Skip to main content

Heteroscedastic Gaussian Processes for Localising Acoustic Emission

  • Conference paper
  • First Online:
Data Science in Engineering, Volume 9

Abstract

As interest continues to grow in developing more informative structural health monitoring systems, the capture and use of acoustic emission data has emerged as a popular technique for localising damage. The basis of a number of these approaches is the construction of difference-in-time-of-arrival (dTOA) maps, which is a spatial mapping that characterises the expected dTOA information for a given sensor pair across the surface of a test structure. In this approach, a series of artificial acoustic emission sources are first generated across the structure, where the arrival time at a number of surface-mounted sensors can be recorded. For each sensor pair, dTOA values can then be extracted, allowing a spatial mapping to be learned.

In recent work, the use of Gaussian process regression for constructing dTOA maps has been demonstrated, offering a number of benefits such as interpolation across space and a probabilistic interpretation of predictions, naturally enabling uncertainty quantification. One assumption made under the standard Gaussian process framework is that the noise associated with each observation is constant across the input space. In the case of dTOA values mapped across a structure, as the distance between a measurement and a sensor pair increases, there will be an increasing uncertainty. This effect results in the emergence of a spatially dependent noise process, rendering a uniform noise model sub-optimal. This chapter therefore presents the use of a heteroscedastic Gaussian process model for learning dTOA maps, where it is demonstrated that the input-dependent noise process can be suitably captured. Future acoustic emission events can then be localised by maximising the likelihood of the corresponding dTOA values. The methodology is applied to a complex structure, showing an improved localisation performance in comparison to the homoscedastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, R., Hill, E., Moore, P.: Acoustic Emission Testing. NDT Handbook. ASNT, Columbus (2005)

    Google Scholar 

  2. Rindorf, H.J.: Acoustic Emission Source Location in Theory and in Practice. Brüel & Kjær, Nærum (1981)

    Google Scholar 

  3. Kundu, T.T., Das, S., Martin, S.A., Jata, K.V.: Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics 48(3), 193–201 (2008)

    Article  Google Scholar 

  4. Koabaz, M., Hajzargarbashi, T., Kundu, T., Deschamps, M.: Locating the acoustic source in an anisotropic plate. Struct. Health Monit. 11(3), 315–323 (2012)

    Article  Google Scholar 

  5. Ciampa, F., Meo, M.: A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Compos. Part A Appl. Sci. Manuf. 41(12), 1777–1786 (2010)

    Article  Google Scholar 

  6. Kundu, T., Nakatani, H., Takeda, N.: Acoustic source localization in anisotropic plates. Ultrasonics 52(6), 740–746 (2012)

    Article  Google Scholar 

  7. McLaskey, G.C., Glaser, S.D., Grosse, C.U.: Beamforming array techniques for acoustic emission monitoring of large concrete structures. J. Sound Vib. 329(12), 2384–2394 (2010)

    Article  Google Scholar 

  8. Nakatani, H., Hajzargarbashi, T., Ito, K., Kundu, T., Takeda, N.: Locating point of impact on an anisotropic cylindrical surface using acoustic beamforming technique. In: Key Engineering Materials, vol. 558, pp. 331–340. Trans Tech Publications, Stafa-Zurich (2013)

    Google Scholar 

  9. Baxter, M.G., Pullin, R., Holford, K.M., Evans, S.L.: Delta T source location for acoustic emission. Mech. Syst. Signal Process. 21(3), 1512–1520 (2007)

    Article  Google Scholar 

  10. Al-Jumaili, S.K., Pearson, M.R., Holford, K.M., Eaton, M.J., Pullin, R.: Acoustic emission source location in complex structures using full automatic Delta T mapping technique. Mech. Syst. Signal Process. 72, 513–524 (2016)

    Article  Google Scholar 

  11. Holford, K.M., Eaton, M.J., Hensman, J.J., Pullin, R., Evans, S.L., Dervilis, N., Worden, K.: A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: an overview. Progr. Aerospace Sci. 90, 1–11 (2017)

    Article  Google Scholar 

  12. Ebrahimkhanlou, A., Salamone, S.: Single-sensor acoustic emission source localization in plate-like structures using deep learning. Aerospace 5(2), 50 (2018)

    Article  Google Scholar 

  13. Niri, E.D., Salamone, S.: A probabilistic framework for acoustic emission source localization in plate-like structures. Smart Mater. Struct. 21(3), 035009 (2012)

    Article  Google Scholar 

  14. Niri, E.D., Farhidzadeh, A., Salamone, S.: Nonlinear Kalman filtering for acoustic emission source localization in anisotropic panels. Ultrasonics 54(2), 486–501 (2014)

    Article  Google Scholar 

  15. Schumacher, T., Straub, D., Higgins, C.: Toward a probabilistic acoustic emission source location algorithm: a Bayesian approach. J. Sound Vib. 331(19), 4233–4245 (2012)

    Article  Google Scholar 

  16. Yan, G.: A particle filter method for damage location in plate-like structures by using lamb waves. Struct. Control Health Monit. 21(6), 847–867 (2014)

    Article  Google Scholar 

  17. Sen, D., Erazo, K., Nagarajaiah, S.: Bayesian estimation of acoustic emissions source in plate structures using particle-based stochastic filtering. Struct. Control Health Monit. 24(11), e2005 (2017)

    Article  Google Scholar 

  18. Hensman, J., Mills, R., Pierce, S., Worden, K., Eaton, M.: Locating acoustic emission sources in complex structures using Gaussian processes. Mech. Syst. Signal Process. 24(1), 211–223 (2010)

    Article  Google Scholar 

  19. Jones, M.R., Rogers, T.J., Worden, K., Cross, E.J.: A Bayesian methodology for the localisation of acoustic emission sources within complex structures (2020). arXiv preprint arXiv:2012.11058, 2020.

    Google Scholar 

  20. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  21. Rogers, T.J.: Towards Bayesian system identification: with application to SHM of offshore structures. PhD thesis, University of Sheffield (2019)

    Google Scholar 

  22. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7, 2651–2667 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Sriperumbudur, B.K., Fukumizu, K., Lanckriet, G.R.: Universality, characteristic kernels and RKHS embedding of measures. J. Mach. Learn. Res. 12(7), 2389–2410 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lázaro-Gredilla, M., Titsias, M.K.: Variational heteroscedastic Gaussian process regression. In: ICML (2011)

    Google Scholar 

  25. Madarshahian, R., Ziehl, P., Caicedo, J.M.: Acoustic emission Bayesian source location: onset time challenge. Mech. Syst. Signal Process. 123, 483–495 (2019)

    Article  Google Scholar 

  26. Kurz, J.H., Grosse, C.U., Reinhardt, H.-W.: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 43(7), 538–546 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support of grant reference numbers EP/S001565/1 and EP/R004900/1. Thanks are offered to James Hensman, Mark Eaton, Robin Mills, and Gareth Pierce for acquiring the data set used within this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, M.R., Rogers, T.J., Worden, K., Cross, E.J. (2022). Heteroscedastic Gaussian Processes for Localising Acoustic Emission. In: Madarshahian, R., Hemez, F. (eds) Data Science in Engineering, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-76004-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76004-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76003-8

  • Online ISBN: 978-3-030-76004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics