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Abstract. Classically, selective-opening attack (SOA) has been studied
for randomized primitives, like randomized encryption schemes and com-
mitments. The study of SOA for deterministic primitives, which presents
some unique challenges, was initiated by Bellare et al. (PKC 2015), who
showed negative results. Subsequently, Hoang et al. (ASIACRYPT 2016)
showed positive results in the non-programmable random oracle model.
Here we show the first positive results for SOA security of deterministic
primitives in the standard (RO devoid) model. Our results are:

– Any 2t-wise independent hash function is SOA secure for an
unbounded number of “t-correlated” messages, meaning any group
of up to t messages are arbitrarily correlated.

– A construction of a deterministic encryption scheme with analogous
security, combining a regular lossy trapdoor function with a 2t-wise
independent hash function.

– The one-more-RSA problem of Bellare et al. (J. Cryptology 2003),
which can be seen as a form of SOA, is hard under the Φ-Hiding
Assumption with large enough encryption exponent.

Somewhat surprisingly, the last result yields the first proof of RSA-based
Chaum’s blind signature scheme (CRYPTO 1982), albeit for large expo-
nent e, based on a “standard” computational assumption. Notably, it
avoids the impossibility result of Pass (STOC 2011) because lossiness of
RSA endows the scheme with non-unique signatures.

Keywords: Selective opening security · One-more RSA · Randomness
extractor · Deterministic public-key encryption · Information theoretic
setting

1 Introduction

In this paper, we study selective-opening-attack (SOA) security of some deter-
ministic primitives, namely hash functions, (public-key) deterministic encryp-
tion, and trapdoor functions. In particular, we extend the work of Hoang
et al. [20] in addition to answering some open questions there. We also provide
a new analysis of Chaum’s blind signature scheme [12].
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1.1 Background and Motivation

SOA security. Roughly, SOA security of a cryptographic primitive refers to
giving the adversary the power to adaptively choose instances of the primitive
to corrupt and considering security of the uncorrupted instances. SOA grew
out of work on non-committing and deniable primitives [6,9–11,14,16,26,27,31],
which are even stronger forms of security. Namely, SOA has been studied in
a line of work on public-key encryption and commitments started by Bellare,
Hofheinz, and Yilek [2,3,7,19,21,22]. When considering adaptive corruption,
SOA arguably captures the security one wants in practice. Here we only consider
sender SOA (i.e., sender, not receiver, corruption), which we just refer to SOA
security in the remainder of the paper for simplicity.

SOA for deterministic encryption. SOA security has usually been studied
for randomized primitives, where the parties use random coins that are given to
the adversary when corrupted, in particular randomized encryption. The study
of SOA for deterministic primitives, namely deterministic encryption was initi-
ated by Bellare et al. [1], who showed an impossibility result wrt. a simulation
based definition. Subsequently, Hoang et al. [20] proposed a comparison based
definition and showed positive results in the non programmable random oracle
(RO) model [5,25]. They left open the problem of constructions in the standard
(RO devoid) model, which we study in this work. In particular, Hoang et al.
emphasized this problem is open even for uniform and independent messages.

SOA for hash functions. In addition to randomized encryption, SOA secu-
rity has often been considered for randomized commitments. Note that a simple
construction of a commitment in the RO model is H(x‖r) where x is the input
and r is the randomness (decommitment). Analogously to the case of encryption,
we study SOA security of hash functions. This can also be seen as studying the
more basic case compared to deterministic encryption, as Goyal et al. [18] did in
the non-SOA setting. The practical motivation is password hashing—note some
passwords may be recovered by coercion, and one would like to say something
about security of the other passwords.

One-more RSA inversion problem. Finally, an influential problem that we
cast in the framework of SOA (this problem has not been explicitly connected
to SOA before as far as we are aware) is the one-more RSA inversion problem of
Bellare et al. [4]. Informally, the problem asks that an adversary with many RSA
challenges and an inversion oracle cannot produce more preimages than number
of oracle calls. Bellare et al. show this leads to a proof of security of Chaum’s
blind signature scheme in the RO model.

Challenges. For randomized primitives, a key challenge in security proofs has
been that at the time the simulator prepares the challenge ciphertexts it does
not know the subset that the adversary will corrupt. Compared to randomized
primitives, deterministic primitives additionally presents some unique challenges
in the SOA setting. To see why, say for encryption, a common strategy is for the
simulator to “lie” about the randomness in order to make the message encrypt
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to the right ciphertext. However, in the deterministic case the adversary there
is no randomness to fake.

1.2 Our Contributions

Results for hash functions. We start with the study of a more basic prim-
itive than deterministic encryption, namely hash functions (which in some sense
are the deterministic analogue of commitments). We note that SOA notion for
hash functions is stronger than the one-wayness notion. We point out that the
SOA adversary without any opening could simply run the one-wayness adversary
on each image challenge and recover the preimages. Thus, SOA notion is strictly
stronger than one-wayness. Here we show results for an unbounded number of
“t-correlated” messages, meaning each set of up to t messages may be arbitrarily
correlated. Namely, we show that 2t-wise independent hash functions, which can
be realized information-theoretically by a classical construction of polynomial
evaluation. We also consider the notion of t-correlated messages to be interest-
ing in its own right, and it captures a setting with password hashing where a
password is correlated with a small number of others (and it is even stronger than
that, in that a password may be correlated with any small number of others).

To show 2t-wise independent hash functions are SOA secure, we first show
that in the information theoretic setting, knowing the content of the opened
messages increases the upper-bound on the adversary’s advantage by at most
factor of 2. This is because the messages are independent, and knowing the
opened messages does not increase the adversary’s advantage in guessing the
unopened messages. Then, we show that for any hash key s in the set of “good
hash keys”, the probability of H(s,X) = y is almost equally distributed over all
hash value y. Therefore, we can show for any hash key s in the set of “good hash
keys” and any vector of hash values, opening does not increase the upper-bound
on adversary’s advantage. Thus, it is only enough to bound the adversary’s
advantage without any opening. Note that this strategy avoids the exponential
(in the number of messages) blow-up in the bound compared to the näıve strategy
of guessing the subset the adversary will open.

Constructions in the standard model. In the setting of deterministic
encryption, it is easy to see the same strategy as above works using lossy trap-
door functions [30] that are 2t-wise independent in the lossy mode. However, for
t > 1 we are not aware of any such construction and highlight this as an interest-
ing open problem.1 Hence, we turn to building a D-SO-CPA secure scheme in the
standard model. We give a new DPKE scheme using 2t-wise independent hash
functions and regular lossy trapdoor function [30], which has practical instan-
tiations, e.g., RSA is regular lossy [24]. A close variant of our scheme is shown
to be D-SO-CPA secure in the NPROM [20]. The proof strategy here is very

1 It is tempting to give a Paillier-based construction with a degree 2t polynomial in
the exponent, but unfortunately the coefficients don’t lie in a field so the classical
proof of 2t-wise independence does not work.



150 A. O’Neill and M. Zaheri

similar to the hash function case above. We start by switching to the lossy mode
and then bound the adversary’s advantage in the information-theoretic setting.

Results for one-more-RSA. Bellare et al. [4] were first to introduce one-
more-RSA problem. They show assuming hardness of the one-more-RSA inver-
sion problem leads to a proof of security of Chaum’s blind signature scheme [12]
in the random oracle model. This problem is natural SOA extension of the one-
wayness of RSA. Intuitively, in the one-more inversion problem, the adversary
gets a number of image points and has access to the corruption oracle that allows
it to get preimages for image points of its choice. It needs to produce one more
correct preimage than the number of queries it makes. We show that one-more
inversion problem is hard for RSA with a large enough encryption exponent e.
In particular, we show that one-more inversion problem is hard for any regular
lossy trapdoor function. Intuitively, we show that in the lossy mode the images
are uniformly distributed. Then we show that inverting even one of the images
is hard, since any preimage x is equally likely. RSA is known to be regular lossy
under the Φ-Hiding Assumption [24]. Thus, by the result of [4], we obtain a secu-
rity proof for Chaum’s scheme.2 Interestingly, this result avoids an impossibility
result of Pass [29] because if RSA is lossy then Chaum’s scheme does not have
unique signatures. Analogously, in a different context, Kakvi and Kiltz [23] used
non-uniqueness of RSA-FDH signatures under Φ-Hiding to show tight security,
getting around an impossibility result of Coron [13].

1.3 Seeing us as Replacing Random Oracles

Another way of seeing our treatment of hash functions is as isolating a property
of random oracles and realizing it in the standard model, building on a line of
work in this vein started by Canetti [8]. In this context, it would be interesting
to consider adaptive SOA security for hash functions similar to [28] who consider
adaptive commitments. We leave this as another open problem. Additionally, it
would be interesting to see if our results allow replacing ROs in any particular
higher-level protocols.

2 Preliminaries

2.1 Notation and Conventions

For a probabilistic algorithm A, by y ←$ A(x) we mean that A is executed on
input x and the output is assigned to y. We sometimes use y ← A(x; r) to
make A’s random coins explicit. If A is deterministic we denote this instead by
y ← A(x). We denote by [A(x)] the set of all possible outputs of A when run
on input x. For a finite set S, we denote by s ←$ S the choice of a uniformly
random element from S and assigning it to s.

2 This glosses over an issue about regularity of lossy RSA on subdomains discussed in
the body.
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Let N denote the set of all non-negative integers. For any n ∈ N we denote
by [n] the set {1, . . . , n}. For a vector x, we denote by |x| its length (number of
components) and by x[i] its i-th component. For a vector x of length n and any
I ⊆ [n], we denote by x[I] the vector of length |I| such that x[I] = (x[i])i∈I , and
by x[I] the vector of length n−|I| such that x[I] = (x[i])i/∈I . For a string X, we
denote by |X| its length.

Let X,Y be random variables taking values on a common finite domain. The
statistical distance between X and Y is given by

Δ(X,Y ) =
1
2

∑

x

∣∣Pr [X = x ] − Pr [Y = x ]
∣∣ .

We also define Δ(X,Y | S) = 1
2

∑
x∈S

∣∣Pr [X = x ] − Pr [Y = x ]
∣∣, for a set S.

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr [X = x ]).
The average conditional min-entropy of X given Y is

H̃∞(X|Y ) = − log(
∑

y

PY (y)max
x

Pr [ X = x | Y = y ]).

Entropy after information leakage. Dodis et al. [15] characterized the
effect of auxiliary information on average min-entropy:

Lemma 1. [15] Let X,Y,Z be random variables and δ > 0 be a real number.
(a) If Y has at most 2λ possible values then we have H̃∞(X | Z, Y ) ≥ H̃∞(X |
Z) − λ.
(b) Let S be the set of values b such that H∞(X | Y = b) ≥ H̃∞(X | Y ) −
log(1/δ). Then it holds that Pr[Y ∈ S] ≥ 1 − δ.

2.2 Public-Key Encryption

Public-key encryption. A public-key encryption scheme PKE with message-
space Msg is a tuple of algorithms (Kg,Enc,Dec) defined as follows. The key-
generation algorithm Kg on input unary encoding of the security parameter 1k

outputs a public key pk and matching secret key sk . The encryption algorithm
Enc on inputs a public key pk and message m ∈ Msg(1k) outputs a ciphertext
c. The deterministic decryption algorithm Dec on inputs a secret key sk and
ciphertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)]
and all m ∈ Msg(1k), it holds that Dec(sk , (Enc(pk ,m)) = m. We say that PKE
is deterministic if Enc is deterministic.

D-SO-CPA security. Let DE = (Kg,Enc,Dec) be a D-PKE scheme. To a mes-
sage sampler M and an adversary A = (A.pg, A.cor, A.g, A.f), we associate the
experiment in Fig. 1 for every k ∈ N. We say that DE is D-SO-CPA secure for a
class M of efficiently resamplable message samplers and a class A of adversaries
if for every M ∈ M and any A ∈ A ,

Advd-so-cpa
DE,A,M(k)

= Pr
[
D-CPA1-REALA,M

DE (k) ⇒ 1
]

− Pr
[
D-CPA1-IDEALA,M

DE (k) ⇒ 1
]
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Fig. 1. Games to define the D-SO-CPA security.

is negligible in k.

2.3 Lossy Trapdoor Functions and Their Security

Lossy trapdoor functions. A lossy trapdoor function [30] with domain
LDom, range LRng and lossiness τ is a tuple of algorithms LT = (IKg, LKg,
Eval, Inv) that work as follows. Algorithm IKg on input a unary encoding of the
security parameter 1k outputs an “injective” evaluation key ek and matching
trapdoor td . Algorithm LKg on input 1k outputs a “lossy” evaluation key lk.
Algorithm Eval on inputs an (either injective or lossy) evaluation key ek and
x ∈ LDom(k) outputs y ∈ LRng(k). Algorithm Inv on inputs a trapdoor td and
a y ∈ LRng(k) outputs x ∈ LDom(k). We denote by Img(lk) the co-domain of
Eval(lk, ·). We require the following properties:

Correctness: For all k ∈ N, all (ek , td) ∈ [IKg(1k)] and all x ∈ LDom(k) it
holds that Inv(td ,Eval(ek , x)) = x.

Key Indistinguishability: We require that for every PPT distinguisher D, the
following advantage be negligible in k.

Advltdf
LT,D(k) = Pr [D(ek) ⇒ 1 ] − Pr [D(lk) ⇒ 1 ].

where (ek , td) ←$ IKg(1k) and lk ←$ LKg(1k).

Lossiness: The size of the co-domain of Eval(lk, ·) is at most |LRng(k)|/2τ(k) for
all k ∈ N and all lk ∈ [LKg(1k)]. We call τ the lossiness of LT.

t-wise independent. Let LT be a lossy trapdoor function with domain LDom,
range LRng and lossiness τ . We say LT is t-wise independent if for all lk ∈
[LKg(1k)] and all distinct x1, . . . , xt(k) ∈ LDom(k)

Δ
(
(Eval(lk, x1), . . . ,Eval(lk, xt(k))), (U1, . . . , Ut(k))

)
= 0

where lk ←$ LKg(1k) and U1, . . . , Ut(k) are uniform and independent on LRng(k).
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Regularity. Let LT be a lossy trapdoor function with domain LDom, range
LRng and lossiness τ . We say LT is regular if for all lk ∈ [LKg(1k)] and all
y ∈ Img(lk), we have Pr [Eval(lk, U) = y ] = 1/|Img(lk)|, where U is uniform on
LDom(k).

2.4 Hash Functions and Associated Security Notions

Hash functions. A hash function with domain HDom and range HRng is a
pair of algorithms H = (HKg, h) that work as follows. Algorithm HKg on input
a unary encoding of the security parameter 1k outputs a key K. Algorithm h on
inputs a key K and x ∈ HDom(k) outputs y ∈ HRng(k). We say that H is t-wise
independent if for all k ∈ N and all distinct x1, . . . , xt(k) ∈ HDom(k)

Δ
(
(h(K,x1), . . . , h(K,xt(k))), (U1, . . . , Ut(k))

)
= 0

where K ←$ HKg(1k) and U1, . . . , Ut(k) are uniform and independent in HRng(k).

3 Selective Opening Security for Hash Functions

Bellare, Dowsley, and Keelveedhi [1] were the first to consider selective-opening
security of deterministic PKE. They propose a “simulation-based” semantic
security notion, but then show that this definition is unachievable in both the
standard model and the non-programmable random-oracle model. Later in [20]
Hoang et al. introduce an alternative, “comparison-based” semantic-security
notion and show that this definition is achievable in the non-programmable
random-oracle model but leave it open in the standard model. In this section,
we extend their definitions to hash function families and show that t-wise inde-
pendent hash functions are selective opening secure under this notion.

3.1 Security Notion

Message samplers. A message sampler M is a PPT algorithm that takes
as input the unary representation 1k of the security parameter and a string
param ∈ {0, 1}∗, and outputs a vector m of messages. We require that M be
associated with functions v and n such that for any param ∈ {0, 1}∗, for any
k ∈ N, and any m ∈ [M(1k,param)], we have |m| = v(k) and |m[i]| = n(k), for
every i ≤ |m|. Moreover, the components of m must be distinct. Let Coins[k]
be the set of coins for M(1k, ·). Define Coins[k,m, I,param] = {ω ∈ Coins[k] |
m[I] = m′[I], where m′ ← M(1k,param;ω)}.

A message sampler M is (μ, d)-correlated if

– For any k ∈ N, any param ∈ {0, 1}∗, every m ∈ [M(1k,param)] and any
i ∈ [v], m[i] have min-entropy at least μ and is independent of at least v − d
messages.

– Messages m[1], . . . ,m[v(k)] must be distinct, for any param ∈ {0, 1}∗ and
any m ∈ [M(1k,param)].



154 A. O’Neill and M. Zaheri

Fig. 2. Games to define the H-SO security.

Note that in this definition, d can be 0, which corresponds to a message
sampler in which each message is independent of all other messages and has at
least μ bits of min-entropy.

Resampling. Following [3], let ResampM(1k, I,x,param) be the algorithm that
samples r ←$ Coins[k,m, I,param] and returns M(1k,param; r). (We note that
Resamp may run in exponential time.) A resampling algorithm of M is an
algorithm Rsmp such that Rsmp(1k, I,x,param) is identically distributed as
ResampM(1k, I,x,param). A message sampler M is efficiently resamplable if
it admits a PT resampling algorithm.

H-SO security. Let H = (HKg, h) be a hash function family with domain HDom
and range HRng. To an adversary A = (A.pg, A.cor, A.g, A.f) and a message
sampler M, we associate the experiment in Fig. 2 for every k ∈ N. We say that
H is H-SO secure for a class M of efficiently resamplable message samplers and
a class A of adversaries if for every M ∈ M and any A ∈ A ,

Advh-so
H,A,M(k)

= Pr
[
H-SO-REALA,M

H (k) ⇒ 1
]

− Pr
[
H-SO-IDEALA,M

H (k) ⇒ 1
]

is negligible in k.

Discussion. We refer to the messages indexed by I as the “opened” messages.
For every message m[i] that adversary A opens, we require that every message
correlated to m[i] to also be opened.

We show that it is suffices to consider balanced H-SO adversaries where
output of A.f is boolean. We call A δ-balanced boolean H-SO adversary if for all
b ∈ {0, 1}, ∣∣∣Pr [ t = b : t ←$ A.f(m,param) ] − 1

2

∣∣∣ ≤ δ.

for all param and m output by A.pg and M, respectively.
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Theorem 2. Let H = (HKg, h) be a hash function family with domain HDom
and range HRng. Let A be a H-SO adversary against H with respect to message
sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced boolean H-SO
adversary B such that for all k ∈ N

Advh-so
H,A,M(k) ≤

(2
√

2
δ

+
√

2
)2

· Advh-so
H,B,M(k).

where the running time of A is about that of B plus O(1/δ).

We refer to Appendix A for the proof of Theorem 2. Next, we give a useful
lemma that we later use in our proofs.

Lemma 3. Let X,Y be random variables where H̃∞(X | Y ) ≥ μ. For any
0 ≤ δ < 1/2, random variable Y is a δ-balanced boolean. Then, H∞(X | Y =
b) ≥ μ − log(12 − δ) for all b ∈ {0, 1}.

Proof. We know that Pr [Y = b ] ≥ 1/2 − δ, for all b ∈ {0, 1}. We also have
that

∑
b Pr [Y = b ] maxx Pr [X = x | Y = b ] ≤ 2−μ. Therefore, we obtain that

maxx Pr [X = x | Y = b ] ≤ 2−μ(1/2 − δ) for all b ∈ {0, 1}. Summing up, we get
H∞(X | Y = b) ≥ μ − log(12 − δ) for all b ∈ {0, 1}. �

3.2 Achieving H-SO Security

We show in Theorem 4 that pair-wise independent hash functions are selec-
tive opening secure when the messages are independent and have high min-
entropy. Specifically, we give an upper-bound for the advantage of H-SO adver-
sary attacking the pair-wise independent hash function. We first show that in the
information theoretic setting, knowing the content of opened messages increases
the upper-bound for advantage of adversary by at most factor of 2. This is
because the messages are independent and knowing the opened messages does
not increase the advantage of adversary on guessing the unopened messages.
We point that for any vector of hash values and hash key, value I is uniquely
defined (unbounded adversary can be assumed deterministic) and based on the
independence of the messages, we could drop the probability of opened messages
in the upper-bound for the advantage of adversary. Note that the adversary still
may increase its advantage by choosing I adaptively without seeing the opened
messages, we later prove this is not the case.

We show in Lemma 5 that for any hash key s in the set of “good hash
keys”, the probability of H(s,X) = y is almost equally distributed over all
hash value y. Therefore, we can show for any hash key s in the set of “good hash
keys” and any vector of hash values, opening does not increases the upper-bound
for advantage of adversary. Thus, it is only enough to bound the advantage of
adversary without any opening.

Theorem 4. Let H = (HKg, h) be a family of pair-wise independent hash func-
tion with domain HDom and range HRng. Let M be a (μ, 0)-correlated, effi-
ciently resamplable message sampler. Then for any computationally unbounded
adversary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2.
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Proof. We need the following lemma whose proof we’ll give later.

Lemma 5. Let H = (HKg, h) be a pair-wise independent hash function with
domain HDom and range HRng. Let X be a random variable over HDom such
that H∞(X) ≥ η. Then, for all y ∈ HRng(k) and for any ε > 0,

∣∣∣Pr [H(K,X) = y ] − |HRng(k)|−1
∣∣∣ ≥ ε|HRng(k)|−1.

for at most 2−u fraction of K ∈ [HKg(1k)], where u = η − 2 log |HRng(k)| −
2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean

adversary B. Observe that for computationally unbounded adversary B, we can
assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we can also
assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote
by Advh-so

H,B,M,s(k), advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

I

Pr[B.cor(s,h) ⇒ I ∧ B.g(s,m1[I],h[Ī]) ⇒ b ∧ B.f(m1) ⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of
B.cor on input s,y. We also define M b

s,y = {m[Is,y] | B.g(s,m1[Is,y],y) ⇒ b},
for b ∈ {0, 1}. Thus,

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

The above probability is over the choice of m1. Similarly, we can define the
probability of the experiment H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m0) ⇒ b]

Assume wlog that above difference is maximized when b = 1. For d ∈ {0, 1},
we define Ed as an event where h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y and
B.f(md) = 1. Note that the messages are independent and has μ bits of min-
entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]
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Note that m0 and m1 have the same distribution. Then, we have Pr[E0] =
Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]]. Therefore, we obtain

Advh-so
H,B,M,s(k)

≤ 2 ·
∑

y

Pr[h[I] = y[I]] ·
(
Pr[h[I] = y[I] | B.f(m1) = 1] − Pr[h[I] = y[I]]

)

We define random variable X[i] = (m1[i] | B.f(m1) = 1), for all i ∈ [v]. From
property (a) of Lemma 1 and Lemma 3, we obtain that H∞(X[i]) ≥ μ−3. For all
i ∈ [v], we also have H∞(m1[i]) ≥ μ ≥ μ−3. Moreover, we know Lemma 5 holds
for at most 2−u fraction of K ∈ [HKg(1k)], where u = μ − 3 − 2 log |HRng(k)| −
2 log(1/ε); we shall determine the value of ε later. Using union bound, for all
X[i],m[i], where i ∈ [v] and for any ε > 0, we obtain that for at least 1 − 2v2−u

fraction of K, we have
∣∣Pr [H(K,x[i]) = y[i] ] − |HRng(k)|−1

∣∣ ≤ ε|HRng(k)|−1,
for all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1 − ε)|HRng(k)|−1 ≤
Pr [h[i] = y[i] ] ≤ (1 + ε)|HRng(k)|−1. Let |Is,y| = 
. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

|HRng(k)|−v(1 + ε)�
(
(1 + ε)v−� − (1 − ε)v−�

)

≤ 2
(
(1 + ε)v − (1 − ε)v

)

We also have (1 + ε)v = 1 +
∑

i

(
v
i

)
εi ≤ 1 +

∑
i εivi. For εv < 1/2, we obtain

that (1 + ε)v ≤ 1 + 2εv. Similarly, we obtain that (1 − ε)v ≥ 1 − 2εv. Therefore,
we have that Advh-so

H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

+
∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u.

Finally, by substituting ε = 3
√

21−μ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−μ|HRng(k)|2.

Using Theorem 2, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2.

This completes the proof of Theorem 4.

Proof of Lemma 5. We will need the following tail inequality for pair-wise
independent distributions
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Claim. Let A1, · · · , An be pair-wise independent random variables in the interval
[0, 1]. Let A =

∑
i Ai and E(A) = μ and δ > 0. Then,

Pr [ |A − μ| > δμ ] ≤ 1
δ2μ

.

Proof of Claim 3.2. From Chebychev’s inequality, for any δ > 0 we have

Pr [ |A − μ| > δμ ] ≤ Var[A]
δ2μ2

.

Note that A1, · · · , An are pair-wise independent random variables. Thus, we
have Var[A] =

∑
i Var[Ai]. Moreover, we know that Var[Ai] ≤ E(Ai) for all

i ∈ [n], since the random variable Ai is in the interval [0, 1]. Therefore, we have
Var[A] ≤ μ. This completes the proof of Claim 3.2.

We define px = Pr [X = x ], for any x ∈ HDom(k). We consider the proba-
bility over the choice of key K. For every x ∈ HDom(k) and y ∈ HRng(k), we
also define the following random variable

Zx,y =

{
px if H(K,x) = y

0 otherwise

We define random variable Ax,y = Zx,y2η. Note that for every x, H(K,x)
is uniformly distributed, over the uniformly random choice of K. Therefore,
we have E(Zx,y) = px/|HRng(k)|, for every x, y. Let Zy =

∑
x Zx,y and

Ay =
∑

x Ax,y. Then, we have E(Zy) = 1/|HRng(k)| and E(Ay) = 2η/|HRng(k)|.
Moreover, for every x, y, we know Ax,y ∈ [0, 1] and for every y, the variables
Ax,y are pair-wise independent. Applying Claim 3.2, we obtain that for every y
and δ > 0

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|
∣∣∣∣ ≥ δ2η

|HRng(k)|
]

≤ |HRng(k)|
δ22η

.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣∣∣Zy − 1

|HRng(k)|
∣∣∣∣ ≥ ε

|HRng(k)|
]

≤ |HRng(k)|
ε22η

.

Using union bound, we obtain that with probability |HRng(k)|2/ε22η = 2−u

over the choice of K that |Zy − 1/|HRng(k)|| ≥ ε/|HRng(k)|, for all y ∈
|HRng(k)|. This completes the proof of Lemma 5. �

We show in Theorem 6 that the 2d-wise independent hash functions are
selective opening secure for (μ, d)-correlated message samplers.

Theorem 6. Let H = (HKg, h) be a family of 2d-wise independent hash function
with domain HDom and range HRng. Let M be a (μ, d)-correlated, efficiently
resamplable message sampler. Then for any computationally unbounded adver-
sary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2d.
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Proof. We need the following lemma whose proof we’ll give later.

Lemma 7. Let H = (HKg, h) be a 2d-wise independent hash function with
domain HDom and range HRng. Let X = (X1, · · · ,Xt), where t ≤ d and Xi is
a random variable over HDom such that H∞(Xi) ≥ η, for i ∈ [t]. Then, for all
y = (y1, · · · , yt), where yi ∈ HRng(k) and for any ε > 0,

∣∣∣Pr [H(K,X) = y ] − |HRng(k)|−t
∣∣∣ ≥ ε|HRng(k)|−t.

for at most 2−w fraction of K ∈ [HKg(1k)], where w = η − 2t log |HRng(k)| −
2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean

adversary B. Observe that for computationally unbounded adversary B, we can
assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we can also
assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote
by Advh-so

H,B,M,s(k), advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

I

Pr[B.cor(s,h) ⇒ I ∧ B.g(s,m1[I],h[Ī]) ⇒ b ∧ B.f(m1) ⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of
B.cor on input s,y. We also define M b

s,y = {m[Is,y] | B.g(s,m1[Is,y],y) ⇒ b},
for b ∈ {0, 1}. Thus,

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

The above probability is over the choice of m1. Similarly, we can define the
probability of the experiment H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m0) ⇒ b]

Assume wlog that the above difference is maximized when b = 1. For d ∈
{0, 1}, we define Ed as an event where h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y

and B.f(md) = 1. Note that the messages are independent and has μ bits of
min-entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]
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Note that m0 and m1 have the same distribution. Then, we have Pr[E0] =
Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]]. We define random variable X[i] = (m1[i] |
B.f(m1) = 1), for all i ∈ [v]. From property (a) of Lemma 1 and Lemma 3, we
obtain that H∞(X[i]) ≥ μ−3. For all i ∈ [v], we also have H∞(m1[i]) ≥ μ ≥ μ−3

Moreover, we know Lemma 5 holds for at most 2−u fraction of K ∈ [HKg(1k)],
where u = μ−3−2d log |HRng(k)|−2 log(1/ε); we shall determine the value of ε
later. Partition [v] to L1, · · · , Lv such that |Lk| ≤ d and for all i, j ∈ Lk, messages
m[i] and m[j] are correlated. Using union bound, for all y[Li] ∈ (HRng(k))×|Li|,
where i ∈ [v] and for any ε > 0, we obtain that for at least 1 − 2v2−u fraction of
K, we have

∣∣Pr [H(K,x[Li]) = y[Li] ] − |HRng(k)|−|Li|∣∣ ≤ ε|HRng(k)|−|Li|, for
all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1 − ε)|HRng(k)|−|Li| ≤
Pr [h[Li] = y[Li] ] ≤ (1 + ε)|HRng(k)|−|Li|. Let |Is,y| = 
. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

|HRng(k)|−v(1 + ε)�
(
(1 + ε)v−� − (1 − ε)v−�

)

≤ 2
(
(1 + ε)v − (1 − ε)v

)

We also have (1 + ε)v = 1 +
∑

i

(
v
i

)
εi ≤ 1 +

∑
i εivi. For εv < 1/2, we obtain

that (1 + ε)v ≤ 1 + 2εv. Similarly, we obtain that (1 − ε)v ≥ 1 − 2εv. Therefore,
we have that Advh-so

H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

+
∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u.

Finally, by substituting ε = 3
√

21−μ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−μ|HRng(k)|2d.

Using Theorem 2, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2d.

This completes the proof of Theorem 6.

Proof of Lemma 7. We define px = Pr [X = x ], for any x = (x1, · · · , xt),
where xi ∈ HDom(k). We consider the probability over the choice of key K. For
every x and y, we also define the following random variable

Zx,y =

{
px if H(K,x) = y
0 otherwise
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Let Ax,y = Zx,y2η. Note that for all i ∈ [t] and for every xi, H(K,xi) is
uniformly distributed, over the uniformly random choice of K. Moreover, H is
t-wise independent. Therefore, we have E(Zx,y) = px/|HRng(k)|t, for every x,y.
Let Zy =

∑
x Zx,y and Ay =

∑
x Ax,y. Then, we have E(Zy) = 1/|HRng(k)|t

and E(Ay) = 2η/|HRng(k)|t. Moreover, for every x,y, we know Ax,y ∈ [0, 1] and
for every y, the variables Ax,y are pair-wise independent. Applying Claim 3.2,
we obtain that for every y and δ > 0

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|t
∣∣∣∣ ≥ δ2η

|HRng(k)|t
]

≤ |HRng(k)|t
δ22η

.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|t
∣∣∣∣ ≥ ε2η

|HRng(k)|t
]

≤ |HRng(k)|t
ε22η

.

Using union bound, we obtain that with probability |HRng(k)|2t/ε22η = 2−w

over the choice of K that |Zy − |HRng(k)|−t| ≥ ε|HRng(k)|−t, for all y. Thus,
∣∣Pr [H(K,X) = y ] − |HRng(k)|−t

∣∣ ≥ ε|HRng(k)|−t.

with probability at most 2−w over the choice of K. This completes the proof
of Lemma 7. �

4 Selective Opening Security for Deterministic
Encryption

In this section, we give two different constructions of deterministic public key
encryption and show that they achieve D-SO-CPA security. First, we show that
lossy trapdoor functions that are 2t-wise independent in the lossy mode are
selective opening secure for t-correlated messages. However, it is an open problem
to construct them for t > 1.

Hence, we give another construction of deterministic public key encryption
using hash functions and lossy trapdoor permutation and show it is selective
opening secure. A close variant of this scheme is shown to be D-SO-CPA secure
in the NPROM [20]. Our scheme is efficient and only public-key primitive that
it uses is a regular lossy trapdoor function, which has practical instantiations,
e.g., both Rabin and RSA are regular lossy.

4.1 Achieving D-SO-CPA Security

We start by showing that 2t-wise independent lossy trapdoor functions are selec-
tive opening secure. It was previously shown by Hoang et al. [20] that D-SO-CPA
notion is achievable under the random oracle model. They leave it open to con-
struct a D-SO-CPA secure scheme in the standard model. Here, we show that a
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Fig. 3. Games G0, G1 of the proof of Theorem 8.

pair-wise independent lossy trapdoor function is D-SO-CPA secure for indepen-
dent messages. We also show that a 2d-wise independent lossy trapdoor function
is D-SO-CPA secure for (μ, d)-correlated message samplers.

First, we show in Theorem 8 that a pair-wise independent lossy trapdoor
functions is D-SO-CPA secure for (μ, 0)-correlated message samplers.

Theorem 8. Let M be a (μ, 0)-correlated, efficiently resamplable message sam-
pler. Let LT be a lossy trapdoor function with domain LDom, range LRng and
lossiness τ . Suppose LT is pair-wise independent. Then for any adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ |LRng(k)|2.
Proof. Consider games G0, G1 in Fig. 3. Then

Advd-so-cpa
LT,A,M(k) = 2 · Pr [G0(k) ⇒ 1 ] − 1.

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Note that game G1 is identical to games H-SO-REAL or H-SO-IDEAL, when
b = 1 or b = 0, respectively. Then

Advh-so
LT,A,M(k) = 2 · Pr [G1(k) ⇒ 1 ] − 1.

Note that LT is pair-wise independent and τ -lossy. Then, size of the range of
LT in the lossy mode is at most 2−τ |LRng(k)|. From Theorem 4

Advh-so
LT,A,M(k) ≤ 2592v 3

√
21−μ−2τ |LRng(k)|2.
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DE.Kg(1k)

(ek , td) ←$ IKg(1k)
KH ←$ HKg(1k)
KG ←$ GKg(1k)
pk ← (KH , KG, ek)
sk ← (KH , KG, td)
Return (pk, sk)

DE.Enc(pk , m)

(KH , KG, ek) ← pk

r ← h(KH , m)
y ← g(KG, r)⊕m

c ← Eval(ek , y||r)
Return c

DE.Dec(sk , c)

(KH , KG, td) ← sk

y||r ← Inv(td , c)
m ← g(KG, r)⊕y

Return m

Fig. 4. D-PKE scheme DE[H,G, LT].

Summing up,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ |LRng(k)|2.

This completes the proof of Theorem 8.

Next, we show in Theorem 9 that a 2d-wise independent lossy trapdoor func-
tions is D-SO-CPA secure for (μ, d)-correlated message samplers.

Theorem 9. Let M be a (μ, d)-correlated, efficiently resamplable message sam-
pler. Let LT be a lossy trapdoor function with domain LDom, range LRng and
lossiness τ . Suppose LT is 2d-wise independent. Then for any adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3

√
21−μ−2dτ |LRng(k)|2d.

The proof of Theorem 9 is very similar to the proof of Theorem 8.
Although that 2t-wise independent trapdoor functions are very efficient and

secure against selective opening attack, it is an open problem to construct them
for t > 1. Hence, we give a new construction of deterministic public key encryp-
tion that is selective opening secure. Our scheme DE[H,G, LT] is shown in Fig. 4,
where LT is a lossy trapdoor function and H,G are hash functions. We begin by
showing in Theorem 10 that DE is D-SO-CPA secure for independent messages
when H, G are pair-wise independent hash functions and LT is a regular lossy
trapdoor function.

Theorem 10. Let M be a (μ, 0)-correlated, efficiently resamplable message
sampler. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and G =
(GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families. Sup-
pose H and G are pair-wise independent. Let LT be a regular lossy trapdoor
function with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let DE[H,G, LT]
be as above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ+2p.

Proof. We begin by showing the following lemma.
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Lemma 11. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and
G = (GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families.
Suppose H and G are pair-wise independent. Let LT be a regular lossy trapdoor
function with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let X be a ran-
dom variable over {0, 1}n such that H∞(X) ≥ η. Then, for all lk ∈ [LKg(1k)],
all c ∈ Img(lk) and any ε > 0,

∣∣∣Pr [DE.Enc(pk ,X) = c ] − 2τ−p
∣∣∣ ≥ ε2τ−p.

for at most 2−u fraction of public key pk, where u = η + 2τ − 2p − 2 log(1/ε).

Proof of Lemma 11. We define px = Pr [X = x ], for any x ∈ {0, 1}n. We
consider the probability over the choice of public key pk . fix the lossy key lk ∈
[LKg(1k)], we consider the probability over the choice of KH ,KG. For every
x ∈ {0, 1}n and c ∈ Img(lk), we also define the following random variable

Zx,c =

{
px if DE.Enc(pk , x) = c

0 otherwise

Let Ax,c = Zx,c2η. Note that that for every x, h(KH , x) is uniformly dis-
tributed, over the uniformly random choice of KH . Moreover, for every x and
KH , g(KG, h(KH , x)) is uniformly distributed, over the uniformly random choice
of KG. Since LT is a regular LTDF, we have E(Zx,c) = px · 2τ−p, for every
x, c. Let Zc =

∑
x Zx,c and Ac =

∑
x Ax,c. Then, we have E(Zc) = 2τ−p and

E(Ac) = 2η+τ−p. Moreover, for every x, c, we know Ax,c ∈ [0, 1] and for every
c, the variables Ax,c are pair-wise independent. Applying Claim 3.2, we obtain
that for every c and δ > 0

Pr
[ ∣∣Ac − 2η+τ−p

∣∣ ≥ δ · 2η+τ−p
] ≤ 2p−η−τ

δ2
.

Substituting Zc for Ac and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣Zc − 2τ−p

∣∣ ≥ ε · 2τ−p
] ≤ 2p−η−τ

ε2
.

Using union bound, we obtain that |Zc − 2τ−p| ≥ ε · 2τ−p with probability
22p−η−2τ/ε2 = 2−u over the choice of KH ,KG, for all lk ∈ [LKg(1k)], all c ∈
Img(lk). This completes the proof of Lemma 11. �

Consider games G0, G1 in Fig. 5. Then

Advd-so-cpa
DE,A,M(k) = 2 · Pr [G0(k) ⇒ 1 ] − 1.

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
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Game G0(k)
b ←$ {0, 1} ; param ←$ A.pg(1k)
m1 ←$ M(1k, param)
(ek , td) ←$ IKg(1k) ; KH ←$ HKg(1k)
KG ←$ GKg(1k) ; pk ← (KH , KG, ek)
c ← DE.Enc(pk ,m1)
(state, I) ←$ A.cor(pk , c, param)
m0 ←$ Rsmp(1k,m1[I], I, param)
ω ←$ A.g(state,m1[I], param)
t ←$ A.f(mb, param)
If (t = ω) then return b

Else return (1 − b)

Game G1(k)
b ←$ {0, 1} ; param ←$ A.pg(1k)
m1 ←$ M(1k, param)
lk ←$ LKg(1k) ; KH ←$ HKg(1k)
KG ←$ GKg(1k) ; pk ← (KH , KG, lk)
c ← DE.Enc(pk ,m1)
(state, I) ←$ A.cor(pk , c, param)
m0 ←$ Rsmp(1k,m1[I], I, param)
ω ←$ A.g(state,m1[I], param)
t ←$ A.f(mb, param)
If (t = ω) then return b

Else return (1 − b)

Fig. 5. Games G0, G1 of the proof of Theorem 10.

generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Similar to proof of Theorem 4, using Lemma 11, we obtain that

Pr [G1(k) ⇒ 1 ] ≤ 1296v
3
√

21−μ−2τ+2p +
1
2
.

Summing up,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ+2p.

This completes the proof of Theorem 10.
We now extend our result to include correlated messages. We show that it

is enough to use 2t-wise independent hash functions to extend the security to t-
correlated messages. Let DE[H,G, LT] be PKE scheme shown in Fig. 4, where LT
is a lossy trapdoor function and H,G are hash functions. We show in Theorem 12
that DE is D-SO-CPA secure for t-correlated messages when H,G are 2t-wise
independent hash functions and LT is a regular lossy trapdoor function.

Theorem 12. Let M be a (μ, d)-correlated, efficiently resamplable message
sampler. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and G =
(GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families. Sup-
pose H and G are 2d-wise independent. Let LT be a regular lossy trapdoor func-
tion with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let DE[H,G, LT] be as
above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v
3
√

21−μ+2d(−τ+p).

The proof of Theorem 12 is very similar to the proof of Theorem 10.
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Game ONE-MORE-INVA
TDF(k)

j ← 0 ; (ek, td) ←$ Kg(1k)
For i = 1 to v do
x[i] ←$ TDom(k)
y[i] ← Eval(ek,x[i])

x′ ←$ AC(ek,y)
Return (x = x′)

Oracle C(i)
j ← j + 1
If j ≥ v then
Return ⊥

Return x[i]

Fig. 6. Games to define the One-More security.

5 Results for One-More-RSA Inversion Problem

In this section, we recall the definition of one-more-RSA inversion problem. This
problem is a natural extension of the RSA problem to a setting where the adver-
sary has access to a corruption oracle. Bellare et al. [4] first introduce this notion
and show that assuming hardness of one-more-RSA inversion problem leads to
a proof of security of Chaum’s blind signature scheme in the random oracle
model. Here we show that one-more inversion problem is hard for RSA with
a large enough encryption exponent e. More generally, we show that one-more
inversion problem is hard for any regular lossy trapdoor function.

5.1 Security Notion

Here we give a formal definition of one-more-RSA inversion problem. Our def-
inition is more general and considers this problem for any trapdoor function.
Intuitively, in the one-more inversion problem, the adversary gets a number of
image points, and must output the inverses of image points, while it has access
to the corruption oracle and can see the preimage of image points of its choice.
We note that the number of corruption queries is less than the number of image
points. We also note that a special case of the one-more inversion problem in
which there is only one image point is exactly the problem underlying the notion
of one-wayness.

One-more inversion problem. Let TDF = (Kg,Eval, Inv) be a trapdoor func-
tion with domain TDom(·) and range TRng(·). To an adversary A, we associate
the experiment in Fig. 6 for every k ∈ N. We say that TDF is one-more[v] secure
for a class A of adversaries if for every any A ∈ A ,

Advone-more
TDF,A,v (k) = Pr

[
ONE-MORE-INVA,v

TDF(k) ⇒ 1
]

is negligible in k.

5.2 Achieving One-More Security

We show in Theorem 13 that a regular lossy trapdoor function is one-more
secure. We point out that, for large enough encryption exponent e, RSA is a
regular lossy trapdoor function [24].
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Game G0(k)
j ← 0
(ek , td) ←$ IKg(1k)
For i = 1 to v do
x[i] ←$ LDom(k)
y[i] ← Eval(ek ,x[i])

x′ ←$ AC(ek ,y)
Return (x = x′)

Game G1(k)
j ← 0
lk ←$ LKg(1k)
For i = 1 to v do
x[i] ←$ LDom(k)
y[i] ← Eval(lk,x[i])

x′ ←$ AC(lk,y)
Return (x = x′)

Oracle C(i) // G0–G2

j ← j + 1
If j ≥ v then
Return ⊥

Return x[i]

Game G2(k)
j ← 0
lk ←$ LKg(1k)
For i = 1 to v do
y[i] ←$ Img(lk)
x[i] ←$ P(lk, y)

x′ ←$ AC(lk,y)
Return (x = x′)

Game G3(k)
j ← 0 ; I ← ⊥
lk ←$ LKg(1k)
For i = 1 to v do
y[i] ←$ Img(lk)

x′ ←$ AC(lk,y)
For i /∈ I do
x[i] ←$ P(lk, y)

Return (x = x′)

Oracle C(i) // G3

j ← j + 1
I ← I ∪ {i}
If j ≥ v then
Return ⊥

x[i] ←$ P(lk, y)
Return x[i]

Fig. 7. Games G2, G3 of the proof of Theorem 13.

Pass [29] showed that the one-more inversion problem for any certified, homo-
morphic trapdoor permutation cannot be reduced to a more “standard” assump-
tion, meaning one that consists of a fixed number of rounds between challenger
and adversary. As noted by Kakvi and Kiltz [23], RSA is not certified unless e
is a prime larger than N so there is no contradiction.

Theorem 13. Let LT be a regular lossy trapdoor function with domain LDom,
range LRng and lossiness τ . Then for any adversary A and any v ∈ N,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + v · 2−τ .

Proof. Consider games G1–G3 in Fig. 7. Then

Advone-more
LT,A,v (k) = Pr [G0(k) ⇒ 1 ].

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Let P(lk, y) = {x | Eval(lk, x) = y}. In game G2, we reorder the code of
game G1 producing vector y. Note that LT is a regular lossy trapdoor function.
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Then, distribution of vector y is uniformly random on Img(lk) in game G1. Thus,
vectors x and y have the same distribution in game G1 and G2. Hence, the change
is conservative, meaning that Pr[G1(k) ⇒ 1] = Pr[G2(k) ⇒ 1]. Moreover, game
G3 is identical to game G2. Thus, we have Pr[G2(k) ⇒ 1] = Pr[G3(k) ⇒ 1].

Let y[I] be the unopened images, where |I| ≥ 1. Note that in game G3,
for all i ∈ I, x[i] is chosen uniformly at random after adversary A outputs x′.
Therefore, we obtain Pr[G3(k) ⇒ 1] ≤ |I| · 2−τ . Summing up,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + v · 2−τ .

This completes the proof of Theorem 13.
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A Deferred Proofs

Proof of Theorem 2. The proof is similar to the proof of Theorem 3.1 from
[17]. The proof of Theorem 2 follows from the following claims. We begin by
showing that it is suffices to consider H-SO adversaries where the output of A.f
is boolean.

Claim. Let H = (HKg, h) be a hash function family with domain HDom and
range HRng. Let A be a H-SO adversary against H with respect to message
sampler M. Then, there is a boolean H-SO adversary B such that for all k ∈ N

Advh-so
H,A,M(k) ≤ 2 · Advh-so

H,B,M(k).

where the running time of B is about that of A.

Proof. Consider adversary B in Fig. 8. We define EA and EB to be events where
games H-SO-REALA,M

H and H-SO-REALB,M
H output 1, respectively. Hence,

Pr [EB ] = Pr [EA ] +
1
2
(1 − Pr [EA ])

=
1
2
Pr [EA ] +

1
2
.

We also define TA and TB to be the events where games H-SO-IDEALA,M
H

and H-SO-IDEALB,M
H output 1, respectively. Similarly, we have Pr [TB ] =

Pr [TA ]/2 + 1/2. Thus, we have Advh-so
H,A,M(k) ≤ 2 · Advh-so

H,B,M(k). This com-
pletes the proof.

Next, we claim that it is suffices to consider balanced H-SO adversaries mean-
ing the probability the partial information is 1 or 0 is approximately 1/2.
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Algorithm B.pg(1k)
param ←$ A.pg(1k)
r ←$ {0, 1}A.f.rl(k)

pars ← (r,param)
Return pars

Algorithm B.cor(k,h, pars)
(r,param) ← pars
(I, st) ←$ A.cor(k,h, param)
Return (I, st)

Algorithm B.g(st,m[I], pars)
(r,param) ← pars
ω ←$ A.g(st,m[I], param)
Return 〈 r, ω〉
Algorithm B.f(m, pars)
(r,param) ← pars
t ←$ A.f(m, param)
Return 〈 r, t〉

Fig. 8. H-SO adversary B in the proof of Claim A.

Claim. Let H = (HKg, h) be a hash function family with domain HDom and
range HRng. Let B be a boolean H-SO adversary against H with respect to the
message sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced boolean
H-SO adversary C such that for all k ∈ N

Advh-so
H,B,M(k) ≤

(2
δ

+ 1
)2

· Advh-so
H,C,M(k).

where the running time of C is about that of B plus O(1/δ)

Proof. For simplicity, we assume 1/δ is an integer. Consider adversary C in
Fig. 9. Note that C is δ-balanced, since for all b ∈ {0, 1}

∣∣∣Pr [ t = b : t ←$ C.f(m,param) ] − 1
2

∣∣∣ ≤ 1
2/δ + 1

.

We define EB and EC to be events where games H-SO-REALB,M
H and

H-SO-REALC,M
H output 1, respectively. Let T be the event that i, j = 2/δ + 1.

Therefore we have

Pr [EC ] = Pr [EC | T ] · Pr [T ] + Pr
[
EC | T

] · Pr
[
T

]

=
( 1

2/δ + 1

)2

Pr [EB ] +
1
2
Pr

[
T

]
.

We also define TB and TC to be the events where games H-SO-IDEALB,M
H

and H-SO-IDEALC,M
H output 1, respectively. Similarly, we have

Pr [TC ] =
( 1

2/δ + 1

)2

Pr [TB ] +
1
2
Pr

[
T

]
.

Summing up, we obtain that Advh-so
H,B,M(k) ≤

(
2
δ +1

)2

·Advh-so
H,C,M(k). This

completes the proof of Claim A.
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Algorithm C.pg(1k)
param ←$ B.pg(1k)
Return param

Algorithm C.f(m, param)
t ←$ B.f(m, param)
j ←$ {1, · · · 2(1/δ) + 1}
If j ≤ 1/δ then return 0
If j ≤ 2(1/δ) return 1
Return t

Algorithm C.cor(k,h, param)
(I, st) ←$ B.cor(k,h, param)
Return (I, st)

Algorithm C.g(st,m[I], param)
ω ←$ B.g(st,m[I], param)
i ←$ {1, · · · 2(1/δ) + 1}
If i ≤ 1/δ then return 0
If i ≤ 2(1/δ) return 1
Return ω

Fig. 9. H-SO adversary C in the proof of Claim A.
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