Skip to main content

Stereoscopic Image-Based Rendering Technique for Low-Cost Virtual Reality

  • Conference paper
  • First Online:
Computer Science – CACIC 2020 (CACIC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1409))

Included in the following conference series:

  • 313 Accesses

Abstract

Mobile phones offer an excellent low-cost alternative for Virtual Reality. However, the hardware constraints of these devices restrict the displayable visual complexity of graphics. Image-Based Rendering techniques arise as an alternative to solve this problem, but usually, generating the stereoscopic effect to improve depth perception presents a challenging problem. In this work, we present an Image-Based Rendering technique for low-cost virtual reality that incorporates stereoscopy to improve depth perception. We also conducted a user evaluation to analyze the stereoscopic effect of the technique, especially considering the effect on depth perception, presence, and navigation. The results prove the benefits of our technique for both virtual and real-world environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://httpd.apache.org/.

References

  1. Selzer, M.N., Gazcon, N.F., Larrea, M.L.: Effects of virtual presence and learning outcome using low-end virtual reality systems. Displays 59, 9–15 (2019)

    Article  Google Scholar 

  2. Selzer, M.N., Larrea, M.L., Castro, S.M.: Realidad virtual: maximizando presencia, inmersión y usabilidad. In: XXII Workshop de Investigadores en Ciencias de la Computación, WICC 2020, El Calafate, Santa Cruz (2020)

    Google Scholar 

  3. Engel, K., Sommer, O., Ertl, T.: A framework for interactive hardware accelerated remote 3d-visualization. In: de Leeuw, W.C., van Liere, R. (eds.) Data visualization 2000. Eurographics, pp. 167–177. Springer, Vienna (2000). https://doi.org/10.1007/978-3-7091-6783-0_17

    Chapter  Google Scholar 

  4. Ma, J., Chen, Q., Chen, B., Wang, H.: Mobile 3D graphics compression for progressive transmission over wireless network. In: 11th IEEE Interenational Conference on CAD and Computer Graphics, pp. 357–362. IEEE (2009)

    Google Scholar 

  5. Isenburg, M., Lindstrom, P.: Streaming meshes. In: VIS 2005. IEEE Visualization, 2005, pp. 231–238. IEEE (2005)

    Google Scholar 

  6. Shen, Z., Liu, J., Zheng, Y., Cao, L.: A low-cost mobile VR walkthrough system for displaying multimedia works based on Unity3D. In: 14th International Conference on Computer Science & Education (ICCSE), pp. 415–419. IEEE (2019)

    Google Scholar 

  7. Fathy, G., Hassan, H., Sheta, W., Bahgat, R.: Efficient framework for mobile walkthrough application. Pervasive Mob. Comput. 18, 40–54 (2015)

    Article  Google Scholar 

  8. Chen, S.E.: Quicktime VR: an image-based approach to virtual environment navigation. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 29–38 (1995)

    Google Scholar 

  9. Noimark, Y., Cohen-Or, D.: Streaming scenes to MPEG-4 video-enabled devices. IEEE Comput. Graph. Appl. 23(1), 58–64 (2003)

    Article  Google Scholar 

  10. Chim, J., Lau, R.W., Leong, H.V., Si, A.: Cyberwalk: a web-based distributed virtual walkthrough environment. IEEE T. Multimed. 5(4), 503–515 (2003)

    Google Scholar 

  11. Kowdle, A., Sinha, S.N., Szeliski, R.: Multiple view object cosegmentation using appearance and stereo cues. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 789–803. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_57

    Chapter  Google Scholar 

  12. Chaurasia, G., Duchene, S., Sorkine-Hornung, O., Drettakis, G.: Depth synthesis and local warps for plausible image-based navigation. ACM Trans. Graph. (TOG) 32(3), 1–12 (2013)

    Article  Google Scholar 

  13. Lipski, C., Linz, C., Berger, K., Sellent, A., Magnor, M.: Virtual video camera: image-based viewpoint navigation through space and time. In: Computer Graphics Forum, vol. 29, pp. 2555–2568. Wiley Library (2010)

    Google Scholar 

  14. Stich, T., Linz, C., Wallraven, C., Cunningham, D., Magnor, M.: Perception-motivated interpolation of image sequences. ACM Trans. Appl. Percept. (TAP) 8(2), 1–25 (2011)

    Article  Google Scholar 

  15. Zhang, Y., Zhu, Z.: Walk-able and stereo virtual tour based on spherical panorama matrix. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 50–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_4

    Chapter  Google Scholar 

  16. Dai, F., Zhu, C., Ma, Y., Cao, J., Zhao, Q., Zhang, Y.: Freely explore the scene with \(360^{\circ }\) field of view. In: IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 888–889. IEEE (2019)

    Google Scholar 

  17. Liu, C., Shibusawa, S., Yonekura, T.: A walkthrough system with improved map projection panoramas from omni directional images. In: 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing, pp. 45–51. IEEE (2010)

    Google Scholar 

  18. Lei, Yu., Jiang, Z., Chen, D., Bao, H.: Image-based walkthrough over internet on mobile devices. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3252, pp. 728–735. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30207-0_89

    Chapter  Google Scholar 

  19. Doellner, J., Hagedorn, B., Klimke, J.: Server-based rendering of large 3D scenes for mobile devices using G-buffer cube maps. In: Proceedings of the 17th International Conference on 3D Web Technology, pp. 97–100 (2012)

    Google Scholar 

  20. Reinert, B., Kopf, J., Ritschel, T., Cuervo, E., Chu, D., Seidel, H.P.: Proxy-guided image-based rendering for mobile devices. In: Computer Graphics Forum, vol. 35, pp. 353–362. Wiley Library (2016)

    Google Scholar 

  21. Naepflin, U., Menozzi, M.: Can movement parallax compensate lacking stereopsis in spatial explorative search tasks? Displays 22(5), 157–164 (2001)

    Article  Google Scholar 

  22. van Beurden, M.H., Kuijsters, A., IJsselsteijn, W.A.: Performance of a path tracing task using stereoscopic and motion based depth cues. In: 2010 Second International Workshop on Quality of Multimedia Experience (QoMEX), pp. 176–181. IEEE (2010)

    Google Scholar 

  23. McIntire, J.P., Liggett, K.K.: The (possible) utility of stereoscopic 3D displays for information visualization: the good, the bad, and the ugly. In: 2014 IEEE VIS International Workshop on 3dvis (3dvis), pp. 1–9. IEEE (2014)

    Google Scholar 

  24. Hassaine, D., Holliman, N.S., Liversedge, S.P.: Investigating the performance of path-searching tasks in depth on multiview displays. ACM Trans. Appl. Percept. (TAP) 8(1), 1–18 (2010)

    Article  Google Scholar 

  25. Boustila, S., Bechmann, D., Capobianco, A.: Effects of adding visual cues on distance estimation, presence and simulator sickness during virtual visits using wall screen. In: Proceedings of the Computer Graphics International Conference, pp. 1–6 (2017)

    Google Scholar 

  26. Selzer, M.N., Ganuza, M.L., Urribarri, D.K., Larrea, M.L., Castro, S.M.: Simulation of high-visual quality scenes in low-cost virtual reality. In: XXVI Congreso Argentino de Ciencias de la Computación (CACIC) (Modalidad virtual, 5 al 9 de octubre de 2020) (2020)

    Google Scholar 

  27. Studio, B.P.: Doctorsoffice (2020). http://sojaexiles.com/. Accessed July 2020

  28. Unity: Unity3d (2020). https://unity.com. Accessed July 2020

  29. yasirkula: Unity3d (2020). https://github.com/yasirkula/. Accessed July 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías N. Selzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selzer, M.N., Ganuza, M.L., Urribarri, D.K., Larrea, M.L., Castro, S.M. (2021). Stereoscopic Image-Based Rendering Technique for Low-Cost Virtual Reality. In: Pesado, P., Eterovic, J. (eds) Computer Science – CACIC 2020. CACIC 2020. Communications in Computer and Information Science, vol 1409. Springer, Cham. https://doi.org/10.1007/978-3-030-75836-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75836-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75835-6

  • Online ISBN: 978-3-030-75836-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics