Skip to main content

Citrus Fruits—Morphology, Taxonomy, Composition and Health Benefits

  • Chapter
  • First Online:
Fruits Grown in Highland Regions of the Himalayas

Abstract

Citrus is the umbrella term used for fruits belonging to family Rise (Rutaceae) which is the largest genus in any fruit family. It is the most traded horticultural product in the world. The economically important species of this genus are lemon, lime, sweet orange, sour orange, tangerine, grapefruit, citren and shaddoch. Among all species, sweet orange is the major fruit crop of this genus accounting for about 70% of total global citrus production. Citrus fruit is one of the top preferred flavours of the world and is valued due to its rich nutritive profile. It is well known that citrus fruits and citrus products are a profuse source of vitamins, minerals, fibre, pectin that are essential for normal functioning of human body. Besides these, some biologically active non-nutrient substances are also present in appreciable amounts which help in smooth functioning of various metabolic processes in body.

Order:

Sapindales

Family:

Rutaceae

Genus:

Citrus

Local name:

Neembu, Mosumbi, Sangtra

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ak, T., & GĂĽlçin, Ä°. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27–37.

    Article  CAS  Google Scholar 

  • Ang, E. S., Yang, X., Chen, H., Liu, Q., Zheng, M. H., & Xu, J. (2011). Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-ÎşB and ERK activation. FEBS Letters, 585(17), 2755–2762.

    Article  CAS  Google Scholar 

  • Arscott, S. A., Howe, J. A., Davis, C. R., & Tanumihardjo, S. A. (2010). Carotenoid profiles in provitamin A-containing fruits and vegetables affect the bioefficacy in Mongolian gerbils. Experimental Biology and Medicine, 235(7), 839–848.

    Article  CAS  Google Scholar 

  • Baghurst, K. (2003). The health benefits of citrus fruits. Horticulture Australia.

    Google Scholar 

  • Bowes, A. D. P., Church, C. F., & Church, H. N. (1970). Food values of portions commonly used: By Bowes and Church. Lippincott.

    Google Scholar 

  • Cavia-Saiz, M., Busto, M. D., Pilar-Izquierdo, M. C., Ortega, N., Perez-Mateos, M., & Muñiz, P. (2010). Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. Journal of the Science of Food and Agriculture, 90(7), 1238–1244.

    Article  CAS  Google Scholar 

  • Church, C. J., & Church, W. A. (1970). Food values of commonly used portions of fruits and vegetables.

    Google Scholar 

  • Clements, R. L. (1964). Organic acids in citrus fruits. I. Varietal differences. Journal of Food Science, 29(3), 276–280.

    Google Scholar 

  • Devi, W. E., Kumar, R. S. K. B. A., & Mishra, A. A. (2014). Extraction of pectin from citrus fruit peel and its utilization in preparation of jelly. International Journal of Engineering Research, 3(5).

    Google Scholar 

  • Doeing, D. C., & Solway, J. (2013). Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of Applied Physiology, 114(7), 834–843.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2017). http://www.fao.org›faostat.

    Google Scholar 

  • Gao, X., Wilde, P. E., Lichtenstein, A. H., & Tucker, K. L. (2006). Meeting adequate intake for dietary calcium without dairy foods in adolescents aged 9 to 18 years (National Health and Nutrition Examination Survey 2001–2002). Journal of the American Dietetic Association, 106(11), 1759–1765.

    Article  CAS  Google Scholar 

  • Garg, A., Garg, S., Zaneveld, L. J., & Singla, A. K. (2001). Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research, 15, 655–669.

    Article  CAS  Google Scholar 

  • Gmitter Jr, F. G., Grosser, J. W., & Moore, G. A. (1992). Citrus. Biotechnology of perennial fruit crops., 335–369.

    Google Scholar 

  • Holden, J. M., Bhagwat, S. A., Haytowitz, D. B., Gebhardt, S. E., Dwyer, J. T., Peterson, J., … & Balentine, D. (2005). Development of a database of critically evaluated flavonoids data: application of USDA’s data quality evaluation system. Journal of Food Composition and Analysis, 18(8), 829–844.

    Google Scholar 

  • https://nutritiondata.self.com/facts/fruits-and-fruit-juices/1937/2.

  • La, V. D., Tanabe, S., & Greiner, D. (2009). Naringenin inhibits human osteoclastogenesis and osteoclastic bone resorption. Journal of Periodontal Research, 44, 193–198.

    Article  CAS  Google Scholar 

  • Ladaniya, M. S., & Mahalle, B. C. (2011). Fruit maturation and associated changes in’Mosambi’orange (Citrus sinensis). Indian Journal of Agricultural Sciences, 81(6), 494–499.

    CAS  Google Scholar 

  • Ladaniya, M. S. (2008). Citrus fruit: Biology, technology and evaluation. Academic Press.

    Google Scholar 

  • Lado, J., Rodrigo, M. J., & ZacarĂ­as, L. (2014). Maturity indicators and citrus fruit quality. Stewart Postharvest Review, 10(2), 1–6.

    Google Scholar 

  • Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, global distribution, and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food safety, 11(6), 530–545.

    Article  CAS  Google Scholar 

  • Morand, C., Dubray, C., Milenkovic, D., Lioger, D., Martin, J. F., Scalbert, A., et al. (2011). Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. The American Journal of Clinical Nutrition, 93(1), 73–80.

    Article  CAS  Google Scholar 

  • Nagdeote, A. N., Basutkar, D. G., Lanje, M. J., & Deokar, P. (2015). Protective role of Ascorbic Acid in Bronchial Asthma. Journal of Pharmaceutical Sciences and Research, 7(8), 560.

    CAS  Google Scholar 

  • Nagy, S. (1977). Lipids: identification, distribution and importance. Citrus Science and Technology, 1, 266–301.

    CAS  Google Scholar 

  • Ortuño, A., DĂ­az, L., Alvarez, N., Porras, I., GarcĂ­a-LidĂłn, A., & Del RĂ­o, J. A. (2011). Comparative study of flavonoid and scoparone accumulation in different Citrus species and their susceptibility to Penicillium digitatum. Food Chemistry, 125(1), 232–239.

    Article  Google Scholar 

  • Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J. H., … & Levine, M. (2003). Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35.

    Google Scholar 

  • Ramana, K. V. R., Govindarajan, V. S., Ranganna, S., & Kefford, J. F. (1981). Citrus fruits—varieties, chemistry, technology, and quality evaluation. Part I: Varieties, production, handling, and storage. Critical Reviews in Food Science & Nutrition, 15(4), 353–431.

    Google Scholar 

  • Ranganna, S., Govindarajan, V. S., Ramana, K. V. R., & Kefford, J. F. (1983). Citrus fruits—varieties, chemistry, technology, and quality evaluation. Part II. Chemistry, technology, and quality evaluation. A. Chemistry. Critical Reviews in Food Science & Nutrition, 18(4), 313–386.

    Google Scholar 

  • Roberts, B. M., Fullerton, D. R., & Elliott, S. L. (2015). High concentrations of L-ascorbic acid (Vitamin C) induces apoptosis in a human cervical cancer cell line (HeLa) through the intrinsic and extrinsic pathways. Bios, 86(3), 134–143.

    Article  CAS  Google Scholar 

  • Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22(1), 19–34.

    Article  CAS  Google Scholar 

  • Shanoli, G., Sanchita, R., Soumitra, K., Pritha, P., Atreyee, D., & Ajanta, H. (2017). Homocysteine-Is there any role in Coronary Heart Disease? Journal of Cardiovascular Disease Research, 8(2), 46–49.

    Google Scholar 

  • Shulman, M., Cohen, M., Soto-Gutierrez, A., Yagi, H., Wang, H., Goldwasser, J., … & Nahmias, Y. (2011). Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PloS One, 6(4), e18033.

    Google Scholar 

  • Silalahi, J. (2002). Anticancer and health protective properties of citrus fruit components. Asia Pacific Journal of Clinical Nutrition, 11(1), 79–84.

    Article  CAS  Google Scholar 

  • Spencer, J. P., Vauzour, D., & Rendeiro, C. (2009). Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Archives of Biochemistry and Biophysics, 492(1–2), 1–9.

    Article  CAS  Google Scholar 

  • Talon, M., & Gmitter, F. G. (2008). Citrus Genomics. International Journal of Plant Genomics, 8, 1–17.

    Article  Google Scholar 

  • Tanaka, T., & Takahashi, R. (2013). Flavonoids and Asthma. Nutrients, 5(6), 2128–2143.

    Article  CAS  Google Scholar 

  • Ting, S. V. (1980). Nutrients and nutrition of citrus fruits.

    Google Scholar 

  • Troen, A., & Rosenberg, I. (2005, May). Homocysteine and cognitive function. In Seminars in vascular medicine (Vol. 5, No. 2, pp. 209–214). Thieme Medical Publishers, c2001–c2005.

    Google Scholar 

  • Turner, T., & Burri, B. J. (2013). Potential Nutritional Benefits of Current Citrus Consumption. Agriculture, 3(1), 170–187.

    Article  Google Scholar 

  • USDA National Nutrient database. (2006–07). http://www.nutrition-andyou.com/lemon.html.

  • USDA United States Department of Agriculture, Agricultural Research Service. (2011). USDA National Nutrient Database for Standard Reference, Release 24. Available from http://www.ars.usda.gov/services/.

  • Vandercook, C. E. (1977). Organic acids. In S. Nagy, P. E. Shaw, M. K. Veldhuis (Eds.), Citrus science and technology (Vol. 1., pp. 209–227). AVI Publishing Company.

    Google Scholar 

  • Wallrauch, S. (1980). Natural amino acid content of orange juice and effect of havesting date. Der natuerliche Aminosaeuregehalt von Orangensaeften und seine Abhaengigkeit vom Erntetermin der Fruechte. Fluessiges Obst, 47(2), 47–52.

    Google Scholar 

  • Wang, Y., Chen, S., & Yu, O. (2011). Metabolic engineering of flavonoids in plants and microorganisms. Applied Microbiology and Biotechnology, 91(4), 949–956.

    Article  CAS  Google Scholar 

  • Williams, D. L. (2006). Oxidation, antioxidants and cataract formation: A literature review. Veterinary Ophthalmology, 9(5), 292–298.

    Article  Google Scholar 

  • Young, I., Parker, H. M., Rangan, A., Prvan, T., Cook, R. L., Donges, C. E., … & O’Connor, H. T. (2018). Association between haem and non-haem iron intake and serum ferritin in healthy young women. Nutrients, 10(1), 81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A. (2021). Citrus Fruits—Morphology, Taxonomy, Composition and Health Benefits. In: Fruits Grown in Highland Regions of the Himalayas. Springer, Cham. https://doi.org/10.1007/978-3-030-75502-7_18

Download citation

Publish with us

Policies and ethics