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. Mob. Sens. 1, 1–5 (2012)

    Google Scholar 

  16. Hasenfratz, D., Saukh, O., Thiele, L.: On-the-fly calibration of low-cost gas sensors. In: Picco, G.P., Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 228–244. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28169-3_15

    Chapter  Google Scholar 

  17. Hojaiji, H., Kalantarian, H., Bui, A.A., King, C.E., Sarrafzadeh, M.: Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring. In: 2017 IEEE Sensors Applications Symposium (SAS), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kumaran, D., Hassabis, D., McClelland, J.L.: What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20(7), 512–534 (2016)

    Article  Google Scholar 

  20. Li, J.J., Faltings, B., Saukh, O., Hasenfratz, D., Beutel, J.: Sensing the air we breathe—The OpenSense Zurich dataset. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  21. Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A.M., Bagdanov, A.D.: Rotate your networks: Better weight consolidation and less catastrophic forgetting. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE (2018)

    Google Scholar 

  22. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

    Article  Google Scholar 

  23. Maag, B., Zhou, Z., Thiele, L.: A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet Things J. 5(6), 4857–4870 (2018)

    Article  Google Scholar 

  24. Markert, J.F., Budde, M., Schindler, G., Klug, M., Beigl, M.: Private rendezvous-based calibration of low-cost sensors for participatory environmental sensing. In: Proceedings of the Second International Conference on IoT in Urban Space, pp. 82–85. ACM (2016)

    Google Scholar 

  25. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102(3), 419 (1995)

    Article  Google Scholar 

  26. Mertens, P., Rässler, S.: Prognoserechnung. Springer, Heidelberg (2005). https://doi.org/10.1007/b138143

    Book  MATH  Google Scholar 

  27. Monn, C.: Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos. Environ. 35(1), 1–32 (2001)

    Article  Google Scholar 

  28. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  29. North, R., Richards, M., Cohen, J., Hoose, N., Hassard, J., Polak, J.: A mobile environmental sensing system to manage transportation and urban air quality. In: 2008 IEEE International Symposium on Circuits and Systems (2008)

    Google Scholar 

  30. World Health Organization: Who releases country estimates on air pollution exposure and health impact (2016). https://goo.gl/G4uqFE

  31. Parisotto, E., Ba, J.L., Salakhutdinov, R.: Actor-mimic: deep multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342 (2015)

  32. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. arXiv preprint arXiv:1301.3584 (2013)

  33. Polak, J.: Mobile environmental sensor systems across a grid environment-the message project. ERCIM News 2007(68) (2007)

    Google Scholar 

  34. Prahm, C., Paassen, B., Schulz, A., Hammer, B., Aszmann, O.: Transfer learning for rapid re-calibration of a myoelectric prosthesis after electrode shift. In: Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation II. BB, vol. 15, pp. 153–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46669-9_28

    Chapter  Google Scholar 

  35. Rai, A.C., et al.: End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 607, 691–705 (2017)

    Article  Google Scholar 

  36. Spinelle, L., Gerboles, M., Villani, M.G., Aleixandre, M., Bonavitacola, F.: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide. Sens. Actuators, B Chem. 215, 249–257 (2015)

    Article  Google Scholar 

  37. Yamamoto, K., Togami, T., Yamaguchi, N., Ninomiya, S.: Machine learning-based calibration of low-cost air temperature sensors using environmental data. Sensors 17(6), 1290 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the German Federal Ministry for Traffic and Digital Infrastructure (BMVI) as part of project SmartAQnet [4] (grant number 19F2003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Budde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlund, R. et al. (2021). Calibration of Low-Cost Particulate Matter Sensors with Elastic Weight Consolidation (EWC) as an Incremental Deep Learning Method. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics