Skip to main content

Fabrication and Application Prospective of Graphene Infused Polymeric Flexible, Stretchable and Transparent Devices

  • Chapter
  • First Online:
Electrospinning of Graphene

Part of the book series: Carbon Nanostructures ((CARBON))

  • 357 Accesses

Abstract

Electrospinning technique is one of the most common methods adopted for the fabrication of ultrathin films with nano-sized fibres. Recently, graphene materials have attracted a great deal of research interest in different  areas, especially in the field of device fabrication. This chapter deals with the electrospinning fabrication process of graphene-based hybrid films for the development of flexible, stretchable, as well as transparent devices. A brief overview of graphene materials, history of flexible and stretchable devices, and application of graphene infused devices are also discussed. Finally, the book chapter ends with an outlook, and future research scope in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garnier, F. et al.: An all‐organic” soft” thin film transistor with very high carrier mobility. 2(12), 592–594 (1990)

    Google Scholar 

  2. Garnier, F., et al.: All-polymer field-effect transistor realized by printing techniques 265(5179), 1684–1686 (1994)

    CAS  Google Scholar 

  3. Takei, K.: In: Flexible and Stretchable Medical Devices. Wiley (2018)

    Google Scholar 

  4. Yablonovitch, E., et al.: Extreme selectivity in the lift-off of epitaxial GaAs films 51(26), 2222–2224 (1987)

    CAS  Google Scholar 

  5. Konagai, M., Sugimoto, M., Takahashi, K.J.J.o.c.g.: High efficiency GaAs thin film solar cells by peeled film technology. 45, 277–280 (1978)

    Google Scholar 

  6. Hur, S.-H., et al.: Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers 85(23), 5730–5732 (2004)

    CAS  Google Scholar 

  7. Jiang, C., et al.: All-electrospun flexible triboelectric nano-generator based on metallic MXene nano-sheets 59, 268–276 (2019)

    CAS  Google Scholar 

  8. Zhao, R., Lu, X., Wang, C.J.C.C.: Electrospinning based all-nano composite materials: recent achievements and perspectives 10, 140–150 (2018)

    Google Scholar 

  9. Rogers, J.A. et al.: like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. 98(9), 4835–4840 (2001)

    Google Scholar 

  10. Someya, T. et al.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. 101(27), 9966–9970 (2004)

    Google Scholar 

  11. Menard, E., et al.: A printable form of silicon for high performance thin film transistors on plastic substrates 84(26), 5398–5400 (2004)

    CAS  Google Scholar 

  12. Someya, T. et al.: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. 102(35), 12321–12325 (2005)

    Google Scholar 

  13. Ahn, J.-H., et al.: Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials 314(5806), 1754–1757 (2006)

    CAS  Google Scholar 

  14. Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes 457(7230), 706 (2009)

    CAS  Google Scholar 

  15. Cao, Q., et al.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates 454(7203), 495 (2008)

    CAS  Google Scholar 

  16. Sekitani, T., et al.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors 8(6), 494 (2009)

    CAS  Google Scholar 

  17. Sekitani, T., et al.: A rubberlike stretchable active matrix using elastic conductors 321(5895), 1468–1472 (2008)

    CAS  Google Scholar 

  18. Mannsfeld, S.C., et al.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers 9(10), 859 (2010)

    CAS  Google Scholar 

  19. Takei, K., et al.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. 9(10), 821 (2010)

    CAS  Google Scholar 

  20. Kim, D.-H., et al.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics 9(6), 511 (2010)

    CAS  Google Scholar 

  21. Yamada, T., et al.: A stretchable carbon nanotube strain sensor for human-motion detection 6(5), 296 (2011)

    CAS  Google Scholar 

  22. Han, T.-H., et al.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode 6(2), 105 (2012)

    CAS  Google Scholar 

  23. Chae, S.H. et al.: Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. 12(5), 403 (2013)

    Google Scholar 

  24. Zang, J., et al.: Stretchable and high-performance supercapacitors with crumpled graphene papers 4, 6492 (2014)

    CAS  Google Scholar 

  25. Xu, Y., et al.: Flexible. Stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets 54(51), 15390–15394 (2015)

    CAS  Google Scholar 

  26. Lee, H., et al.: Flexible and stretchable optoelectronic devices using silver nanowires and graphene 28(22), 4541–4548 (2016)

