Skip to main content

Techniques Used for Characterization of Microbial Exopolysaccharides

  • Chapter
  • First Online:
Microbial Exopolysaccharides as Novel and Significant Biomaterials

Abstract

Exopolysaccharides (EPS) that are secreted by the bacteria are one of the main components of its structure. It is usually associated with the cell wall, or the bio film layer of the bacterial cell consisting of a monosaccharide as a framework or network. The study of its properties, structure, functions and interaction will enable us to gain knowledge about the potential benefits of Exopolysaccharides and the role played by them. Many techniques are available to study and analyze the structure. A multidisciplinary approach is needed that will cumulate data and give an insight and in-depth information about Exopolysaccharides. In this chapter, an effort is being made to introduce all the techniques with an emphasis on spectroscopic and microscopic techniques that can be used to characterize the Exopolysaccharides and analyze them. The techniques are described in brief providing subtle information about the principle, technique, advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge University Press, pp 1–17. ISBN: 0-521-36350-0

    Google Scholar 

  2. Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. 9, Cambridge University Press, pp 379–403

    Google Scholar 

  3. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H (2014) Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci 97:7334–7343

    Google Scholar 

  4. Grobben GJ, van Casteren WHM, Schols HA, Oosterveld A, Sala G, Smith MR, Sikkema J, de Bont JAM (1997) Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol 48:516–521

    Google Scholar 

  5. Levander F, Svensson M, Rådström P (2001) Small-scale analysis of exopolysaccharides from Streptococcus thermophilus grown in a semidefined medium. BMC Microbiol 1:23

    Google Scholar 

  6. Madhuri KV, Prabhakar KV (2014) Recent trends in the characterization of microbial exopolysaccharides. Int J Pure Appl Chem 30(2). http://dx.doi.org/10.13005/ojc/300271

  7. Ruas-Madiedo P, De Los Reyes-Gavilán CG (2005) Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid. J Dairy Sci 88(3):843–856

    Google Scholar 

  8. Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P (2002) Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int Dairy J 12:689–695

    Google Scholar 

  9. Pachekrepapol U, Lucey JA, Gong Y, Naran R, Azadi P (2017) Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. J Dairy Sci 100:3424–3435

    Google Scholar 

  10. Mende S, Mentner C, Thomas S, Rohm H, Jaros D (2012) Exopolysaccharide production by three different strains of Streptococcus thermophilus and its effect on physical properties of acidified milk. Eng Life Sci 12:466–474

    Google Scholar 

  11. Faber EJ, Zoon P, Kamerling JP, Vliegenthart JFG (1998) The exopolysaccharides produced by Streptococcus thermophiles RS and STS have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310:269–276

    Article  CAS  Google Scholar 

  12. Shahzad H, Iqbal M, Khan QU (2018) Rheo-chemical characterization of exopolysaccharides produced by plant growth promoting rhizobacteria. Turk J Biochem 43(6)

    Google Scholar 

  13. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72. https://doi.org/10.1016/j.ab.2004.12.001

  14. Rühmann B, Schmid J, Sieber V (2015) Methods to identify the unexplored diversity of microbial exopolysaccharides.Front Microbiol. https://doi.org/10.3389/fmicb.2015.00565

  15. Rühmann B, Schmid J, Sieber V (2015) Automated modular high throughput exopolysaccharide screening platform coupled with highly sensitive carbohydrate fingerprint analysis. J Visualized Exp

    Google Scholar 

  16. Felz S, Vermeulen P, van Loosdrecht MC, Lin YM (2019) Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). Water Res 157:201–208

    Google Scholar 

  17. Dische Z (1946) A new specific color reaction of hexuronic acids. J Biol Chem 167:189–198

    Google Scholar 

  18. Filisetti-Cozzi TM, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162. https://doi.org/10.1016/0003-2697(91)90372-Z

  19. Galambos JT (1967) The reaction of carbazole with carbohydrates. Anal Biochem 19:133–143. https://doi.org/10.1016/0003-2697(67)90142-X

  20. Van Den Hoogen BM, Van Weeren PR, Lopes-Cardozo M, Van Golde LMG, Barneveld A, Van De Lest CHA (1998) A microtiter plate assay for the determination of uronic acids. Anal Biochem 257(2):107–111. https://doi.org/10.1006/abio.1997.2538

  21. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489

    Article  CAS  Google Scholar 

  22. Mojica K, Elsey D, Cooney MJ (2007) Quantitative analysis of biofilm EPS uronic acid content. J Microbiol Methods 71:61–65. https://doi.org/10.1016/j.mimet.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  24. Hamidi M, Mirzaei R, Delattre C, Khanaki K, Pierre G, Gardarin C, Petit E, Karimitabar F, Faezi S (2019) Characterization of a new exopolysaccharide produced by Halorubrum sp. TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech 9(1)

    Google Scholar 

  25. Tuinier R, Zoon P, Olieman C, Cohen-Stuart MA, Fleer GJ, de Kruif CG (1999) Isolation and physical characterization of an exocellular polysaccharide. Biopolymers 49:1–9

    Article  CAS  Google Scholar 

  26. Liu Zhengqi, Zhang Zhihong, Qiu Liang, Zhang Fen, Xiongpeng Xu, Wei Hua, Tao Xueying (2017) Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci 100:6895–6905

    Article  CAS  Google Scholar 

  27. Hu X, Pang X, Wang PG, Chen M (2018).Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan Pickles. J Carbohydr Polym

    Google Scholar 

  28. Zheng J-Q, Wang J-Z, Shi C-W, Mao D-B, He P-X, Xu C-P (2014) Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus. Process Biochem 49(6):1047–1053. https://doi.org/10.1016/j.procbio.2014.03.009

  29. Salazar N, Ruas-Madiedo P, Prieto A, Calle LP, de Los Reyes-Gavilán CG (2012) Characterization of exopolysaccharides produced by Bifidobacterium longum NB667 and its cholate-resistant derivative strain IPLA B667dCo. J Agric Food Chem 60(4):1028–1035

    Google Scholar 

  30. Wang T, Lucey JA (2003) Use of multi-angle laser light scattering and size-exclusion chromatography to characterize the molecular weight and types of aggregates present in commercial whey protein products. J Dairy Sci 86:3090–3101

    Article  CAS  Google Scholar 

  31. Reuben S, Banas K, Banas A, Swarup S (2014) Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms. Water Res 64:123–133. https://doi.org/10.1016/j.watres.2014.06.039

    Article  CAS  PubMed  Google Scholar 

  32. Macedo MG, Laporte MF, Lacroix Ch (2002) Quantification of exopolysaccharide, lactic acid, and lactose concentrations in culture broth by near-infrared spectroscopy. J Agric Food Chem 50:1774–1779

    Article  CAS  Google Scholar 

  33. Ojeda JJ, Romero-Gonzalez ME, Pouran HM, Banwart SA (2008) In situmonitoring of the biofilm formation of Pseudomonas putida on hematite using flow-cell ATR-FTIR spectroscopy to investigate the formation of inner-sphere bonds between the bacteria and the mineral. Mineral Mag 72(1):101–106

    Article  CAS  Google Scholar 

  34. Bhargava R (2012) Infrared spectroscopic imaging: the next generation. Appl Spectrosc 66(10):1091–1120. https://doi.org/10.1366/12-06801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kavita K, Mishra A, Jha B (2013) Extracellular polymeric substances from two biofilm forming Vibrio species: characterization and applications. Carbohydr Polym 94(2):882–888. https://doi.org/10.1016/j.carbpol.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  36. Paquet-Mercier F, Safdar M, Parvinzadeh M, Greener J (2014) Emerging spectral microscopy techniques and applications to biofilm detection. In: Méndez-Vilas A (ed) Microscopy: advances in scientific research and education. Formatex Research Center, Badajoz, Spain, pp 638–649

    Google Scholar 

  37. Wolf G, Crespo JG, Reis MAM (2002) Optical and spectroscopic methods for biofilm examination and monitoring. Rev Environ Sci Biotechnol 1(3):227–251. https://doi.org/10.1023/a:1021238630092

    Article  Google Scholar 

  38. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microb Ecol 72(1):1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x

    Article  CAS  Google Scholar 

  39. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922. https://doi.org/10.1128/aem.02289-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425(22):4286–4294. https://doi.org/10.1016/j.jmb.2013.06.022

    Article  CAS  PubMed  Google Scholar 

  41. Weber K, Delben J, Bromage TG, Duarte S (2014) Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography. FEMS Microbiol Let 350(2):175–179. https://doi.org/10.1111/1574-6968.12334

    Article  CAS  Google Scholar 

  42. Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59(1):1–7. https://doi.org/10.1099/jmm.0.015420-0

    Article  CAS  PubMed  Google Scholar 

  43. Ratnayake K, Joyce DC, Webb RI (2012) A convenient sample preparation protocol for scanning electron microscope examination of xylem-occluding bacterial biofilm on cut flowers and foliage. Sci Hortic-Amsterdam 140:12–18

    Article  Google Scholar 

  44. Simões M, Pereira MO, Sillankorva S, Azeredo J, Vieira MJ (2007) The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23(4):249–258

    Google Scholar 

  45. Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D (2007) Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms insitu. J Appl Microbiol 103(5):1808–1820

    Article  CAS  Google Scholar 

  46. Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LAK, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68(3):577–587

    Article  CAS  Google Scholar 

  47. Lawrence JR, Neu TR, Swerhone GDW (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32(3):253–261. https://doi.org/10.1016/s0167-7012(98)00027-x

    Article  CAS  Google Scholar 

  48. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413. https://doi.org/10.1016/j.mimet.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  49. Neu TR, Lawrence JR (2015) Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol 23(4):233–242. https://doi.org/10.1016/j.tim.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  50. Schlafer S, Meyer RL (2016) Confocal microscopy imaging of the biofilm matrix. J Microbiol Meth (in press). https://doi.org/10.1016/j.mimet.2016.03.002

  51. Adav SS, Lin JCT, Yang Z, Whiteley CG, Lee DJ, Peng XF, Zhang ZP (2010) Stereological assessment of extracellular polymeric substances, exoenzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol Adv 28:255–280. https://doi.org/10.1016/j.biotechadv.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  52. Neu TR, Woelfl S, Lawrence JR (2004) Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J Microbiol Methods 56(2):161–172. https://doi.org/10.1016/j.mimet.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  53. Barranguet C, Beusekom SAMV, Veuger B, Neu TR, Manders EMM, Sinke JJ, Admiraal W (2004) Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat Microb Ecol 34(1):1–9. https://doi.org/10.3354/ame034001

    Article  Google Scholar 

  54. Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS—matrix. Water Res 43(1):63–76. https://doi.org/10.1016/j.watres.2008.10.034

    Article  CAS  PubMed  Google Scholar 

  55. Battin TJ, Kaplan LA, Newbold JD, Cheng X, Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69(9):5443–5452. https://doi.org/10.1128/aem.69.9.5443-5452.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Savidge T, Pothoulakis C (2004) Microbial imaging. In: Bergan T, Norris J (eds) Methods in microbiology. Academic Press, New York, USA, pp 89–137

    Google Scholar 

  57. Choi O, Yu CP, Fernández GE, Hu Z (2010) Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res 44(20):6095–6103. https://doi.org/10.1016/j.watres.2010.06.069

    Article  CAS  PubMed  Google Scholar 

  58. Yu GH, Tang Z, Xu YC, Shen QR (2011) Multiple fluorescence labeling and two dimensional FTIR–13C NMR heterospectral correlation spectroscopy to characterize extracellular polymeric substances in biofilms produced during composting. Environ Sci Technol 45(21):9224–9231. https://doi.org/10.1021/es201483f

    Article  CAS  PubMed  Google Scholar 

  59. Baird FJ, Wadsworth MP, Hill JE (2012) Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J Microbiol Methods 90:192–196

    Google Scholar 

  60. Chen MY, Lee DJ, Yang Z, Peng XF (2006) Fluorescent staining for study of extracellular polymeric substances in membrane biofouling layers. Environ Sci Technol 40(21):6642–6646. https://doi.org/10.1021/es0612955

    Article  CAS  PubMed  Google Scholar 

  61. Krishna R, Muddada S (2017) Characterization of exopolysaccharide produced by Streptococcus thermophilus CC30. BioMed Res Int (5):1–11. https://doi.org/10.1155/2017/4201809

  62. Wang J, Zhao X, Tian Z, Yang Y, Yang Z (2015) Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr Polym 125:16–25

    Article  CAS  Google Scholar 

  63. Yadav V, Prappulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum cfr 2195: production, purification and characterization. Biotechnol Bioinf Bioeng 1:415–421, 1

    Google Scholar 

  64. Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 30:907–945. https://doi.org/10.1016/j.mechatronics.2004.04.005

    Article  Google Scholar 

  65. van der Aa BC, Dufrêne YF (2002) In situ characterization of bacterial extracellular polymeric substances by AFM. Colloids Surf B 23(2):173–182. https://doi.org/10.1016/s0927-7765(01)00229-6

    Article  Google Scholar 

  66. Ahimou F, Semmens MJ, Novak PJ, Haugstad G (2007) Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol 73(9):2897–2904. https://doi.org/10.1128/aem.02388-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30(9):453–465. https://doi.org/10.1016/j.tibtech.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  68. Banerjee A, Das D, Rudra SG, Mazumder K, Andler R, Bandopadhyay R (2019) Characterization of exopolysaccharide produced by Pseudomonas sp. PFAB4 for synthesis of EPS-coated AgNPs with antimicrobial properties. J Polym Environ. https://doi.org/10.1007/s10924-019-01602-z

  69. Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, Temperini MLA, Carvalho HF, de Souza AA, Cotta MA (2015) Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 5:1–10. https://doi.org/10.1038/srep09856

    Article  CAS  Google Scholar 

  70. Neugebauer J, Reiher M, Kind C, Hess BA (2002) Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for buckminsterfullerene. J Comput Chem 23(9):895–910. https://doi.org/10.1002/jcc.10089

    Article  CAS  PubMed  Google Scholar 

  71. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C (2008) Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem 393(1):197–206. https://doi.org/10.1007/s00216-008-2470-5

    Article  CAS  PubMed  Google Scholar 

  72. Virdis B, Harnisch F, Batstone DJ, Rabaey K, Donose BC (2012) Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energ Environ Sci 5(5):7017–7024. https://doi.org/10.1039/c2ee03374g

    Article  CAS  Google Scholar 

  73. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217

    Google Scholar 

  74. Maheswari P, Arjun Kumar K, Sankaralingam S, Sivakumar N (2020) Optimization and characterization of exopolysaccharide from marine soil bacteria. J Pharm Technol 13(6)

    Google Scholar 

  75. Honda S, Okeda J, Iwanaga H, Kawakami S, Taga A, Suzuki S, Imai K (2000) Ultramicroanalysis of reducing carbohydrates by capillary electrophoresis with laser-induced fluorescence detection as 7-nitro-2,1,3-benzoxadiazole-tagged N-methylglycamine derivatives. Anal Biochem 286:99–111

    Article  CAS  Google Scholar 

  76. Sudhamani SR, Tharanathan RN, Prasad MS (2004) Isolation and characterization of an extracellular polysaccharide from Pseudomonas caryophylli CFR 1705. Carbohydr Polym 56:423–427

    Article  CAS  Google Scholar 

  77. Rodrıguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends Microbiol 18:423–430

    Article  Google Scholar 

  78. Pratt CW, Cornely K (2014) Essential biochemistry (3rd edn). John Wiley and Sons Inc

    Google Scholar 

  79. Dhillon GS, Kaur S, Brar SK, Verma M (2013) Green synthesis approach: extraction from fungus mycelia. Crit Rev Biotechnol 33(4):379–403

    Article  CAS  Google Scholar 

  80. Casillo A, Lanzetta R, Parrilli M, Corsaro MM (2018) Exopolysaccharides from marine extremophilic bacteria: structure, properties, ecological roles and applications. Marine Drugs 16(2):69

    Article  Google Scholar 

  81. Reichhardt C, Cegelski L (2013) Solid-state NMR for bacterial biofilms. Mol Phys 112(7):887–894. https://doi.org/10.1080/00268976.2013.837983

    Article  CAS  PubMed Central  Google Scholar 

  82. https://pubchem.ncbi.nlm.nih.gov/compound/1_3_6-Naphthalenetrisulfonic-acid_-8-amino

  83. Pan M, Zhu L, Chen L, Qiu Y, Wang J (2016) Detection techniques for extracellular polymeric substances in biofilms: a review. BioResources 11(3):8092–8115

    CAS  Google Scholar 

  84. Wang L, Zhang ZJ (2009) Dalian Nat Univ 5:54

    Google Scholar 

  85. Shukla A, Mehta K, Parmar J, Pandya J, Saraf M (2019) Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. Eur Polym J 119:298–310

    Google Scholar 

  86. Khanal SN, Lucey JA (2017) Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y. J Dairy Sci 100:6906–6917

    Google Scholar 

  87. Enikeev R (2012) Development of a new method for determination of exopolysaccharide quantity in fermented milk products and its application in technology of kefir production. Food Chem 134:2437–2441

    Article  CAS  Google Scholar 

  88. Ale EC, Perezlindo MJ, Burns P, Tabacman E (2016) Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive. J Dairy Res 83(4):487–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velamakanni, R.P., Vuppugalla, P., Merugu, R. (2021). Techniques Used for Characterization of Microbial Exopolysaccharides. In: Nadda, A.K., K. V., S., Sharma, S. (eds) Microbial Exopolysaccharides as Novel and Significant Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-75289-7_2

Download citation

Publish with us

Policies and ethics