Skip to main content

Enhancing In Vitro Bioavailability of Berberine by Incorporation of Beta–Cyclodextrin Complex into Solid Dispersion System

  • Conference paper
  • First Online:
8th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2020)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 85))

  • 985 Accesses

Abstract

Berberine is widely used in Eastern countries thanks to low cost and various biological activities. However, low solubility has limited its bioavailability. The purpose of this study is to prepare and evaluate solid dispersion loading berberine—β-cyclodextrin complex to improve the effective treatment of berberine. Two techniques, inclusion complex and solid dispersion, are applied to increase the bioavailability of berberine for further applications. The inclusion complex is prepared by grinding berberine and β-cyclodextrin with various ratios. Solid dispersion loading berberine—β-cyclodextrin complex is fabricated from polyethylene glycol (PEG 6000) by melting completely and then spray-drying with lactose for powder formation. The complex and solid dispersion is evaluated about solubility and drug release in distilled water. Moreover, the final product is also analyzed with powder X-ray diffraction (PXRD). As a result, the complex which has ratio 1:1 between berberine and β-cyclodextrin expresses the highest solubility and optimal dissolution profiles in distilled water in comparison with pure berberine. Solid dispersion samples show many advantages in solubility and dissolution rate compared to pure berberine; the solubility reaches nearly three times over pure berberine. The results of the sample of incorporation of the β-cyclodextrin complex into solid dispersion have significant improvement compared to pure berberine. In general, solid dispersion containing berberine β-cyclodextrin complex expresses the considerable enhancement in vitro bioavailability of berberine. Hence, it could be applied as a promising system for improving the therapeutic treatment of berberine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain P, Goel A, Sharma S, Parmar M (2010) Solubility enhancement techniques with special emphasis on hydrotrophy. Int J Pharma Profess Res 1(1):34–45

    Google Scholar 

  2. Ma S, Wang Y, Shang X, Yan F (2012) Formulation of berberine hydrochloride and hydroxypropyl-β-cyclodextrin inclusion complex with enhanced dissolution and reduced bitterness. Trop J Pharm Res 11(6):871–877

    Google Scholar 

  3. Tang J, Feng Y, Tsao S, Wang N, Curtain R, Wang Y (2009) Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J Ethnopharmacol 126(1):5–17

    Article  Google Scholar 

  4. Zhang JN, Zhao QL, You SJ, Zhang GD (2010) Power generation in bio-cathode microbial fuel cell with different cathode materials. Chem J Chin Univ 31:162–166

    Google Scholar 

  5. Iwasa K, Kamigauchi M, Ueki M, Taniguchi M (1996) Antibacterial activity and structure-activity relationships of berberine analogs. Eur J Med Chem 31(6):469–478

    Article  Google Scholar 

  6. Samosorn S, Tanwirat B, Muhamad N, Casadei G, Tomkiewicz D, Lewis K et al (2009) Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorganic Med Chem 17(11):3866–3872

    Google Scholar 

  7. Park KD, Lee JH, Kim SH, Kang TH, Moon JS, Kim SU (2006) Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem Lett 16(15):3913–3916

    Article  Google Scholar 

  8. Iwasa K, Kim HS, Wataya Y, Lee DU (1998) Antimalarial activity and structure-activity relationships of protoberberine alkaloids. Eur J Med Chem 33(1):65–69

    Article  Google Scholar 

  9. Vennerstrom JL, Lovelace JK, Waits VB, Hanson WL, Klayman DL (1990) Berberine derivatives as antileishmanial drugs. Antimicrob Agents Chemother 34(5):918–921

    Article  Google Scholar 

  10. Letašiová S, Jantová S, Čipák LU, Múčková M (2006) Berberine—antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett 239(2):254–262

    Article  Google Scholar 

  11. Yamamoto K, Takase H, Abe K, Saito Y, Suzuki A (1993) Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba. Nihon Yakurigaku zasshi. Folia Pharmacologica Japonica 101(3):169–175