    CAS  Google Scholar 

  27. Chiang, C.-W., et al.: Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots 8(1), 466–471 (2016)

    CAS  Google Scholar 

  28. Wang, S., et al.: Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. 11(2), 2066–2074 (2017)

    CAS  Google Scholar 

  29. Wang, H.-F. et al.: Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. 15, 124–130 (2018)

    Google Scholar 

  30. Liang, X., et al.: A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film 10(47), 22329–22334 (2018)

    CAS  Google Scholar 

  31. Shin, H., et al.: Stretchable electroluminescent display enabled by graphene-based hybrid electrode 11(15), 14222–14228 (2019)

    CAS  Google Scholar 

  32. Snapp, P. et al.: Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. 1902216 (2019)

    Google Scholar 

  33. Kim, T., Cho, M., Yu, K.J.J.M.: Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene 11(7), 1163 (2018)

    Google Scholar 

  34. Wallace, P.R.J.P.R., The band theory of graphite. 1947. 71(9): p. 622.

    Google Scholar 

  35. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  36. Pinto, H.P., Leszczynski, J.J.H.o.c.n.m.: Fundamental properties of graphene. 5, 1–38 (2014)

    Google Scholar 

  37. Kelly, B.J.L.N.J.: Physics of graphite. Appl. Sci. 267 (1981)

    Google Scholar 

  38. Crespi, V.H., et al.: Prediction of a pure-carbon planar covalent metal 53(20), R13303 (1996)

    CAS  Google Scholar 

  39. Petroski, H.: The pencil: A history of design and circumstance. 1992: Alfred a Knopf Incorporated (1992)

    Google Scholar 

  40. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene 321(5887), 385–388 (2008)

    CAS  Google Scholar 

  41. Liu, F., Ming, P., Li, J.J.P.R.B.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. 76(6), 064120 (2007)

    Google Scholar 

  42. Wu, C., et al.: Two-dimensional vanadyl phosphate ultrathin nano-sheets for high energy density and flexible pseudocapacitors 4, 2431 (2013)

    Google Scholar 

  43. Lu, Q., et al.: Free-standing carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries 8, 77–84 (2017)

    Google Scholar 

  44. Yan, C. et al.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. 26(13), 2022–2027 (2014)

    Google Scholar 

  45. Xu, F., Zhu, Y.J.A.m.: Highly conductive and stretchable silver nanowire conductors. 24(37), 5117–5122 (2012)

    Google Scholar 

  46. Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes 6(12), 788 (2011)

    CAS  Google Scholar 

  47. Cheng, Y. et al.: A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending, and torsion. 27(45), 7365–7371 (2015)

    Google Scholar 

  48. Tang, Y. et al.: Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes–elastomer composite. 7(49), 27432–27439 (2015)

    Google Scholar 

  49. Pang, Y. et al.: Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. 8(40), 26458–26462 (2016)

    Google Scholar 

  50. Gao, J. et al.: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. 373, 298–306 (2019)

    Google Scholar 

  51. Huang, X. et al.: Stretchable, electrically conductive and superhydrophobic/superoleophilic nanofibrous membrane with a hierarchical structure for efficient oil/water separation. 70, 243–252 (2019)

    Google Scholar 

  52. Jeon, H., et al.: Omni-purpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring 9(48), 41712–41721 (2017)

    CAS  Google Scholar 

  53. Cho, S.J., et al.: A rubberlike stretchable fibrous membrane with anti-wettability and gas breathability 23(45), 5577–5584 (2013)

    CAS  Google Scholar 

  54. Jun, H.K.: Introduction to nanomaterials in energy devices. In: Nano-materials in Energy Devices, pp. 1–6. CRC Press (2017)

    Chapter  Google Scholar 

  55. Grande, L. et al.: Graphene for energy solutions and its printable applications. 191–236 (2015)

    Google Scholar 

  56. Kim, S., et al.: Transparent flexible graphene triboelectric nano-generators 26(23), 3918–3925 (2014)

    CAS  Google Scholar 

  57. Jeong, H.T. et al.: Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. 163, 149–160 (2015)

    Google Scholar 

  58. Cheng, Q., et al.: Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density 13(39), 17615–17624 (2011)

    CAS  Google Scholar 

  59. Fan, Z., et al.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors 22(33), 3723–3728 (2010)

    CAS  Google Scholar 

  60. Fuh, Y.K., et al.: A transparent and flexible graphene-piezoelectric fiber generator 12(14), 1875–1881 (2016)

    CAS  Google Scholar 

  61. Suk, J.W., et al.: Transfer of CVD-grown monolayer graphene onto arbitrary substrates. 5(9), 6916–6924 (2011)

    CAS  Google Scholar 

  62. Cao, Y., et al.: Self-healing electronic skins for aquatic environments 2(2), 75 (2019)

    Google Scholar 

  63. Lu, C.-C., et al.: High mobility flexible graphene field-effect transistors with self-healing gate dielectrics 6(5), 4469–4474 (2012)

    CAS  Google Scholar 

  64. Farmer, D.B., Lin, Y.-M., Avouris, P.J.A.P.L.: Graphene field-effect transistors with self-aligned gates. 97(1), 013103 (2010)

    Google Scholar 

  65. Miyazaki, H. et al.: Resistance modulation of multilayer graphene controlled by the gate electric field. 25(3), 034008 (2010)

    Google Scholar 

  66. Cong, H.-P., Wang, P., Yu, S.-H.J.C.o.M.: Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. 25(16), 3357–3362 (2013)

    Google Scholar 

  67. Kim, D.Y., et al.: Self-healing reduced graphene oxide films by supersonic kinetic spraying 24(31), 4986–4995 (2014)

    CAS  Google Scholar 

  68. Qu, G., et al.: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode 28(19), 3646–3652 (2016)

    CAS  Google Scholar 

  69. Zheng, C., et al.: Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels 9(7), 937 (2019)

    CAS  Google Scholar 

  70. Tong, X. et al.: Swelling and mechanical behaviors of carbon nanotube/poly (vinyl alcohol) hybrid hydrogels. 61(8–9), 1704–1706 (2007)

    Google Scholar 

  71. Baek, J.-Y., et al.: Flexible polymeric dry electrodes for the long-term monitoring of ECG 143(2), 423–429 (2008)

    CAS  Google Scholar 

  72. Xu, S. et al.: Soft microfluidic assemblies of sensors, circuits, and radios for the skin. 344(6179), 70–74 (2014)

    Google Scholar 

  73. Degani, A. et al.: Percutaneous intrapericardial interventions using a highly articulated robotic probe. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006. IEEE, (2006)

    Google Scholar 

  74. Kim, Y.-J., et al.: A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery 30(2), 382–395 (2013)

    Google Scholar 

  75. Ko, G. et al.: Flexible/stretchable devices for medical applications (2018)

    Google Scholar 

  76. Yang, P.K. et al.: A flexible, stretchable and shape‐adaptive approach for versatile energy conversion and self‐powered biomedical monitoring. 27(25), 3817–3824 (2015)

    Google Scholar 

  77. Yan, C., Wang, J., Lee, P.S.J.A.n.: Stretchable graphene thermistor with tunable thermal index. 9(2), 2130–2137 (2015)

    Google Scholar 

  78. Lim, S., et al.: Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures 25(3), 375–383 (2015)

    CAS  Google Scholar 

  79. Kim, S.J. et al.: Stretchable and transparent biointerface using cell‐sheet–graphene hybrid for electrophysiology and therapy of skeletal muscle. 26(19), 3207–3217 (2016)

    Google Scholar 

  80. Kim, S.J. et al.: Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. 9(3), 2677–2688 (2015)

    Google Scholar 

  81. Bae, S. et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. 5(8), 574 (2010)

    Google Scholar 

  82. Park, Y., et al.: Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array 29(21), 1606453 (2017)

    Google Scholar 

  83. Ghosal, K. et al.: Electrical spinning to electrospinning: a brief history. (2018)

    Google Scholar 

  84. Zhang, Q., et al.: Human-like sensing and reflexes of graphene-based films 3(12), 1600130 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, P., Zhu, D. (2021). Fabrication and Application Prospective of Graphene Infused Polymeric Flexible, Stretchable and Transparent Devices. In: Tiwari, S.K., Sahoo, S., Wang, N. (eds) Electrospinning of Graphene. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-030-75456-3_2

Download citation

Publish with us

Policies and ethics