Skip to main content

Biochemical Composition of Six Native Seaweeds from Buarcos Bay, Central West Coast of Portugal

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021) (ICoWEFS 2021)

Abstract

Seaweeds have a great variety of compounds with different properties and benefits to human health. Marine macroalgae provide a high nutritional value along with low caloric value, poor in fat, and with the presence of polysaccharides that behave as fibers with no calories. This is not widespread, but some macroalgae and by-products are used in various applications, inclusively in food products. Under the project MENU - Marine Macroalgae: Alternative recipes for a daily nutritional diet, six native seaweed species were collected in Praia da Tamargueira, Buarcos, Figueira da Foz, Portugal: Ulva spp. (green seaweed), Chondrus crispus, Gracilaria gracilis, Mastocarpus stellatus, Porphyra umbilicalis (red seaweeds) and Bifurcaria bifurcata (brown seaweed) to further biochemical characterization. Polysaccharides’ monomeric composition was determined after sulphuric acid hydrolysis, derivatization to alditol acetates, then analyzed by gas chromatography with flame ionization detector (GC-FID), whereas protein content was quantified following colorimetric Bradford method. Results showed red seaweeds presenting the highest polysaccharide profile followed by the green macroalgae and then the brown seaweed species. In the case of protein content, Porphyra umbilicalis was the seaweed with the highest content, followed by Ulva spp., Gracilaria gracilis, Chondrus crispus and Mastocarpus stellatus. The brown seaweed Bifurcaria bifurcata presented the lowest protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawes, C.J.: Marine Botany. Wiley, New York (1995)

    Google Scholar 

  2. Arasaki, S., Arasaki, T.: Vegetables from the Sea. Japan Publishing Inc., Tokyo (1983)

    Google Scholar 

  3. Wong, K.H., Cheung, P.C.K.: Nutritional evaluation of some subtropical red and green seaweeds. Part I - proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 71, 475–482 (2000). https://doi.org/10.1016/S0308-8146(00)00175-8

    Article  CAS  Google Scholar 

  4. Leandro, A., Pacheco, D., Cotas, J., Marques, J.C., Pereira, L., Gonçalves, A.M.M.: Seaweed’s bioactive candidate compounds to food industry and global food security. Life 10, 140 (2020). https://doi.org/10.3390/life10080140

    Article  CAS  Google Scholar 

  5. Zepeda, E., Freile-Pelegrín, Y., Robledo, D.: Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture. J. Appl. Phycol. 32, 2363–2373 (2020). https://doi.org/10.1007/s10811-019-02023-0

    Article  CAS  Google Scholar 

  6. Pacheco, D., Araújo, G.S., Cotas, J., Gaspar, R., Neto, J.M., Pereira, L.: Invasive seaweeds in the Iberian Peninsula: a contribution for food supply. Mar. Drugs 18, 560 (2020). https://doi.org/10.3390/md18110560

    Article  Google Scholar 

  7. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C.: Food security: the challenge of feeding 9 billion people. Science. 327, 812–818 (2010). https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  8. Bleakley, S., Hayes, M.: Algal proteins: extraction, application, and challenges concerning production. Foods 6, 33 (2017). https://doi.org/10.3390/foods6050033

    Article  CAS  Google Scholar 

  9. Cherry, P., O’Hara, C., Magee, P.J., McSorley, E.M., Allsopp, P.J.: Risks and benefits of consuming edible seaweeds. Nutr. Rev. 77, 307–329 (2019). https://doi.org/10.1093/nutrit/nuy066

    Article  Google Scholar 

  10. Rioux, L., Turgeon, S.L.: Seaweed carbohydrates. In: Tiwari, B.K., Troy, D.J. (eds.) Seaweed Sustainability: Food and Non-Food Applications, pp. 141–192. Academic Press (2015). https://doi.org/10.1016/B978-0-12-418697-2/00007-6.

  11. Pereira, L.: A review of the nutrient composition of selected edible seaweeds. In: Pomin, V.H. (ed.) Seaweed: Ecology, Nutrient Composition and Medicinal Uses, pp. 15–47. Nova Science Publishers, Inc. (2011)

    Google Scholar 

  12. Salehi, B., Sharifi-Rad, J., Seca, A.M.L., Pinto, D.C.G.A., Michalak, I., Trincone, A., Mishra, A.P., Nigam, M., Zam, W., Martins, N.: Current trends on seaweeds: looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 24, 4182 (2019). https://doi.org/10.3390/molecules24224182

    Article  CAS  Google Scholar 

  13. Coimbra, M.A., Waldron, K.W., Selvendran, R.R.: Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydr. Res. 252, 245–262 (1994). https://doi.org/10.1016/0008-6215(94)90019-1

    Article  CAS  Google Scholar 

  14. Bradford, M.: A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  15. Fleurence, J.: Seaweed proteins. Trends Food Sci. Technol. 10, 25–28 (1999). https://doi.org/10.1016/S0924-2244(99)00015-1

    Article  CAS  Google Scholar 

  16. Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P.: Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 43, 2289–2294 (2010). https://doi.org/10.1016/j.foodres.2010.08.005

    Article  CAS  Google Scholar 

  17. Kulshreshtha, G., Burlot, A.-S., Marty, C., Critchley, A., Hafting, J., Bedoux, G., Bourgougnon, N., Prithiviraj, B.: Enzyme-assisted extraction of bioactive material from chondrus crispus and codium fragile and its effect on herpes simplex virus (HSV-1). Mar. Drugs 13, 558–580 (2015). https://doi.org/10.3390/md13010558

    Article  CAS  Google Scholar 

  18. Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P.: Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioact. Carbohydrates Diet. Fibre 3, 29–40 (2014). https://doi.org/10.1016/j.bcdf.2014.01.002

    Article  CAS  Google Scholar 

  19. Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., Attia, H.: Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 128, 895–901 (2011). https://doi.org/10.1016/j.foodchem.2011.03.114

    Article  CAS  Google Scholar 

  20. Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., Bahcevandziev, K.: Seaweed potential in the animal feed: a review. J. Mar. Sci. Eng. 8, 559 (2020). https://doi.org/10.3390/jmse8080559

    Article  Google Scholar 

  21. Institute of Medicine of The National Academies: Dietary Reference Intakes. National Academies Press, Washington, D.C. (2006). https://doi.org/10.17226/11537.

  22. Ferdouse, F., Løvstad Holdt, S., Smith, R., Murúa, P., Yang, Z.: The global status of seaweed production, trade and utilization. FAO Globefish Res. Program. 124, 120 (2018)

    Google Scholar 

  23. Michalak, I., Chojnacka, K.: Algae as production systems of bioactive compounds (2015). https://doi.org/10.1002/elsc.201400191

  24. FAO: The State of the World Fisheries and Aquaculture - Meeting the sustainable development goals, Rome (2018). https://doi.org/10.1093/japr/3.1.101

  25. Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P., Pinto, E.: Metabolites from algae with economical impact. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 146, 60–78 (2007). https://doi.org/10.1016/j.cbpc.2006.05.007

    Article  CAS  Google Scholar 

  26. Wada, K., Nakamura, K., Tamai, Y., Tsuji, M., Sahashi, Y., Watanabe, K., Ohtsuchi, S., Yamamoto, K., Ando, K., Nagata, C.: Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr. J. 10, 83 (2011). https://doi.org/10.1186/1475-2891-10-83

    Article  CAS  Google Scholar 

  27. Murai, U., Yamagishi, K., Sata, M., Kokubo, Y., Saito, I., Yatsuya, H., Ishihara, J., Inoue, M., Sawada, N., Iso, H., Tsugane, S.: Seaweed intake and risk of cardiovascular disease: the Japan public health center–based prospective (JPHC) study. Am. J. Clin. Nutr. 110, 1449–1455 (2019). https://doi.org/10.1093/ajcn/nqz231

    Article  Google Scholar 

  28. Guo, F., Huang, C., Cui, Y., Momma, H., Niu, K., Nagatomi, R.: Dietary seaweed intake and depressive symptoms in Japanese adults: a prospective cohort study. Nutr. J. 18, 58 (2019). https://doi.org/10.1186/s12937-019-0486-7

    Article  CAS  Google Scholar 

  29. Vieira, E.F., Soares, C., Machado, S., Correia, M., Ramalhosa, M.J., Oliva-teles, M.T., Paula Carvalho, A., Domingues, V.F., Antunes, F., Oliveira, T.A.C., Morais, S., Delerue-Matos, C.: Seaweeds from the Portuguese coast as a source of proteinaceous material: total and free amino acid composition profile. Food Chem. 269, 264–275 (2018). https://doi.org/10.1016/j.foodchem.2018.06.145

    Article  CAS  Google Scholar 

  30. Abirami, R.G., Kowsalya, S.: Phytochemical screening, microbial load and antimicrobial activity of underexploited seaweeds. Int. Res. J. Microbiol. 3, 328–332 (2012)

    Google Scholar 

  31. Harnedy, P.A., FitzGerald, R.J.: Bioactive proteins, peptides, and amino acids from macroalgae. J. Phycol. 47, 218–232 (2011). https://doi.org/10.1111/j.1529-8817.2011.00969.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financed by national funds through FCT – Foundation for Science and Technology, I.P., within the scope of the projects UIDB/ 04292/2020 – MARE – Marine and Environmental Sciences Centre and UIDP/50017/2020 + UIDB/50017/2020 (by FCT/MTCES) granted to CESAM – Centre for Environmental and Marine Studies, and financed by project MENU (Marine Macroalgae: Alternative recipes for a daily nutritional diet) (FA_05_2017_011) funded by the Blue Fund under Public Notice No. 5—Blue Biotechnology. Ana M. M. Gonçalves acknowledges University of Coimbra for the contract IT057–18-7253. Sara García-Poza thanks to the project MENU - Marine Macroalgae: Alternative recipes for a daily nutritional diet (FA_05_2017_011). João Cotas thanks to the European Regional Development Fund through the Interreg Atlantic Area Program, under the project NASPA (EAPA_451/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Marta Mendes Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonçalves, A.M.M., García-Poza, S., Cotas, J., Marques, J.C., Pereira, L. (2021). Biochemical Composition of Six Native Seaweeds from Buarcos Bay, Central West Coast of Portugal. In: da Costa Sanches Galvão, J.R., et al. Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). ICoWEFS 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-75315-3_27

Download citation

Publish with us

Policies and ethics