    Article  Google Scholar 

  12. Yang P, Song DQ, Li YH, Kong WJ, Wang YX, Gao LM et al (2008) Synthesis and structure–activity relationships of berberine analogues as a novel class of low-density-lipoprotein receptor up-regulators. Bioorganic Med Chem Lett 18(16):4675–4677

    Google Scholar 

  13. Tang LQ, Wei W, Chen LM, Liu S (2006) Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 108(1):109–115

    Article  Google Scholar 

  14. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, Kakar M (2018) Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Dev Ther 12:303

    Article  Google Scholar 

  15. Zhang DM, Liu HY, Xie L, Liu XD (2007) Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells 1. Acta Pharmacol Sin 28(4):573–578

    Article  Google Scholar 

  16. Xue M, Yang MX, Zhang W, Li XM, Gao DH, Ou ZM et al (2013) Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed 8:4677

    Google Scholar 

  17. Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm

    Google Scholar 

  18. Pund S, Joshi A (2017) Nanoarchitectures for neglected tropical protozoal diseases: challenges and state of the art. In: Nano-and microscale drug delivery systems. Elsevier, Amsterdam, pp 439–480

    Google Scholar 

  19. Gidwani B, Vyas A (2015) A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int

    Google Scholar 

  20. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G (2014) Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterization by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370

    Article  Google Scholar 

  21. Chen W, Miao YQ, Fan DJ, Yang SS, Lin X, Meng LK, Tang X (2011) Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 12(2):705–711

    Article  Google Scholar 

  22. Li N, Xu L (2010) Thermal analysis of β-cyclodextrin/Berberine chloride inclusion compounds. Thermochim Acta 499(1–2):166–170

    Article  Google Scholar 

  23. Dong-hui X, Xu-dong R, Long J, Hua L (2012) Inclusion Modes of berberine with beta-cyclodextrin in aqueous solution. Chem Res Chin Univ 28(2):282–286

    Google Scholar 

  24. Jia, B., Li, Y., Wang, D., & Duan, R.: Study on the interaction of β-cyclodextrin and berberine hydrochloride and its analytical application. PloS One 9(5):e95498

    Google Scholar 

  25. Cromwell WC, Bystrom K, Eftink MR (1985) Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J Phys Chem 89(2):326–332

    Article  Google Scholar 

  26. Sohi H, Sultana Y, Khar RK (2004) Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm 30(5):429–448

    Article  Google Scholar 

  27. Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today 21(2):356–362

    Article  Google Scholar 

  28. Yu JS, Wei FD, Gao W, Zhao CC (2002) Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine. Spectrochim Acta Part A Mol Biomol Spectrosc 58(2):249–256

    Article  Google Scholar 

  29. Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  Google Scholar 

  30. Muhrer G, Meier U, Fusaro F, Albano S, Mazzotti M (2006) Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug–polymer solid dispersions. Int J Pharm 308(1–2):69–83

    Article  Google Scholar 

  31. Karavas E, Ktistis G, Xenakis A, Georgarakis E (2006) Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur J Pharm Biopharm 63(2):103–114

    Article  Google Scholar 

  32. Baird JA, Taylor LS (2012) Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 64(5):396–421

    Article  Google Scholar 

  33. Chiou WL, Riegelman S (1969) Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J Pharm Sci 58(12):1505–1510

    Article  Google Scholar 

  34. Sollohub K, Cal K (2010) Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 99(2):587–597

    Google Scholar 

  35. Mirhadi E, Rezaee M, Malaekeh-Nikouei B (2018) Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 104:465–473

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by International University, Vietnam National University, Ho Chi Minh City (VNU-HCMC) under grant number SV2019-BME-10 /HĐ-KHCN.

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number NCM2020-28-01.

Conflicts of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Hong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Than, H.T., Nguyen, T.PQ., Dong Le, P., Tran, P.H., Nguyen, V.H. (2022). Enhancing In Vitro Bioavailability of Berberine by Incorporation of Beta–Cyclodextrin Complex into Solid Dispersion System. In: Van Toi, V., Nguyen, TH., Long, V.B., Huong, H.T.T. (eds) 8th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2020. IFMBE Proceedings, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-75506-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75506-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75505-8

  • Online ISBN: 978-3-030-75506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics