Skip to main content

Analysis of Cylindrically and Spherically Embossed Flux Barriers in Non-oriented Electrical Steel

  • Conference paper
  • First Online:
Forming the Future

Abstract

In reluctance and permanent magnet synchronous machines, flux barriers are crucial for magnetic flux guidance. Designed as cutouts, flux barriers reduce the mechanical strength of the rotor construction. To operate these electric drives at higher rotational speed, an alternative flux barrier design is required. Since residual stress influences the magnetic properties of soft magnetic materials, this paper deals with embossing induced residual stress as flux barriers in non-oriented electrical steel with 2.4 wt% silicon and a sheet thickness of 0.35 mm. The investigated flux barriers were fabricated with a cylindrical or spherical punch at two different penetration depths and were compared to a flux barrier fabricated as cutout. A residual stress analysis using finite element analysis helps understanding the mechanism of embossed flux barriers. Additionally, the influence of induced residual stress on the magnetic material behavior is measured using standardized single sheet tests and neutron grating interferometry measurements. This investigation aimed at a better understanding of the flux barrier design by local induction of residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naumoski H, Maucher A, Herr U (2015) Investigation of the influence of global stresses and strains on the magnetic properties of electrical steels with varying alloying content and grain size. https://doi.org/10.1109/EDPC.2015.7323206

    Article  Google Scholar 

  2. Cao H, Huang S, Shi W (2019) Influence of core stress on performance of permanent magnet synchronous motor. J Magn 24(1):24–31. https://doi.org/10.4283/JMAG.2019.24.1.024

    Article  Google Scholar 

  3. Weiss HA, Trober P, Golle R, Steentjes S, Leuning N, Elfgen S, Hameyer K, Volk W (2018) Impact of punching parameter variations on magnetic properties of nongrain-oriented electrical steel. IEEE Trans Ind Appl 54(6):5869–5878. https://doi.org/10.1109/TIA.2018.2853133

    Article  CAS  Google Scholar 

  4. Kai Y, Tsuchida Y, Todaka T, Enokizono M (2014) Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a nonoriented electrical steel sheet under alternating magnetic flux conditions. IEEE Trans Magn 50(4). https://doi.org/10.1109/TMAG.2013.2287875

  5. Vogt S, Neuwirth T, Schauerte B, Weiss HA, Falger PM, Gustschin A, Schulz M, Hameyer K, Volk W (2019) Extent of embossing-related residual stress on the magnetic properties evaluated using neutron grating interferometry and single sheet test. Prod Eng Res Devel 13(2):211–217. https://doi.org/10.1007/s11740-018-0863-7

    Article  Google Scholar 

  6. Grünzweig C, David C, Bunk O, Dierolf M, Frei G, Kühne G, Kohlbrecher J, Schäfer R, Lejcek P, Rønnow HMR, Pfeiffer F (2008) Neutron decoherence imaging for visualizing bulk magnetic domain structures. Phys Rev Lett 101(2). https://doi.org/10.1103/PhysRevLett.101.025504

  7. British Standards Institution (1992) Magnetic materials. Methods of measurement of the magnetic properties of magnetic sheet and strip by means of a single sheet tester (6404–3). Brit Stan Inst https://doi.org/10.3403/00279002. Zugegriffen: 10. January 2020

  8. Kurosaki Y, Mogi H, Fujii H, Kubota T, Shiozaki M (2008) Importance of punching and workability in non-oriented electrical steel sheets. J Magn Magn Mater 320(20):2474–2480. https://doi.org/10.1016/j.jmmm.2008.04.073

    Article  CAS  Google Scholar 

  9. Weiss HA, Leuning N, Steentjes S, Hameyer K, Andorfer T, Jenner S, Volk W (2017) Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. J Magn Magn Mater 421:250–259. https://doi.org/10.1016/j.jmmm.2016.08.002

    Article  CAS  Google Scholar 

  10. Strobl M, Grünzweig C, Hilger A, Manke I, Kardjilov N, David C, Pfeiffer F (2008) Neutron dark-field tomography. Phys Rev Lett 101(12). https://doi.org/10.1103/PhysRevLett.101.123902

  11. Neuwirth T, Backs A, Gustschin A, Vogt S, Pfeiffer F, Böni P, Schulz M (2020) A high visibility Talbot-Lau neutron grating interferometer to investigate stress-induced magnetic degradation in electrical steel. Sci Rep

    Google Scholar 

  12. Reimann T, Mühlbauer S, Horisberger M, Betz B, Böni P, Schulz M (2016) The new neutron grating interferometer at the ANTARES beamline: Design, principles and applications. J Appl Crystallogr 49(5):1488–1500. https://doi.org/10.1107/S1600576716011080

    Article  CAS  Google Scholar 

  13. Calzada E, Gruenauer F, Mühlbauer M, Schillinger B, Schulz M (2009) New design for the ANTARES-II facility for neutron imaging at FRM II. Nucl Instrum Methods Phys Res, Sect A 605(1–2):50–53. https://doi.org/10.1016/j.nima.2009.01.192

    Article  CAS  Google Scholar 

  14. Schulz M, Schillinger B (2015) ANTARES: Cold neutron radiography and tomography facility. JLSRF 1. https://doi.org/10.17815/jlsrf-1-42

  15. Weiss HA, Steentjes S, Tröber P, Leuning N, Neuwirth T, Schulz M, Hameyer K, Golle R, Volk W (2019) Neutron grating interferometry investigation of punching-related local magnetic property deteriorations in electrical steels. J Magn Magn Mater 474:643–653. https://doi.org/10.1016/j.jmmm.2018.10.098

    Article  CAS  Google Scholar 

  16. Fiorillo F (2004) Measurement and characterization of magnetic materials, 1. Aufl. Elsevier series in electromagnetism. Elsevier Academic Press, San Diego, Calif

    Google Scholar 

  17. Leuning N, Steentjes S, Weiss HA, Volk W, Hameyer K (2018) Magnetic material deterioration of non-oriented electrical steels as a result of plastic deformation considering residual stress distribution. IEEE Trans Magn 54(11). https://doi.org/10.1109/TMAG.2018.2848365

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the DFG priority program “SPP2013—Focused Local Stress Imprint in Electrical Steel as Means of Improving the Energy Efficiency” - HA 4395/22-1; SCHU 3227/2-1; VO 1487/31-1. The results of this work are based upon experiments performed at the ANTARES instrument at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Gilch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilch, I. et al. (2021). Analysis of Cylindrically and Spherically Embossed Flux Barriers in Non-oriented Electrical Steel. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_193

Download citation

Publish with us

Policies and ethics