Skip to main content

Linear Mixed-Effects Model Using Penalized Spline Based on Data Transformation Methods

  • Chapter
  • First Online:
Multivariate, Multilinear and Mixed Linear Models

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

In this paper, we discuss two different data transformation techniques for dealing with censored data: Kaplan-Meier weights and the k-nearest neighbor imputation method. The main objective of this paper is to find penalized spline estimates for the components of a linear mixed effect model with right-censored data. In the context of a mixed model setting, the estimation procedure is performed based on the modified or transformed dataset obtained via these transformation techniques. In order to compare the outcomes from a linear mixed model using these two approaches, a Monte Carlo simulation and two real data examples are presented. According to our results, the k-nearest neighbor imputation is very successful in dealing with censored observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.E., Aydın, D., Yılmaz, E.: Nonparametric regression estimates based on imputation techniques for right-censored data. In: ICMSEM 2019: Proceeding of the Thirteenth International Conference on Management Science and Engineering Management, pp. 109–120. Springer (2020)

    Google Scholar 

  2. Aydın, D., Memmedli, M.: Optimum smoothing parameter selection for penazlied least squares in form of linear mixed effect models. Optimization 61(4), 459–476 (2012)

    Article  MathSciNet  Google Scholar 

  3. Aydın, D., Yılmaz, E.: Modified spline regression based on randomly right-censored data: A comparative study. Comm. Stat. Simul. Comput. 47(9), 2581–2611 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bandyopadhyay, D., Lachos, V.H., Castro, L.M., Dey, D.K.: Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads. Biom. J. 54(3), 405–425 (2012)

    Article  MathSciNet  Google Scholar 

  5. Batista, G., Monard, M.: An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17, 519–533 (2002)

    Article  Google Scholar 

  6. Claeskens, G., Krivobokova, T., Opsomer, J.D.: Asymptotic properties of penalized spline estimators. Biometrika 96(3), 529–544 (2009)

    Article  MathSciNet  Google Scholar 

  7. Edmunson, J.H., Fleming, T.R., Decker, D.G., Malkasian, G.D., Jefferies, J.A., Webb, M.J., Kvols, L.K.: Different chemotherapeutic sensitivities and host factors affecting prognosis in advanced ovarian carcinoma vs. minimal residual disease. Cancer Treat. Rep. 63, 241–247 (1979)

    Google Scholar 

  8. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hurvich, C.M., Simonoff, J.S., Tsai, C.-L.: Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60(2), 271–293 (1998)

    Article  MathSciNet  Google Scholar 

  10. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  11. Koul, H., Susarla, V., Van Ryzin, J.: Regression analysis with randomly right-censored data. Ann. Stat. 9(6), 1276–1285 (1981)

    Article  MathSciNet  Google Scholar 

  12. Laird, N.M., Ware, J.H.: Random-effect models for longitudinal data. Biometrics 38(4), 963–974 (1982)

    Article  Google Scholar 

  13. Matos, L.A., Prates, M.O., Chen, M.-H., Lachos, V.H.: Likelihood-based inference for mixed effects models with censored response using the multivariate-t distribution. Stat. Sinica 23, 1323–1345 (2013)

    MathSciNet  MATH  Google Scholar 

  14. McCulloch, C.E., Searle, S.R.: Generalized Linear and Mixed Models. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  15. McGilchrist, C.A., Aisbett, C.W.: Regression with frailty in survival analysis. Biometrics 47, 461–466 (1991)

    Article  Google Scholar 

  16. Miller, R.G.: Least squares regression with censored data. Biometrika 63, 449–64 (1976)

    Article  MathSciNet  Google Scholar 

  17. Pan, W., Louis, T.A.: A linear mixed-effects model for multivariate censored data. Biometrics 56, 160–166 (2000)

    Article  Google Scholar 

  18. Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  19. Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivar. Anal. 45, 89–103 (1993)

    Article  MathSciNet  Google Scholar 

  20. Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer Verlag, New York (2009)

    MATH  Google Scholar 

  21. Vock, D.M., Davidian, M., Tsiatis, A.A., Muir, A.J.: Mixed model analysis of censored longitudinal data with flexible random-effects density. Biostatistics 13(1), 61–73 (2012)

    Article  Google Scholar 

  22. West, B.T., Welch, K.B., Galecki, A.T.: Linear Mixed Models: A Practical Guide Using Statistical Software. CRC Press, New York (2015)

    MATH  Google Scholar 

  23. Wu, W.B., Pourahmedi, M.: Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90(4), 831–844 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ejaz Ahmed .

Editor information

Editors and Affiliations

Appendices

Appendix A1—Proof of Equation (12.12)

One can see from  (12.11), minimization criterion is given by

$$\begin{aligned} {\text {PLSW}}({\pmb {\beta }}, \mathbf{u})=\arg \min \left( (\mathbf{T}-\mathbf{X} {\pmb {\beta }}-\mathbf{Z} \mathbf{u})^\prime \mathbf{W}(\mathbf{T}-\mathbf{X} {\pmb {\beta }}-\mathbf{Z} \mathbf{u})+\lambda \mathbf{u}^\prime \mathbf{D} \mathbf{u}\right) . \end{aligned}$$

From that equation, the system given below is obtained as

$$ \begin{aligned} \left( \begin{array}{c} \widehat{{\pmb {\beta }}}_{K M W} \\ \widehat{\mathbf{u}}_{K M W} \end{array}\right)&=\left( \begin{array}{cc} \mathbf{X}^\prime \mathbf{W} \mathbf{X} &{} \mathbf{X}^\prime \mathbf{W} \mathbf{Z} \\ \mathbf{Z}^\prime \mathbf{W} \mathbf{X} &{} \mathbf{Z}^\prime \mathbf{W} \mathbf{Z} +\lambda \mathbf{D} \end{array}\right) ^{-1}\left( \begin{array}{c} \mathbf{X}^\prime \mathbf{W} \mathbf{T} \\ \mathbf{Z}^\prime \mathbf{W} \mathbf{T} \end{array}\right) \\&=\left[ (\mathbf{X} : \mathbf{Z})^\prime \mathbf{W}(\mathbf{X} : \mathbf{Z})+\lambda \mathbf{D}\right] ^{-1}(\mathbf{X} : \mathbf{Z})^\prime \mathbf{W} \mathbf{T}. \end{aligned} $$

Let \( \mathbf{R}=(\mathbf{X} : \mathbf{Z})\). Accordingly,  (12.12) is obtained as follows:

$$ \left[ \widehat{{\pmb {\beta }}}^\prime _{K M W}, \widehat{\mathbf{u}}^\prime _{K M W}\right] ^\prime =\left( \mathbf{R}^\prime \mathbf{W} \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \mathbf{R}^\prime \mathbf{W} \mathbf{T}. $$

Appendix A2—Proof of Lemma 12.1

Let \( {\pmb {\theta }}=({\pmb {\beta }}^\prime ,\mathbf{u}^\prime )^\prime \) and \( {\pmb {\theta }}\) can be written as the function of OLS estimator as

$$ \begin{aligned} (\widehat{{\pmb {\beta }}}^\prime , \widehat{\mathbf{u}}^\prime )^\prime&=\left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}\mathbf{R}^\prime \mathbf{T} \\&=\left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \mathbf{R}^\prime \mathbf{R}\left( \mathbf{R}^\prime \mathbf{R}\right) ^{-\mathbf {1}} \mathbf{R}^\prime \mathbf{T} \\&=\left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \mathbf{R}^\prime \mathbf{R} {\pmb {\theta }}. \end{aligned} $$

Thus,

$$ \begin{aligned} \mathrm{Cov}(\widehat{{\pmb {\beta }}}, \widehat{\mathbf{u}})&=\mathrm{Cov}({\pmb {\theta }})=\left[ \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}\mathbf{R}^\prime \mathbf{R}\right] \mathrm{Cov}({\pmb {\theta }})\left[ \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}\mathbf{R}^\prime \mathbf{R}\right] ^\prime \\&=\left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}\left( \mathbf{R}^\prime \mathbf{R}\right) \mathrm{Cov}({\pmb {\theta }})\left( \mathbf{R}^\prime \mathbf{R}\right) \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \\&=\left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}\left( \mathbf{R}^\prime \mathbf{R}\right) \frac{\sigma ^2}{n} \left( \mathbf{R}^\prime \mathbf{R}\right) ^{-1}\left( \mathbf{R}^\prime \mathbf{R}\right) \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \\&=\frac{\sigma ^2}{n} \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1} \left( \mathbf{R}^\prime \mathbf{R} \right) \left( \mathbf{R}^\prime \mathbf{R}+\lambda \mathbf{D}\right) ^{-1}, \end{aligned} $$

where \(\sigma ^2/n\) comes from the variance of \(\widehat{\mathbf{u}}\), which is the property of the penalized spline method (see Claeskens et al. [6]). Thus,  (12.21) would be obtained. It can be also obtained if \(\mathbf{R}^\prime \mathbf{R}\) is replaced by \(\mathbf{R}^\prime \mathbf{W}\mathbf{R}\) for KMW method.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, S.E., Aydın, D., Yılmaz, E. (2021). Linear Mixed-Effects Model Using Penalized Spline Based on Data Transformation Methods. In: Filipiak, K., Markiewicz, A., von Rosen, D. (eds) Multivariate, Multilinear and Mixed Linear Models. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-75494-5_12

Download citation

Publish with us

Policies and ethics