Skip to main content

Investigating into Minimum Detectable Displacement Signal in Image-Based Vibration Measurement

  • Conference paper
  • First Online:
Proceedings of IncoME-V & CEPE Net-2020 (IncoME-V 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 105))

Included in the following conference series:

Abstract

Image-based vibration measurement is becoming more and more popular due to its critical advantages of non-contact and full-field measurement. However, the minimum detectable displacement of a measurement system still lacks a theoretical study and experimental verification. When measuring vibration displacement of micron scale, it becomes difficult to distinguish the signal from noises. Therefore, this paper puts forward an explicit equation to calculate the minimum detectable signal (MDS) of displacement in vibration measurement using high-speed camera. The influence factors including blurring, color depth, image noise, and resolution are all included in the equation, which presents how these factors impact on the MDS. A simulation test is conducted on synthetic image and results show a great agreement with theoretical prediction. Furthermore, the equation of MDS is validated by an experimental study on modal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizawa, K., Poozesh, P., Niezrecki, C., Baqersad, J., Inalpolat, M., Heilmann, G.: An acoustic-array based structural health monitoring technique for wind turbine blades. In: Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure 2015, vol. 9437, p. 94371P (2015)

    Google Scholar 

  2. Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54(2), 255–271 (2014). https://doi.org/10.1007/s11340-013-9784-8

    Article  Google Scholar 

  3. Caetano, E., Silva, S., Bateira, J.: A vision system for vibration monitoring of civil engineering structures. Exp. Tech. 35(4), 74–82 (2011). https://doi.org/10.1111/j.1747-1567.2010.00653.x

    Article  Google Scholar 

  4. Chen, J.G., Davis, A., Wadhwa, N., Durand, F., Freeman, W.T., Büyüköztürk, O.: Video camera-based vibration measurement for civil infrastructure applications. J. Infrastruct. Syst. 23(3), B4016013 (2017). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000348

    Article  Google Scholar 

  5. Ozbek, M., Rixen, D.J.: Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 16(3), 367–381 (2013). https://doi.org/10.1002/we.1493

    Article  Google Scholar 

  6. Helfrick, M.N., Niezrecki, C., Avitabile, P., Schmidt, T.: 3D digital image correlation methods for full-field vibration measurement. Mech. Syst. Signal Process. 25(3), 917–927 (2011). https://doi.org/10.1016/j.ymssp.2010.08.013

    Article  Google Scholar 

  7. Bing, P., Hui-min, X., Bo-qin, X., Fu-long, D.: Performance of sub-pixel registration algorithms in digital image correlation. Meas. Sci. Technol. 17(6), 1615–1621 (2006). https://doi.org/10.1088/0957-0233/17/6/045

    Article  Google Scholar 

  8. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vision 12(1), 43–77 (1994). https://doi.org/10.1007/BF01420984

    Article  Google Scholar 

  9. Gautama, T., Hulle, M.A.V.: A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans. Neural Netw. 13(5), 1127–1136 (2002). https://doi.org/10.1109/TNN.2002.1031944

    Article  Google Scholar 

  10. Yang, Y., et al.: Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590 (2017). https://doi.org/10.1016/j.ymssp.2016.08.041

    Article  Google Scholar 

  11. Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G.J., Durand, F., Freeman, W.T.: The visual microphone: passive recovery of sound from video. ACM Trans. Graph. 33(4), 1 (2014). https://doi.org/10.1145/2601097.2601119

    Article  Google Scholar 

  12. Chen, J.G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W.T., Buyukozturk, O.: Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vibr. 345, 58–71 (2015). https://doi.org/10.1016/j.jsv.2015.01.024

    Article  Google Scholar 

  13. Molina-Viedma, A.J., Felipe-Sesé, L., López-Alba, E., Díaz, F.: High frequency mode shapes characterisation using Digital Image Correlation and phase-based motion magnification. Mech. Syst. Signal Process. 102, 245–261 (2018). https://doi.org/10.1016/j.ymssp.2017.09.019

    Article  Google Scholar 

  14. Diamond, D.H., Heyns, P.S., Oberholster, A.J.: Accuracy evaluation of sub-pixel structural vibration measurements through optical flow analysis of a video sequence. Measurement 95, 166–172 (2017). https://doi.org/10.1016/j.measurement.2016.10.021

    Article  Google Scholar 

  15. Javh, J., Slavič, J., Boltežar, M.: The subpixel resolution of optical-flow-based modal analysis. Mech. Syst. Signal Process. 88, 89–99 (2017)

    Article  Google Scholar 

  16. Radar and ARPA Manual. Elsevier (2014)

    Google Scholar 

  17. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshou Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Feng, G., Gu, F., Ball, A. (2021). Investigating into Minimum Detectable Displacement Signal in Image-Based Vibration Measurement. In: Zhen, D., et al. Proceedings of IncoME-V & CEPE Net-2020. IncoME-V 2020. Mechanisms and Machine Science, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-75793-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75793-9_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75792-2

  • Online ISBN: 978-3-030-75793-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics