Skip to main content

Fabrication and Characterization of Porous Flow-Assembled Chitosan Membranes in Microfluidics

  • Conference paper
  • First Online:
8th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2020)

Abstract

The aim of this research is to customize the porosity of biofabricated chitosan membrane (CM) employing co-assembled polystyrene nanoparticles (np) as a sacrificial template. CM with np (CM-np) was manufactured inside the microfluidic chip using the flow-assembly technique. Glutaraldehyde was used to crosslink the fabricated CM-np were then dissolved with dimethyl sulfoxide, leaving the porous chitosan membrane (pCM). The growth rate of CM and CM-np was investigated to determine the effects of np incorporation on the growth of the fabricated membrane. The morphology of the biofabricated CM and pCM were evaluated using scanning electron microscopy. The mass transport tests were also conducted to confirm the increase in pores size of pCM in comparison with pure CM. Thus, in this study, we have demonstrated the capability to manipulate the porosity of the biofabricared CM manufactured by flows inside microfluidic chips and characterized the properties of the fabricated membranes. This tuning process is promising and can enhance the applicability of biopolymer CM in biochemistry and biology researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo X, Berlin DL, Betz J, Payne GF, Bentley WE, Rubloff GW (2010) In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Lab Chip 10(1):59–65. https://doi.org/10.1039/b916548g

    Article  Google Scholar 

  2. Hsieh YC, Zahn JD (2007) On-chip microdialysis system with flow-through glucose sensing capabilities. J Diabetes Sci Technol 1(3):375–383. https://doi.org/10.1177/193229680700100310

    Article  Google Scholar 

  3. de Jong J, Lammertink RG, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139. https://doi.org/10.1039/b603275c

    Article  Google Scholar 

  4. Ding W, Liang C, Sun S, He L, Gao D (2015) On-chip fabrication of carbon nanoparticle-chitosan composite membrane. J Mater Sci Technol 31(11):1087–1093. https://doi.org/10.1016/j.jmst.2015.09.004

    Article  Google Scholar 

  5. Li K, Correa SO, Pham P, Raub CB, Luo X (2017) Birefringence of flow-assembled chitosan membranes in microfluidics. Biofabrication 9(3):034101. https://doi.org/10.1088/1758-5090/aa786e

  6. Dragostin OM, Samal SK, Dash M, Lupascu F, Pânzariu A, Tuchilus C, Ghetu N, Danciu M, Dubruel P, Pieptu D, Vasile C, Tatia R, Profire L (2016) New antimicrobial chitosan derivatives for wound dressing applications. Carbohyd Polym 141:28–40. https://doi.org/10.1016/j.carbpol.2015.12.078

    Article  Google Scholar 

  7. Nguyen TD, Nguyen TT, Ly KL, Tran AH, Nguyen TTN, Vo MT, Ho HM, Dang NTN, Vo VT, Nguyen DH, Nguyen TTH, Nguyen TH (2019) In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications. Int J Polym Sci 7382717. https://doi.org/10.1155/2019/7382717

  8. Nguyen-My Le A, Nguyen TT, Ly KL, Luong TD, Ho MH, Minh-Phuong Tran N, Ngoc-Thao Dang N, Van Vo T, Tran QN, Nguyen TH (2020) Modulating biodegradation and biocompatibility of in situ crosslinked hydrogel by the integration of alginate into N,O-carboxylmethyl chitosan—aldehyde hyaluronic acid network. Polym Degrad Stab 180:109270. https://doi.org/10.1016/j.polymdegradstab.2020.109270

  9. Hu P, Rooholghodos SA, Pham LH, Ly KL, Luo X (2020) Interfacial electrofabrication of freestanding biopolymer membranes with distal electrodes. Langmuir 36(37):11034–11043. https://doi.org/10.1021/acs.langmuir.0c01894

    Article  Google Scholar 

  10. Cheng Y, Luo X, Betz J, Buckhout-White S, Bekdash O, Payne GF, Bentley WE, Rubloff GW (2010) In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter 6(14):3177–3183. https://doi.org/10.1039/C0SM00124D

    Article  Google Scholar 

  11. Luo X, Wu H-C, Betz J, Rubloff GW, Bentley WE (2014) Air bubble-initiated biofabrication of freestanding, semi-permeable biopolymer membranes in PDMS microfluidics. Biochem Eng J 89:2–9. https://doi.org/10.1016/j.bej.2013.12.013

    Article  Google Scholar 

  12. Ly KL, Hu P, Pham LHP, Luo X (2021) Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B 9(15):3258–3283. https://doi.org/10.1039/D1TB00045D

  13. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456. https://doi.org/10.1016/j.polymer.2016.07.085

    Article  Google Scholar 

  14. Nandiyanto ABD, Hagura N, Iskandar F, Okuyama K (2010) Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Mater 58(1):282–289. https://doi.org/10.1016/j.actamat.2009.09.004

    Article  Google Scholar 

  15. Nandiyanto A, Ogi T, Okuyama K (2014) Polystyrene spheres for template in the production of nanostructured materials, pp 241–267

    Google Scholar 

  16. Sandberg LIC, Gao T, Jelle BP, Gustavsen A (2013) Synthesis of hollow silica nanospheres by sacrificial polystyrene templates for thermal insulation applications. Adv Mater Sci Eng 2013:6. https://doi.org/10.1155/2013/483651

    Article  Google Scholar 

  17. Ly KL, Raub CB, Luo X (2020) Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates. Mater Adv 1(1):34–44. https://doi.org/10.1039/D0MA00073F

    Article  Google Scholar 

  18. Pham P, Vo T, Luo X (2017) Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. Lab Chip 17(2):248–255. https://doi.org/10.1039/C6LC01362G

    Article  Google Scholar 

  19. Fu J, Yang F, Guo Z (2018) The chitosan hydrogels: from structure to function. New J Chem 42(21):17162–17180. https://doi.org/10.1039/C8NJ03482F

    Article  Google Scholar 

  20. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  Google Scholar 

  21. Webster A, Halling MD, Grant DM (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohyd Res 342(9):1189–1201. https://doi.org/10.1016/j.carres.2007.03.008

    Article  Google Scholar 

  22. Hu P, Raub CB, Choy JS, Luo X (2020) Modulating the properties of flow-assembled chitosan membranes in microfluidics with glutaraldehyde crosslinking. J Mater Chem B 8(12):2519–2529. https://doi.org/10.1039/C9TB02527H

    Article  Google Scholar 

  23. de Abreu Costa L, Henrique Fernandes Ottoni M, Dos Santos MG, Meireles AB, Gomes de Almeida V, de Fatima Pereira W, Alves de Avelar-Freitas B, Eustaquio Alvim Brito-Melo G (2017) Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-alpha, IFN-gamma, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules 22(11):1789. https://doi.org/10.3390/molecules22111789

  24. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554. https://doi.org/10.1021/ac0346712

    Article  Google Scholar 

Download references

Acknowledgements

This effort was supported in part by the National Science Foundation (NSF) under grant number CAREER 1553330 and the National Institute of Health (NIH) under grant number 1R15GM129766-01. We would like to acknowledge the support of the Maryland NanoCenter and its AIMLab.

Conflicts of Interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ly, K.L., Luo, X. (2022). Fabrication and Characterization of Porous Flow-Assembled Chitosan Membranes in Microfluidics. In: Van Toi, V., Nguyen, TH., Long, V.B., Huong, H.T.T. (eds) 8th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2020. IFMBE Proceedings, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-75506-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75506-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75505-8

  • Online ISBN: 978-3-030-75506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics