
A Geometric Approach to Homomorphic
Secret Sharing

Yuval Ishai1, Russell W. F. Lai2(B), and Giulio Malavolta3

1 Technion, Haifa, Israel
2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

russell.lai@cs.fau.de
3 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. An (n, m, t)-homomorphic secret sharing (HSS) scheme
allows n clients to share their inputs across m servers, such that the
inputs are hidden from any t colluding servers, and moreover the servers
can evaluate functions over the inputs locally by mapping their input
shares to compact output shares. Such compactness makes HSS a useful
building block for communication-efficient secure multi-party computa-
tion (MPC).

In this work, we propose a simple compiler for HSS evaluating
multivariate polynomials based on two building blocks: (1) homomor-
phic encryption for linear functions or low-degree polynomials, and
(2) information-theoretic HSS for low-degree polynomials. Our compiler
leverages the power of the first building block towards improving the
parameters of the second.

We use our compiler to generalize and improve on the HSS scheme
of Lai, Malavolta, and Schröder [ASIACRYPT’18], which is only effi-
cient when the number of servers is at most logarithmic in the security
parameter. In contrast, we obtain efficient schemes for polynomials of
higher degrees and an arbitrary number of servers. This application of
our general compiler extends techniques that were developed in the con-
text of information-theoretic private information retrieval (Woodruff and
Yekhanin [CCC’05]), which use partial derivatives and Hermite interpo-
lation to support the computation of polynomials of higher degrees.

In addition to the above, we propose a new application of HSS to MPC
with preprocessing. By pushing the computation of some HSS servers to
a preprocessing phase, we obtain communication-efficient MPC protocols
for low-degree polynomials that use fewer parties than previous proto-
cols based on the same assumptions. The online communication of these
protocols is linear in the input size, independently of the description size
of the polynomial.

1 Introduction

In lightweight secure multi-party computation (MPC) protocols, communication
is usually the bottleneck for efficiency. For example, typical protocols based on
oblivious-transfer (OT) have a communication complexity linear in the circuit
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 92–119, 2021.
https://doi.org/10.1007/978-3-030-75248-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_4

A Geometric Approach to Homomorphic Secret Sharing 93

size of the function being computed. A promising approach to bypass this barrier
is homomorphic secret sharing (HSS) for multivariate polynomials, which enables
low communication MPC protocols, while retaining practical efficiency. In this
work, we study this problem and present a set of new lightweight techniques to
maximize the degree of polynomials supported by HSS without increasing the
communication cost.

1.1 Homomorphic Secret Sharing

An (n,m, t)-HSS scheme allows n input clients to share their secret inputs
(x1, . . . , xn) to m non-communicating servers, such that the latter can homo-
morphically evaluate any admissible public function f over the shares, and pro-
duce the output shares (y1, . . . , ym). Using these, an output client can recover
f(x1, . . . , xn). Shares of HSS should be much shorter, or ideally of size indepen-
dent of the size of the description of the function f being computed. This non-
trivial feature distinguishes HSS from OT-based MPC. As for ordinary threshold
secret sharing schemes, security requires that the servers cannot learn anything
about the inputs assuming at most t of them are corrupt.

HSS was conceived [10] as a lightweight alternative to fully-homomorphic
encryption (FHE) [23] and it leverages the non-collusion of the servers to achieve
better efficiency. Indeed, any homomorphic encryption for a function class F can
be seen as an (n, 1, 1)-HSS for the same class. Due to the distributed setting,
homomorphic secret sharing can be constructed from assumptions that do not
imply a fully homomorphic encryption scheme, such as the intractability of the
Diffie-Hellman (DDH) problem [20], or even information-theoretically.

Boyle et al. [10] proposed a DDH-based (n, 2, 1)-HSS scheme for branching
programs, where the reconstruction function is simply the addition of output
shares. This enables many important applications, such as low-communication
2-party computation, efficient round-optimal multiparty computation protocols,
and 2-server private-information retrieval. See [12] for a comprehensive discus-
sion on the matter. One drawback of the scheme is that its correctness holds only
for an inverse polynomial probability. Amplifications through parallel repetition
results in a loss of concrete efficiency.

Boyle, Kohl, and Scholl [13] proposed a counterpart of [10] based on the learn-
ing with errors (LWE) assumption with negligible error. Similar to FHE, their
scheme is only concretely efficient in an amortized sense and only for SIMD1-style
computations. Boyle et al. [9] proposed an (n, 2, 1)-HSS scheme for constant-
degree polynomials based on the learning parity with noise (LPN) assumption.
The scheme does not apply to the multi-input setting, i.e., the entire input must
come from a single party, and the share size O(λd) (as opposed to the trivial
O(nd)) grows exponentially with the degree d.

In a different line of work originated by Catalano and Fiore [15], Lai, Mala-
volta, and Schröder (LMS) [31] considered a variant of the HSS model, where
the reconstruction function is not necessarily linear. While this notion is strictly
weaker than that considered by Boyle et al. [10], it is still useful in some context

1 Single-Instruction-Multiple-Data.

94 Y. Ishai et al.

to “amplify” the homomorphic capability of some encryption schemes, leveraging
the existence of multiple non-colluding servers. They proposed a construction of
(n,m, 1)-HSS for degree d < (k + 1)m polynomials using only a homomorphic
encryption scheme for degree k polynomials (k-HE), for any k ≥ 1. The LMS
construction [31] focused on the case t = 1. Their discussion of how the con-
struction can be extended to t > 1 was non-constructive. A constructive version
for general t ≥ 1 was proposed in [35]. The main shortcoming of LMS [31,35] is
that it is only efficient for a small number of servers, i.e., m = O(log λ), where
λ is the security parameter. This is due to the difficulty of the combinatorial
problem of assigning monomials of the expanded form of

∏
�∈[d](

∑
i∈[n] Xi) to

m servers so that each monomial is computed by exactly one server.

1.2 Power of Low-Degree Polynomials

The homomorphic computation of low-degree polynomials enables several inter-
esting applications, that we discuss below.

1. Private Information Retrieval: An m-server private information retrieval
(PIR) protocol allows a client to retrieve the entry of a certain database
(stored by all servers) without revealing which entry he is interested in. HSS
offers a natural implementation of PIR by allowing the client to secret share
the index across all servers, who can homomorphically evaluate the index
selection function and return the corresponding entry of the database to
the client. It is a well-known fact that the index selection function can be
expressed as a low-degree polynomial (logarithmic in the size of the database).

2. Private Queries: In the context of private queries, even a few extra degrees of
computation turn out to be useful. Instead of the simple index selection, the
servers can answer more complex queries, such as conjunctive statements [6].
As a concrete example, a client can query how many database entries contain
a 1 at positions (i, j), without revealing the indices (i, j), by just adding a
single degree to the polynomial homomorphically evaluated by the servers.
See [3] for an elaborate discussion on the matter. Other examples of useful
queries computable with low-degree polynomials include pattern matching
over unsorted databases [1,2].

3. Machine Learning: HSS for low-degree polynomials can be used to securely
compute repeated linear operations, such as matrix multiplication (for small
amounts of matrices). These operations are recurrent for many interesting
tasks, such as the secure computation of the training phase (e.g., [26]) and
classification phase of (e.g., [8]) of machine learning.

4. Biometrics: In applications of biometrics it is often required to compare or
compute the distance of two data points. These tasks, such as the comparison
of two integers [33], Hamming distance [38], and edit distance [16], can be
represented as the computation of low-degree polynomials.

5. Statistical Analysis: Low-degree polynomials allow one to compute statistics
over private data, such as low-order moments, correlations, and linear regres-
sions. See, e.g. [15] and references therein.

A Geometric Approach to Homomorphic Secret Sharing 95

1.3 Our Results

The starting point of this work is the observation that the LMS construction
can be viewed more abstractly as compiling an information-theoretic (IT) HSS
scheme into its computational counterpart using k-HE. In their case, the IT HSS
scheme consisted of the so called CNF secret sharing scheme [29], consequently,
the inefficiency of their scheme for m = Ω(log λ) servers is essentially due to
the difficulty of evaluating CNF shares, which in turn is related to the #P-
hard problem of computing the permanent of matrices [27]. With this view, it is
natural to ask if the CNF scheme can be replaced with another IT HSS scheme,
so that its (k-HE-compiled) computational variant is efficient for m = poly(λ)
servers.

Generic Compiler from IT HSS to HSS Using HE. In this work, we
answer the above question positively. Specifically, we propose a generic compiler
based on homomorphic encryption that compiles a certain class of IT HSS for
degree-d polynomials into their computational counterpart with less client com-
putation (and hence shorter output shares). In other words, for a fixed client
computation cost, the computational variant supports higher degrees.

Theorem 1 (Informal). Let k, � ∈ N be constants with k ≤ �, and d < (�+1)m
t .

Suppose there exists an IT (n,m, t)-HSS for degree-d polynomials satisfying cer-
tain structural properties, and a CPA-secure k-HE scheme. Further suppose that
the IT HSS scheme has recovery information size ρ, input share size α, output
share size β, server computation σ, and client computation γ. Then there exists
an (n,m, t)-HSS for degree-d polynomials with the following efficiency measures:

– Recovery information size ρ′ = ρ
– Input share size α′ = ρ + α
– Output share size β′ = ρ�−k

– Server computation σ′ = σ + βρ�

– Client computation γ′ = mρ�−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

For k = �, when the base IT HSS scheme is instantiated with the CNF scheme2,
we recover the LMS schemes [31,35].

Theorem 1 might seem confusing at first glance – Our compiler turns a degree-
d IT HSS into another degree-d computational HSS. What is the gain? We
highlight that the output share size of the resulting HSS is independent of that
of the base HSS, which could be much larger. From another perspective, for a
fixed communication cost, the compiled (computational) HSS supports a higher
degree than the base (IT) HSS.

More concretely, as we will see later in Corollary 1 (setting � = k + 1), with
O(n) · poly(λ) communication, the compiled HSS supports degree < (k + 2)m/t

2 More rigorously, the LMS construction can be seen as compiling the “first-order
CNF scheme” which we define in Sect. 4.

96 Y. Ishai et al.

with m servers, instead of < 2m/t by the base HSS. Note that the supported
degree is proportional to km, i.e., the expressiveness of k-HE is amplified mul-
tiplicatively by the number of servers m.

Generalizations of Existing Compatible IT HSS. In search of a substi-
tute of the CNF scheme, we observe that implicit in the work of Woodruff and
Yekhanin [37] lies an IT HSS, which was implicitly used to construct information-
theoretic secure multi-party computation protocols [3]. This scheme, which we
denote by WY1 (first-order Woodruff-Yekhanin HSS), can be seen as a general-
ization of the well-known Shamir secret sharing scheme [36], which we denote
by WY0.

To recall, in the Shamir secret sharing scheme, a secret x ∈ F
n is shared into

(s1, . . . , sm) = (ϕ(1), . . . , ϕ(m)) for some degree-t polynomial ϕ with ϕ(0) = x.
To evaluate a degree-d polynomial f , where d < m

t , server j sends f(sj) = (f ◦
ϕ)(j) to the output client. Since f ◦ϕ is a polynomial of degree at most dt < m,
the output client can recover f(x) = (f ◦ϕ)(0) by Lagrange interpolation. Notice
that the Shamir secret sharing scheme is compact in the sense that, while an
input share is of length n, an output share is of constant length. The latter is in
some sense “wasteful”, since increasing the output share length to n (which we
refer to as balanced), does not increase the overall asymptotic communication
complexity. To utilize this “wasted” space, the idea of Woodruff and Yekhanin is
to let the servers further compute the n first-order derivatives of f evaluated at
sj . Since m additional data points are available, the degree of f can now be as
high as d < 2m

t , and f(x) = (f ◦ϕ)(0) can be recovered by Hermite interpolation.
Our idea to further increase the degree of the supported polynomials is to

let the servers compute even higher-order derivatives.3 With some routine cal-
culation one can show that the output share size is O(n�) if derivatives of up to
the �-th order are evaluated and sent to the output client. While this does not
necessarily help in a standalone use of the HSS scheme, since it increases the
overall communication complexity (and also client computation), it turns out
that the increased communication can be brought back down again using the
k-HE-based compiler, so that the resulting scheme is balanced or even compact.

Theorem 2 (Informal). For any constant � ∈ N and d < (�+1)m
t , there exists

an IT (n,m, t)-HSS scheme WY� for degree-d polynomials with the following
efficiency measures:

– Recovery information size ρ = n
– Input share size α = n
– Output share size β = n�

– Server computation σ = |f |n�−1

– Client computation γ = mn�

3 The idea of generalizing the approach of Woodroof and Yekhanin to higher order
derivatives was already explored in the context of locally decodable codes [30]
although in very different parameter settings. To the best of our knowledge, its
application in cryptography is new to this work.

A Geometric Approach to Homomorphic Secret Sharing 97

Table 1. Comparison of HSS schemes. Computation complexities for CNF� and CNF�

+ k-HE are rough (over)estimations. The LMS scheme [31,35] achieves the efficiency
reported in the “CNF� + k-HE” column with � = k. Factors of poly(λ) contributed by
log |F| and k-HE ciphertext size are omitted.

Scheme CNF� CNF� + k-HE WY� WY� + k-HE

Security IT Comp. IT Comp.

Max degree d (Exclusive) (� + 1)m/t

Recovery info. size ρ mtn mtn �n �n

Input share size α mtn mtn n �n

Output share size β (mtn)� (mtn)�−k n� (�n)�−k

Server computation σ (mtn)d (mtn)d |f |n�−1 |f |n�−1 + (�n2)�

Client computation γ �m(mtn)� m(mtn)�−k �m(�n)� m(�n)�−k

Furthermore, WY� satisfies the structural requirements of the k-HE-based com-
piler. All log |F| factors are omitted.

Implications. When WY� is compiled with the k-HE based compiler, we obtain
the following result.

Corollary 1 (Informal). Let k, � ∈ N be constants with k ≤ �, and d <
(�+1)m

t . Suppose there exists a CPA-secure k-HE scheme. Then there exists an
(n,m, t)-HSS for degree-d polynomials with the following efficiency measures:

– Recovery information size ρ′ = n
– Input share size α′ = n
– Output share size β′ = n�−k

– Server computation σ′ = |f |n�−1 + n2�

– Client computation γ′ = mn�−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

As shown in Table 1, if we treat � as a constant, the k-HE-compiled
WY� scheme strictly outperforms the k-HE-compiled CNF� scheme (� = 1 in
LMS [31,35]) in all parameters. We are mostly interested in the setting where
the communication is balanced, in the sense that the input share size is compa-
rable to the output share size. From Corollary 1, this can be achieved by setting
� = k + 1.

In Table 2, we highlight some practically interesting parameters for the k-
HE-compiled WY� scheme. For a fixed communication cost n · poly(λ), we state
the relation between k, � = k + 1 (so that the HSS is balanced), the corruption
threshold t, the number of servers m, and the degree d of supported polynomi-
als. The degree d reported for each setting of (t,m) is generally higher than that

98 Y. Ishai et al.

Table 2. Some practically interesting parameters for our HSS schemes for polynomials
using k-HE for k = 1, 2 and linear communication. The first six rows are obtained by
setting k = 1 and � = 2 in WY� + k-HE. The last six rows are obtained by setting
k = 2 and � = 3.

Corruption t # Servers m Max degree d (Inclusive)

1 2 5

1 3 8

1 4 11

2 3 4

2 4 5

3 4 3

1 2 7

1 3 11

1 4 15

2 3 5

2 4 7

3 4 5

supported by LMS [31] (t = 1) and [35] (t ≥ 1) by an additive factor of m/t,
since they did not consider balanced HSS schemes. We focus on small k = O(1)
since for such values of k it is not known how a k-HE can be bootstrapped [23]
into an FHE. For k ∈ {1, 2}, k-HE can be realized based on assumptions that
are not known to imply FHE: For polynomials whose outputs are contained in
a polynomial-size space, the ElGamal encryption [21] is a 1-HE based on the
decisional Diffie Hellman (DDH) assumption, and the BGN encryption [7] is a
2-HE based on the subgroup decision assumption. For large outputs, the Pail-
lier encryption [34] and Damg̊ard–Jurik encryption [19] are 1-HE based on the
decisional composite residuosity assumption. The additive variant of ElGamal
[14] is a 1-HE based on DDH in groups with a discrete-logarithm-easy subgroup.
For general k = O(1), k-HE can be construction from the learning with errors
assumption with smaller parameters than those which imply FHE, and therefore
are concretely efficient.

Application to MPC with Preprocessing. In typical (n,m, t)-HSS schemes,
including ones constructed in this work, there exists p < m such that any p
input shares are distributed uniformly over an efficiently sampleable space. In
other words, the input shares of any, say the first, p parties contain no infor-
mation about the input (x1, . . . , xn), and can be generated in a preprocessing
phase even before the inputs (x1, . . . , xn) are known. We formalize this as the
p-preprocessing property, and show that the WY� scheme its k-HE-compiled
counterpart support

⌊
t

�+1

⌋
-preprocessing.

A Geometric Approach to Homomorphic Secret Sharing 99

We then show that, given a general purpose MPC protocol (whose commu-
nication cost might be linear in the function description size), an HSS for poly-
nomials with p-preprocessing can be compiled into a communication-efficient
MPC for polynomials with preprocessing. Our technique generalizes the app-
roach taken in [5] for obtaining 2-party MPC with preprocessing from 3-server
PIR.

Recall that an MPC protocol with preprocessing is split into two phases
– a preprocessing phase and an online phase. In the preprocessing phase, a
trusted party performs an input-independent preprocessing on the function f ,
and distributes shares of the preprocessing result to the m participants. Alter-
natively, the trusted party can be emulated by an MPC among the m par-
ties. Then, in the online phase, the m parties collectively receive their online
inputs (x1, . . . , xn), where each party either possesses a share or a disjoint sub-
set of entries of (x1, . . . , xn), and interact in an online MPC protocol to compute
f(x1, . . . , xn). The hope is that, by exploiting the offline preprocessing, the online
communication cost can be reduced such that it is independent of the description
size of f .

Our idea is to push the work of the first p servers in an HSS scheme with
p-preprocessing to the preprocessing phase of the MPC protocol, and thereby
reduce the minimal necessary number of parties required to run the protocol.
The MPC preprocessing first generates the inputs shares of the first p HSS
servers, which can be done independently of the input. It then homomorphically
evaluates f on the p input shares to produce p output shares. The input and
output shares of the first p HSS servers are then secret shared among the m
MPC participants.

In the online phase, the m MPC participants receive their respective inputs
(x1, . . . , xn) and engage in an MPC protocol to generate the remaining input
shares. Naturally, the j-th participant gets the (p + j)-th HSS input share.
Each participant can then proceed to homomorphically evaluate f on their input
shares, and then engage in another MPC to recover the computation result from
all output shares.

Note that the two MPC sub-protocols run in the online phase are computing
functions whose circuit size is comparable to the input size, independently of |f |.
For degree d polynomials, |f | can be of size O(nd). Our MPC protocol therefore
potentially achieves an exponential improvement over general-purpose MPC,
without using heavy tools such as FHE.

In the case where t is a multiple of � + 1, when instantiated with the k-HE-
compiled WY� scheme and, say, an OT-based MPC, we obtain an m party MPC
protocol with preprocessing for degree-d polynomials, where d < (�+1)m

t +1, i.e.,
the degree grows by 1 compared to a direct use of HSS without increasing the
number of participants. The online communication is mn�−k · poly(λ). As long
as |f | = ω(mn�−k), which holds for the vast majority of n-variate polynomials
of degree d < (�+1)m

t + 1, our preprocessing MPC achieves a communication
complexity sublinear in |f |. Due to the requirement that t is a multiple of � + 1,
the preprocessing technique seems to be more suited to the setting where t is large

100 Y. Ishai et al.

Table 3. Some practically interesting parameters for our MPC protocols with prepro-
cessing with n ·poly(λ) communication, based on HE for linear or quadratic functions.

Corruption t # Parties m Max degree d (Inclusive) Base scheme

3 4 4 WY2 + 1-HE

3 5 5 WY2 + 1-HE

3 6 6 WY2 + 1-HE

4 5 5 WY3 + 2-HE

4 6 6 WY3 + 2-HE

4 7 7 WY3 + 2-HE

(close to m). In Table 3, we highlight some practically interesting parameters
for the MPC protocols with preprocessing obtained via our transformation.

Beyond the computation of degree-d polynomials, our preprocessing MPC
can be used as a building block in MPC for structured circuits whose “gates”
compute degree-d mappings, similar to the ideas of [10,11,17] for evaluating
layered circuits and circuits over low-degree gates. Some examples for useful
circuits of this kind were given in [17]. These include circuits for Fast Fourier
Transform (FFT), symmetric-key cryptography, and dynamic programming.

1.4 Related Work

In addition to the aforementioned related works, we point out that the task of
evaluating degree-d n-variate polynomials privately was also considered in the
context of maliciously-secure MPC, where the adversary is allowed to corrupt
all but one parties, i.e., t = m − 1, whereas we only consider HSS and MPC
schemes in the semi-honest setting. Below we discuss the semi-honest protocols
implicitly described in two maliciously-secure MPC, both of which are indirectly
based on the idea of compiling an IT HSS using a k-HE (for k = 1), which
is made explicit in this work. These schemes inherently require that the poly-
nomial to be evaluated is represented in expanded form, and consequently has
only polynomially-many monomials. In contrast, our WY-based schemes support
polynomials represented by polynomial-sized arithmetic circuits.

The semi-honest part of the 2-party protocol of Franklin and Mohassel [22] is
precisely the HSS obtained by compiling CNF1 with a 1-HE in the setting where
(t,m) = (1, 2). They also proposed an m-party (maliciously-secure) protocol for
degree-d polynomials which achieves computation and communication complex-
ity poly(m) · n�d/2�, which is comparable to the 1-HE compiled WY� scheme
which has communication complexity m(�n)�−1 and supports polynomials of
degree at least � + 1 (c.f., Table 1).

Underneath the protocol of Dachman-Soled et al. [18] lies the following proto-
col for evaluating a (publicly known) monomial μ(x1, . . . , xn) where (x1, . . . , xn)
are jointly contributed by m parties. First, the monomial is split into μ =

A Geometric Approach to Homomorphic Secret Sharing 101

μ1 · . . . · μm, where μi(x1, . . . , xn) is a monomial which depends only on the
inputs of the i-th party. Party 1 encrypts the evaluation of μ1 using a 1-HE and
sends the ciphertext c1 to Party 2. Then, for i ∈ {2, . . . , m}, Party i homomor-
phically multiplies μi to the ciphertext ci−1 encrypting μ1 · . . . · μi−1 received
from Party i− 1 to obtain a new ciphertext ci. Finally, Party i sends ci to Party
i+1 if i �= m, or to everyone if i = m. Based on the above incremental evaluation
protocol, the (maliciously-secure) protocol of Dachman-Soled et al. [18] requires
(roughly) O(n2 log2 d) communication and O(n log d) computation, where the
logarithmic dependency on d is achieved by having each party precompute the
powers-of-2 of their inputs4. Due to the logarithmic dependency on d and the
limit of the number of monomials, their scheme seems best suited for evaluating
sparse polynomials of a high degree d = poly(λ).

2 Preliminaries

Let λ ∈ N denote the security parameter. The set of all polynomials and negli-
gible functions in λ are denoted by poly(λ) and negl(λ) respectively. An algo-
rithm with input length n is PPT if it can be computed by a probabilistic Turing
machine whose running time is bounded by some function poly(n). We use [n] to
denote the set {1, . . . , n}, and N0 to denote the set of all non-negative integers.
Given a finite set S, we denote by x ← S the sampling of an element uniformly
at random in S.

For simplicity, throughout this work we fix a field F which is sufficiently large,
such that for any polynomial f ∈ F[X1, . . . , Xn] we will be considering, we have
deg(f) < |F| ≤ 2λ. An F element can therefore be represented by λ bits. Let
e = (e1, . . . , en) ∈ N

n
0 and x = (x1, . . . , xn) ∈ F

n. We define the weight function
wt(e) := e1 + . . . + en. We use xe to denote the expression xe := xe1

1 . . . xen
n .

2.1 Homomorphic Encryption for Degree-k Polynomials (k-HE)

We recall the notion of homomorphic encryption for degree-k polynomials over
F.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme HE = (KGen,Enc,Eval,Dec) for degree-k polynomials over F, k-HE for
short, consists of the following PPT algorithms:

– KGen(1λ) : The key generation algorithm takes as input the security param-
eter λ and outputs the public key pk and the secret key sk.

– Enc(pk,x) : The encryption algorithm takes as input the public key pk and a
message x ∈ F

n for some n = poly(λ); it returns a ciphertext c ∈ Cn in some
ciphertext space C.

– Eval(pk, f, c) : The evaluation algorithm takes as input the public key pk, (the
description of) a polynomial f ∈ F[X1, . . . , Xn], and a ciphertext c ∈ Cn for
some n = poly(λ); it returns a ciphertext c′ ∈ C.

4 This degree reduction technique is generic and also applies to our HSS-based schemes.

102 Y. Ishai et al.

IND-CPAb
A,HE(1

λ) :

(pk, sk) ← KGen(1λ)

(x0, x1, state) ← A1(pk)

c ← Enc(pk, xb)

b′ ← A2(state, c)

return b′

Fig. 1. IND-CPA experiment for public-key encryption

– Dec(sk, c) : The decryption algorithm takes as input the private key sk and a
ciphertext c ∈ Cn for some n = poly(λ); it returns a plaintext x ∈ F

n.

We focus only on compact HE schemes [23], where the size of the ciphertext
space |C| = poly(λ) is independent of the size of the supported polynomials.

Definition 2 (Correctness). A k-HE scheme is said to be correct if for any
λ ∈ N, any (pk, sk) ∈ KGen(1λ), any positive integer n ∈ poly(λ), any polynomial
f ∈ F[X1, . . . , Xn] of degree at most k, and message x ∈ F

n, we have

Pr[Dec(sk,Enc(pk,x)) = x] ≥ 1 − negl(λ) , and

Pr
[

Dec(sk, c) = f(x) :
c ← Enc(pk,x)

c′ ← Eval(pk, f, c)

]

≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc and Eval. The scheme
is perfectly correct if the above probabilities are exactly 1.

Definition 3 (CPA-Security). A homomorphic encryption scheme HE is
IND-CPA-secure (has indistinguishable ciphertexts under chosen plaintext
attack) if for any PPT adversary A = (A1,A2)

∣
∣
∣Pr

[
IND-CPA0

A,HE(1
λ) = 1

] − Pr
[
IND-CPA1

A,HE(1
λ) = 1

] ∣
∣
∣ ≤ negl(λ)

where the experiment IND-CPAb
A,HE is defined in Fig. 1.

3 Definition of Homomorphic Secret Sharing

We recall the notion of homomorphic secret sharing [12]. The definitions pre-
sented here are for the variant in the public-key setup model [31]. For the defi-
nitions in the plain model, we refer to [12,31].

Definition 4 (Homomorphic Secret Sharing (HSS)). An n-input m-
server homomorphic secret sharing scheme HSS = (KGen,Share,Eval,Dec) for
degree-d polynomials over F consists of the following PPT algorithms:

A Geometric Approach to Homomorphic Secret Sharing 103

– (pk, sk) ← KGen(1λ) : On input the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk.

–
(

in1, . . . , inm

rec1, . . . , recm

)

← Share(pk,x) : Given a public key pk, and an input

x ∈ F
n, the sharing algorithm outputs a a set of input shares (in1, . . . , inm)

where inj ∈ {0, 1}α·poly(λ) and their corresponding recovery information
(rec1, . . . , recm) where recj ∈ {0, 1}ρ·poly(λ).

– outj ← Eval(pk, j, f, inj) : The evaluation algorithm is executed by a server
Sj on inputs the public key pk, an index j, (the description of) a degree-d
polynomial f , and a share inj. Upon termination, the server Sj outputs the
corresponding output share outj ∈ {0, 1}β·poly(λ).

– y ← Dec

(

sk,
out1, . . . , outm,
rec1, . . . , recm

)

: On input a secret key sk, a tuple of output

shares (out1, . . . , outm), and a tuple of recovery information (rec1, . . . , recm),
the decoding algorithm outputs the result y of the evaluation.

The efficiency measures ρ = ρ(n), α = α(n) and β = β(n) are the lengths
of the recovery information, input shares, and output shares respectively (omit-
ting poly (λ) factors). An HSS scheme is said to be compact if β = poly (λ)
(independent of n), and balanced if β = O(α).

Remark 1. In the syntax, we decide to split the recovery information into m
chunks (rec1, . . . , recm), so that it is more convenient to describe the compiler
in Sect. 5, and so that we can omit a factor of m from the measure ρ to reduce
clutter. In general, the recovery information can be grouped into a single object
rec and the definition ρ can be changed accordingly.

Remark 2. In the literature, an HSS scheme is usually defined without the
recovery information (rec1, . . . , recm), i.e., ρ = 0. We remark that given an
HSS scheme with efficiency measures (ρ, α, β), we can construct another scheme
(with the same security under the same assumptions) with efficiency measures
(0, α + mρ, β + mρ), by having the input client secret-share r to the servers
and the servers relaying those shares to the output client. We use the present
definition for convenience.

Remark 3. Our syntax describes a setting where a single party provides all n
inputs to the Share algorithm for simplicity. In the case where the input xi

is provided by party i, we can consider an alternative syntax of Share which
inputs (pk, xi) and outputs (ini,j , reci,j). The Share algorithm of all HSS schemes
considered in this work can be “split” to suit the multi-input syntax.

Definition 5 (Correctness). An n-input m-server HSS scheme for degree-d
polynomials is correct if for any λ,m, n ∈ N, any (pk, sk) ∈ KGen(1λ), any
f ∈ F[X1, . . . , Xn] with deg(f) ≤ d, any n-tuple of inputs x = (x1, . . . , xn) ∈ F

n,
it holds that

104 Y. Ishai et al.

Securityb
A,HSS(1

λ) :

(pk, sk) ← KGen(1λ)

(x0,x1, j1, . . . , jt, state) ← A0(pk)(
in1, . . . , inm,
rec1, . . . , recm

)
← Share(pk, xb)

b′ ← A1(state, inj1 , . . . , injt)

return b′

Fig. 2. Security experiments for (∗, m, t)-HSS

Pr

⎡

⎣Dec

(

sk,
out1, . . . , outm,
rec1, . . . , recm

)

= f(x) :

(
in1, . . . , inm

rec1, . . . , recm

)

∈ Share(pk,x)

∀j ∈ [m], outj ∈ Eval(pk, j, f, inj)

⎤

⎦

≥1 − negl(λ) ,

where the probability is taken over the random coins of Share and Eval. The
scheme is perfectly correct if the above probability is exactly 1.

The security of an HSS scheme is analogous to the CPA-security of HE, and
guarantees that no information about the message is disclosed to any t servers.

Definition 6 (Security). An n-input m-server HSS scheme is t-secure if for
any λ ∈ N there exists a negligible function negl(λ) such that for any PPT
algorithm A = (A0,A1),

∣
∣Pr

[
Security0A,HSS = 1

] − Pr
[
Security1A,HSS = 1

]∣
∣ < negl(λ)

where Securityb
A,HSS is defined in Fig. 2 for b ∈ {0, 1}.

We use the short hand (n,m, t)-HSS to refer to n-input, m-server, t-secure
homomorphic secret sharing.

Definition 7 (p-Preprocessing). We say that an (n,m, t)-HSS scheme
HSS.(KGen,Share,Eval,Dec) supports p-preprocessing if there exists PPT algo-
rithms (PreProc,ShareComp) such that, for any λ ∈ N, any (pk, sk) ∈ KGen(1λ)
and any x ∈ F

n, the following distributions are identical:
⎧
⎪⎪⎨

⎪⎪⎩

(
in1, . . . , inm

rec1, . . . , recm

)

:

(
in1, . . . , inp

rec1, . . . , recp

)

← PreProc(pk, 1n)
(

inp+1, . . . , inm

recp+1, . . . , recm

)

← ShareComp

(

pk,
in1, . . . , inp,
rec1, . . . , recp,

,x

)

⎫
⎪⎪⎬

⎪⎪⎭

≡
{(

in1, . . . , inm

rec1, . . . , recm

)

:

(
in1, . . . , inm

rec1, . . . , recm

)

← Share(pk,x)

}

A Geometric Approach to Homomorphic Secret Sharing 105

If an HSS scheme supports p-preprocessing, it means that the shares of the
first p servers are independent of the input x, and can thus be computed in a
preprocessing phase when the input x is yet unknown.

Definition 8 (Information-Theoretic HSS). We say that HSS.(KGen,Share,
Eval,Dec) is information-theoretic (IT) if KGen outputs empty strings, and
HSS is secure against unbounded adversaries. In such case we simply write
HSS.(Share,Eval,Dec) to denote the HSS scheme and omit the public and secret
key inputs to the algorithms Share, Eval, and Dec. In case HSS supports p-
preprocessing, we also omit the public key input to PreProc and ShareComp.

4 Information-Theoretic Homomorphic Secret Sharing

Information-theoretic HSS exists implicitly in the literature of secret sharing
and private information retrieval (PIR). The simplest examples are the additive
secret sharing scheme and Shamir’s secret sharing scheme [36]. The former is an
(n,m,m−1)-HSS for degree-1 polynomials, i.e., linear functions, with efficiency
measures while the latter is an (n,m, t)-HSS for degree-

⌊
m−1

t

⌋
polynomials. Both

schemes are compact as an output share consists of a single F element.
In the following, we extract two IT HSS schemes – the “CNF” scheme CNF0

[29] and the scheme WY1 from Woodruff and Yekhanin [37] – from the liter-
ature of private information retrieval (PIR) which are generalizations of the
additive and Shamir secret sharing schemes respectively. We then present the
“�-th order” generalizations of the two schemes – CNF� and WY� – which aim
to support higher-degree polynomials at the cost of, among other parameters,
larger recovery information size and higher degree client computation. The gen-
eralizations are done in a way compatible with the compiler to be presented in
Sect. 5, so that the higher degree client computation can be delegated back to
the servers in the compiled schemes. While the CNF� scheme is strictly inferior
to the WY� for all �, we include it since compiling CNF1 with our compiler in
Sect. 5 captures the LMS scheme [31,35].

4.1 CNF Secret Sharing

A generalization of the additive secret sharing scheme is the so called CNF secret
sharing scheme [29], where CNF stands for conjunctive normal form. The scheme
was first used in the context of PIR by Ishai and Kushilevitz [28].

Original Scheme CNF0. The idea of the CNF scheme is to write x ∈ F
n as a

sum of random elements so that x =
∑

u cu, where u = (u1, . . . , um) ∈ {0, 1}m

runs through all possible choices of choosing t out of m objects. The j-th share
is then defined as sj := (cu)u:uj=0, i.e., all cu where the j-th bit of u is 0. The
scheme is t-secure because, given any t-subset {j1, . . . , jt} ⊆ [m], there exists
cu∗ , where u∗

j = 1 for all j ∈ {j1, . . . , jt}, which is not known to this subset of
servers.

106 Y. Ishai et al.

The CNF scheme is clearly linearly homomorphic. Thus, for evaluating a
polynomial of degree d, it suffices to show how a monomial xe where wt(e) = d
can be evaluated. Without loss of generality, we consider the monomial

x1 · · · xd =
d∏

i=1

∑

u∈{0,1}m:
wt(u)=t

ci,u =
∑

u1,...,ud∈{0,1}m:
wt(ui)=t

d∏

i=1

ci,ui
.

To let the output client recover x1 · · · xd, one way is to have (at least) one
server being able to compute for each (u1, . . . ,ud) the term

∏d
i=1 ci,ui

. If so, we
distribute the terms so that each term is computed by exactly one server. Each
server can compute the partial sum of all the terms that it is assigned, and send
this sum to the output client. The latter can then sum over all partial sums and
recover x1 · · · xd.

We now examine the term
∏d

i=1 ci,ui
for any fixed u1, . . . ,ud ∈ {0, 1}m with

wt(ui) = t. Consider the string u = u1 ∨ . . . ∨ ud obtained by bit-wise OR
operations. Note that if d ≤ m−1

t , we have

wt(u) ≤
d∑

i=1

wt(ui) ≤ m − 1
t

· t < m.

Therefore there must exist j∗ ∈ [m] such that ui,j∗ = 0 for all i ∈ [d]. That is,
server j∗ possesses c1,u1 , . . . , cd,ud

and can thus compute the term.
Although it is information theoretically possible for the parties to compute

x1 · · · xd, there seems to be no natural way to distribute the terms among the
servers. In particular, as noted in [27], when t = 1, m = d+1, and the terms are
distributed greedily to the servers, then the last server would need to compute the
permanent of a d-by-d matrix, which is #P-hard. The difficulty of distributing
the terms limits the number of servers in [31,35] to be logarithmic in λ.

For the case t = 1, [27, Section 5.2] showed an alternative method of com-
puting x1 · · · xd efficiently. The idea is essentially to first locally convert a CNF
share into a Shamir share of the same secret, and then perform homomorphic
evaluation on the Shamir share. We present here a generalization of the method
for any t < m. Fix an arbitrary m-subset {ζ1, . . . , ζm} ⊆ Zq. Define the degree-dt
polynomial

p(Z) :=
d∏

i=1

∑

u∈{0,1}m:
wt(u)=t

ci,u

∏

j:uj=1

(1 − Z/ζj)

such that p(0) =
∏d

i=1

∑
u∈{0,1}m:
wt(u)=t

ci,u = x1 · · · xd. Note that p(ζj) does not

depend on the values of ci,u where the j-th bit of u is 1, and can therefore be
computed by the j-th server. Since the degree of p is dt ≤ m − 1, p(0) can be
recovered by interpolating p(ζ1), . . . , p(ζm).

A Geometric Approach to Homomorphic Secret Sharing 107

In general, given an n-variate degree-d polynomial f , we can define

pf (Z) := f

⎛

⎜
⎜
⎝

∑

u∈{0,1}m:
wt(u)=t

c1,u

∏

j:uj=1

(1 − Z/ζj), . . . ,
∑

u∈{0,1}m:
wt(u)=t

cn,u

∏

j:uj=1

(1 − Z/ζj)

⎞

⎟
⎟
⎠ .

The value f(x) can be recovered by f(x) = pf (0).

Generalized Scheme CNF�. In the above, the client is required to perform
only a simple linear computation for recovery. We show that the computation of
higher degree polynomials is possible, if the client is willing to perform a degree-�
computation for � > 1.

We first consider the naive strategy of distributing terms to servers, and
discuss the interpolation-based approach later. In the former setting, it suffices
to have that, for any fixed u1, . . . ,ud ∈ {0, 1}m with wt(ui) = t, there exists a
server j∗ ∈ [m] and an index set I of size |I| ≥ d − � such that ui,j∗ = 0 for all
i ∈ I. Server j∗ can therefore compute

∏
i∈I ci,ui

, and leave the computation of∏
i∈[d]\I ci,ui

to the output client. To compute the latter, the client would need
to store locally a copy of all shares – the recovery information is the same as the
input shares.

We argue that if dt < (�+1)m, then the above condition is satisfied. Suppose
not, then for all j ∈ [m], we have |{i ∈ [d] : ui,j = 0}| ≤ d−�−1. In other words,
for all j ∈ [m], we have |{i ∈ [d] : ui,j = 1}| ≥ � + 1. Summing up the weights of
all ui, we have

∑d
i=1 wt(ui) ≥ (�+1)m. By the pigeonhole principle, there must

exist i∗ such that

wt(ui∗) ≥ (� + 1)m
d

>
(� + 1)mt

(� + 1)m
= t

which is a contradiction as wt(ui) = t for all i ∈ [d].
The CNF scheme suffers from many drawbacks. First, each input share con-

sists of
(
m
t

)
n F elements. It also suffers from inefficient evaluation, unless the

interpolation-based evaluation is used, which makes it equivalent to the scheme
presented in Sect. 4.2, except with larger input shares. Finally, the output share
size is upper bounded by the number of monomials of degree at most � over the
variables (ci,u)i∈[n],u∈{0,1}m:wt(u)=t, i.e.,

((m
t)n+�

�

)
= O((mtn)�).

We next state the formal theorem about the CNF� scheme. Its proof is already
written inline in the above discussion.

Theorem 3. Let d < (�+1)m
t . The �-th order CNF secret sharing scheme

CNF� is an IT (n,m, t)-HSS for degree-d polynomials, with efficiency measures
(ρ, α, β) =

(
mtn,mtn, (mtn)�

)
.

Similar to the � = 0 case, the above approach suffers in evaluation efficiency
since there is no natural way to distribute the terms. Naturally, one would hope
to use a generalization of the interpolation-based approach to achieve the same

108 Y. Ishai et al.

parameter (d =
⌊
(�+1)m−1

t

⌋
). Indeed, in Sect. 4.2 we recall and generalize a

technique by Woodruff and Yekhanin [37] of using partial derivatives and Her-
mite interpolation to support higher degree polynomials, which would also be
applicable in CNF�. Since the resulting schemes, which we denote by WY�, are
superior to CNF� in all parameters, we do not discuss applying the technique to
CNF� in detail.

4.2 �-th Order Woodruff-Yekhanin HSS

In an insightful work of Woodruff and Yekhanin [37], they constructed a PIR
scheme which can be viewed as an (n,m, t)-HSS for degree-

⌊
2m−1

t

⌋
polynomials,

which we call the first-order Woodruff-Yekhanin HSS WY1. The idea of the
scheme is as follows.

First Order Scheme by Woodruff and Yekhanin. We begin with the
sharing procedures of Shamir’s scheme. To secret-share x ∈ F

n, the input client
sample a random (vector valued) degree-t polynomial ϕ(Z) so that ϕ(0) = x.
The j-th share is defined as sj := ϕ(j). What differs from Shamir’s scheme is
that the input client also computes, as recovery information, the derivatives of
ϕ evaluated at j ∈ [m], denoted by ϕ(1)(j), ϕ′(j), or dϕ

dZ (j).
To evaluate a polynomial f of degree

⌊
2m−1

t

⌋
over a share sj , server j com-

putes as in Shamir’s scheme f(sj) = f(ϕ(j)). Additionally, it computes all par-

tial derivatives of f evaluated at sj , denoted by
(

∂f
∂Xi

(sj)
)

i∈[n]
. The j-th output

share is defined as yj :=
(
f(sj), ∂f

∂X1
(sj), . . . , ∂f

∂Xn
(sj)

)
.

Finally, to decode the output shares, the output client first recover (f ◦
ϕ)′(sj) = df◦ϕ

dZ (sj) by using the chain rule of derivatives. Then, since f ◦ ϕ
is a univariate polynomial of degree at most 2m − 1, it is possible to recover
f(ϕ(0)) = f(x) from m points on f ◦ ϕ and m points on (f ◦ ϕ)′ using Hermite
interpolation.

The scheme of Woodruff and Yekhanin is balanced, meaning that both input
and output shares consist of O(n) F elements. The result can be seen as a trade-
off between m

t degrees and compactness, when compared to Shamir’s scheme. If
we view the sharing, evaluation, and decoding procedures of an HSS as one MPC
protocol, then for a fixed input share size, a balanced HSS and a compact HSS
would give MPC protocols with the same asymptotic communication complexity.
In this sense, the extra m

t degrees are gained for free.

Generalization to Higher Orders. Intuitively, a way to support polynomials
of even higher degrees is to further sacrifice the output share size. The idea is
to let the servers compute all partial derivatives of order at most �, so that a
polynomial of degree at most d < (�+1)m

t can be supported. In a standalone
application of the HSS, this would not make sense as it is “wasteful” to have a

A Geometric Approach to Homomorphic Secret Sharing 109

WY�.Share(x)

ϕ ← (F[Z])n s.t.

{
deg(ϕ) = t

ϕ(0) = x

inj := ϕ(j), ∀j ∈ [m]

recj :=
(

ϕ
(u)(j)

)
u∈[�]

return

(
in1, . . . , inm,
rec1, . . . , recm

)

WY�.Eval(j, f, inj)

outj :=
(

f(sj), f
(e)(sj)

)
e∈Nn

0 :wt(e)≤�

return outj

WY�.Dec

(
out1, . . . , outm,
rec1, . . . , recm

)
foreach j ∈ [m], u ∈ [�] do

(f ◦ ϕ)(u)(sj)

= Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f
(e)(sj))e∈N0:wt(e)≤u)

y := Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[�])

Fig. 3. The �-th order Woodruff-Yekhanin HSS.

smaller input share size than the output share size. However, with the observa-
tion that, in our compiler constructed in Sect. 5, the output share size of the
resulting HSS scheme is independent of that of the base scheme, sacrificing the
output share size even more for the support of more degrees might be worth it.
We therefore formalize this intuition in Fig. 3 and call the resulting scheme the
�-th order Woodruff-Yekhanin HSS, denoted by WY�.(Share,Eval,Dec).

For e ∈ N
n
0 , we use the notation f (e)(x) to denote the high-order partial

derivative ∂wt(e)f
∂X

e1
1 ...∂Xen

n
evaluated at x. For u ∈ [�], we make use of a generalization

of the Faa di Bruno formula [32] which expresses (f ◦ϕ)(u)(j) as a linear function
of (f (e)(sj))e∈Nn

0 :wt(e)≤u with coefficients determined by degree-u polynomials of
(ϕ(h)(j))h∈[u]. We denote this formula by

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f (e)(sj))e∈N0:wt(e)≤u).

Finally, we use the notation

Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[�])

to denote the value f(ϕ(0)) recovered using Hermite interpolation.

Theorem 4. Let d < (�+1)m
t . The �-th order Woodruff-Yekhanin HSS WY� is

an IT (n,m, t)-HSS for degree-d polynomials with efficiency measures (ρ, α, β) =(
�n, n, n�

)
.

Proof. Input shares of WY� are just shares of the Shamir secret sharing scheme.
Security thus follows immediately. More seriously, for any fixed t-subset of input
shares {inj1 , . . . , injt

} and any input x ∈ F
n, there exists a unique degree-t

polynomial ϕ such that ϕ(0) = x and ϕ(j) = inj for all j ∈ {j1, . . . , jt}. The set
{inj1 , . . . , injt

} therefore contain no information about the true input.

110 Y. Ishai et al.

The support of degree-d polynomials follows immediately from Hermite
interpolation. Specifically, we note that the output client obtains the following
(� + 1)m data points:

(1, (f ◦ ϕ)(1)) . . . (m, (f ◦ ϕ)(m))
(1, (f ◦ ϕ)′(1)) . . . (m, (f ◦ ϕ)′(m))

...
. . .

...
(1, (f ◦ ϕ)(�)(1)) . . . (m, (f ◦ ϕ)(�)(m))

for a univariate degree-dt polynomial f ◦ ϕ and its derivatives. Since dt ≤ (� +
1)m−1 the client is able to recover f(x) = f(ϕ(0)) using Hermite interpolation.

The size of a recovery information ρ = �n and that of an input share α = n
can be easily observed. For the size of an output share, observe that an out-
put share consists of

(
f(sj), f (e)(sj)

)
e∈Nn

0 :wt(e)≤�
. The set {e ∈ N

n
0 : wt(e) ≤ �}

counts the number of n-variate monomials of degree at most �, and thus is of
size

(
n+�

�

)
= O(n�). We thus have β = n�.

Note that WY0 is simply the Shamir secret sharing scheme.

Computational Complexity. We remark about the computational complex-
ity of the servers and the output client. It is well-known, e.g., by the Baur-
Strassen theorem [4] or in the field of auto-differentiation, that if a multivariate
polynomial f can be computed by an arithmetic circuit of size denoted by |f |,
then there exists a circuit of size O(|f |) which computes f and all n first-order
partial derivatives of f simultaneously. Applying this recursively to the n first-
order partial derivatives suggests that the server computation is bounded by
O(|f |n�−1).

On the output client side, we note that

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f (e)(sj))e∈N0:wt(e)≤u)

is a linear function with
(
n+u

u

) ≤ (
n+�

�

)
terms, where each coefficient is a

degree-u polynomial with at most
(
2u
u

) ≤ (
2�
�

)
terms. The output client needs

to evaluate �m of these. Lastly, the Hermite interpolation is a linear function
with (� + 1)m terms. Therefore, the output client computation is bounded by
O

(
�m · (n+�

�

) · (
2�
�

))
= O

(
�m(�n)�

)
. For the cases of � = 1 or � = 2, the output

client computation is O(mn) and O(mn2) respectively.

Preprocessing. In the Share algorithm of WY�, a degree-t polynomial ϕ is
sampled such that the input x is encoded as ϕ(0) = x. Note that ϕ is not deter-
mined until t+1 points on it or its derivatives are fixed. We can therefore exploit
this property and push the sampling of p ≤ t

�+1 shares and their corresponding
recovery information, which in total consist of p(� + 1) ≤ t < t + 1 points, to a
preprocessing phase.

A Geometric Approach to Homomorphic Secret Sharing 111

WY�.PreProc(1n)

p :=
⌊

t

� + 1

⌋
s0,j ← F

n
, ∀j ∈ [p]

su,j ← F
n

, ∀j ∈ [p], ∀u ∈ [�]

inj := s0,j , ∀j ∈ [p]

recj := (su,j)j∈[p],u∈[�]

return

(
in1, . . . , inp,
rec1, . . . , recp

)

WY�.ShareComp

(
in1, . . . , inp,
rec1, . . . , recp,

,x
)

// Sample ϕ by Hermite interpolation.

ϕ ← (F[Z])n s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

deg(ϕ) = t

ϕ(0) = x

ϕ(j) = s0,j ∀j ∈ [p]
ϕ(u)(j) = su,j ∀j ∈ [p] ∀u ∈ [�]

inj := ϕ(j), ∀j ∈ [m] \ [p]

recj :=
(

ϕ
(u)(j)

)
j∈[p],u∈[�]

return

(
inp+1, . . . , inm,
recp+1, . . . , recm

)

Fig. 4.
⌊

t
�+1

⌋
-Preprocessing of the �-th order Woodruff-Yekhanin HSS.

Theorem 5. Let p ≤ t
�+1 . The �-th order Woodruff-Yekhanin HSS WY� sup-

ports p-preprocessing.

Proof. We show that WY� supports p-preprocessing by constructing the algo-
rithms WY�.(PreProc,ShareComp) in Fig. 4.

5 Compiler from IT HSS to HSS Using HE

For d < (k + 1)m and m = O(log λ), Lai, Malavolta, and Schröder [31] pro-
posed an (n,m, 1)-HSS scheme for degree-d polynomials based on any k-HE
scheme. Generalizing their approach, we present a compiler based on homomor-
phic encryption from IT HSS to HSS. Our compiler makes use of the following
elementary observation. Let f(X) be a ρ-variate degree-� polynomial. For any
0 ≤ k ≤ �, note that f(X) can be written as

f(X) =
∑

e∈N
ρ
0 :

wt(e)≤�−k

Xefe(X)

where fe(X) is a ρ-variate degree-k polynomial. Note that |{e ∈ N
ρ
0 : wt(e) ≤

� − k}| is the number of ρ-variate monomials of degree at most � − k, and can
be computed by

(
ρ+�−k

�−k

)
= O(ρ�−k).

5.1 The Compiler

Let IT-HSS.(Share,Eval,Dec) be a an IT (n,m, t)-HSS for degree-d polynomials
with the following properties:

– The recovery information recj is a vector rj ∈ F
ρ for all j ∈ [m].

– The output share inj is a vector yj ∈ F
β for all j ∈ [m].

112 Y. Ishai et al.

HSS.KGen(1λ)

(pk, sk) ← HE.KGen(1λ)

return (pk, sk)

HSS.Share(pk,x)(
in1, . . . , inm,
r1, . . . , rm

)
← IT-HSS.Share(x)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [m]

in′
j := (r̃j , inj), ∀j ∈ [m]

if h > 0 then

recj := rj , ∀j ∈ [m]

return
(

in′
1, . . . , in

′
m

rec1, . . . , recm

)

HSS.Eval(pk, j, f, in′
j)

yj ← IT-HSS.Eval(j, f, inj)

foreach e ∈ N
ρ
0 : wt(e) ≤ � − k do

d̃e,j ← HE.Eval

(
β∑

b=1

yj,b · Dece,j,b, r̃j

)

return out′j := (d̃e,j)e∈N
ρ
0 :wt(e)≤�−k

HSS.Dec

(
sk,

out′1, . . . , out
′
m

rec1, . . . , recm

)

foreach e ∈ N
ρ
0 : wt(e) ≤ � − k, j ∈ [m] do

de,j ← Dec(sk, d̃e,j)

y :=
∑

e∈N
ρ
0 :

wt(e)≤�−k

m∑
j=1

rejde,j

return y

Fig. 5. Compiler from IT-HSS to HSS based on HE.

– The decoding algorithm IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) is a linear func-
tion of (y1, . . . ,ym), where the coefficient of yj is computed by a degree-�
polynomial of rj , where � ≥ k. More concretely,

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm)

=
m∑

j=1

β∑

b=1

yj,b · Decj,b(rj)

where Decj,b is a degree-� polynomial of rj

=
∑

e∈N
ρ
0 :

wt(e)≤�−k

m∑

j=1

rej

β∑

b=1

yj,b · Dece,j,b(rj)

where Dece,j,b is a degree-k polynomial of rj .

The idea of the compiler is to delegate the computation of
∑β

b=1 yj,b ·
Dece,j,b(rj) to server j by encrypting rj with a homomorphic encryp-
tion scheme HE which supports the evaluation of degree-k polynomials.
Formally, we construct an (n,m, t)-HSS for degree-d polynomials, denoted
HSS.(KGen,Share,Eval,Dec), in Fig. 5.

A Geometric Approach to Homomorphic Secret Sharing 113

Note that when k = � the decoding function is simply

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) =
m∑

j=1

β∑

b=1

yj,b · Dece,j,b(rj).

In this case the input client does not need to store a local copy of the recovery
information.

Theorem 6. Let IT-HSS be an (n,m, t)-HSS for degree-d polynomials satisfying
the above properties, and HE be a CPA-secure k-HE scheme, then HSS is an
(n,m, t)-HSS for degree-d polynomials. If IT-HSS and HE are correct, then HSS
is correct. If IT-HSS has the efficiency measures (ρ, α, β), then HSS has the
efficiency measures (ρ′, α′, β′) =

(
ρ, ρ + α, ρ�−k

)
. If k = �, then ρ′ = 0. Note

that β′ is independent of β.

Proof. The correctness of HSS is already proven in-line in the above discussion.
For security, note that an input share in′

j consists of an input share inj of the
underlying IT HSS scheme and an HE ciphertext r̃j . We can thus prove security
by a simple hybrid argument, where we consider an intermediate hybrid security
experiment where the ciphertexts r̃j are replaced by ciphertexts encrypting zeros.
Clearly, this hybrid experiment is indistinguishable from the security experiment
for HSS, based on the CPA-security of HE. Next, we observe that the environment
of the hybrid experiment can be simulated perfectly using an adversary against
the security of the underlying IT HSS scheme. We can therefore conclude that the
advantage of any (unbounded) adversaries in the hybrid experiment is identical
to that against the security of the underlying IT HSS scheme, which is negligible.

The correctness of ρ′ and α′ follows from simple observations. For the cor-
rectness of β′, we observe that an output share consists of (d̃e,j)e∈N

ρ
0 :wt(e)≤�−k,

where each d̃e,j is of fixed poly(λ) size since HE is assumed to be compact. Note
that the index set {e ∈ N

ρ
0 : wt(e) ≤ � − k} is of size

(
ρ+�−k

�−k

)
= O(ρ�−k).

5.2 Computation Complexity

The computation complexity of the compiled scheme depends on that of the
base scheme. Suppose that the base scheme has server computation σ. We also
assume that HE.Dec() can be computed in poly(λ) time, and HE.Eval(f, ·) can
be computed in time |f | ·poly(λ). Then, the server computation of the compiled
scheme is

σ′ = σ + β

(
ρ + � − k

� − k

)(
ρ + k

k

)

· poly(λ) = σ + β · ρ� · poly(λ) ,

and the client computation is γ′ =
(
ρ+�−k

�−k

)
m · poly(λ) = ρ�−k · m · poly(λ).

114 Y. Ishai et al.

HSS.PreProc(pk)(
in1, . . . , inp,
r1, . . . , rp

)
← IT-HSS.PreProc(1n)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [p]

in′
j := (r̃j , inj), ∀j ∈ [p]

if h > 0 then

rec′
j := rj , ∀j ∈ [p]

return

(
in′

1, . . . , in′
p

rec′
1, . . . , rec′

p

)

HSS.ShareComp(pk, r′, s′
1, . . . , s

′
p, x)(

inp+1, . . . , inm

rp+1, . . . , rm

)
← IT-HSS.ShareComp

(
in1, . . . , inp,
r1, . . . , rp,

x

)
r̃j ← HE.Enc(pk, rj), ∀j ∈ [m] \ [p]

in′
j := (r̃j , inj), ∀j ∈ [m] \ [p]

if h > 0 then

rec′
j := rj , ∀j ∈ [m] \ [p]

return

(
in′

p+1, . . . , in′
m

rec′
p+1, . . . , rec′

m

)

Fig. 6. p-Preprocessing of the Compiler from IT-HSS to HSS based on HE.

5.3 Preprocessing

We show that if the base scheme IT-HSS supports p-preprocessing and satisfies
certain additional properties, then HSS p-preprocessing.

Theorem 7. If IT-HSS supports p-preprocessing, then so does HSS.

Proof. We construct the algorithms HSS.(PreProc,ShareComp) in Fig. 6.

5.4 Instantiations

Both CNF� and WY� constructed in Sect. 4 satisfy the properties required by
the compiler. The main HSS scheme in [31] can be seen as the result of applying
the k-HE-based compiler on the CNF� scheme in the setting with k = �. Lai,
Malavolta, and Schröder [31] discussed the setting with t > 1, but did not
provide any concrete schemes. A constructive version for general t ≥ 1 was
proposed in [35]. The approach of compiling CNF� gives concrete schemes and
significantly simplifies the analysis in [31] (c.f., Sect. 4.1).

As discussed in Sect. 4, CNF� is almost strictly inferior to WY�. We therefore
focus on the instantiations with a linearly-homomorphic HE (k = 1) and the �-th
order Woodruff-Yekhanin IT-HSS WY� which has efficiency measures (ρ, α, β) =
(�n, n, n�) and supports polynomials of degree d < (�+1)m

t . When � = 1, we
obtain a compact HSS with efficiency measures (ρ′, α′, β′) = (0, n, 1) supporting
polynomials of degree d < 2m

t , where decoding is linear. When � = 2, we obtain
a balanced HSS with efficiency measures (ρ′, α′, β′) = (mn,n, n) supporting
polynomials of degree d < 3m

t , where decoding is quadratic.

6 Application to MPC with Preprocessing

In the following we show an application of HSS to multi-party computation
(MPC) with preprocessing. Specifically, we show how to generically construc-
tion an m-party MPC protocol for degree-d polynomials resistant against the

A Geometric Approach to Homomorphic Secret Sharing 115

corruption of t parties, assuming the existence of an (n,m+p, t)-HSS for degree-
d polynomials that supports p-preprocessing. A similar result for the restricted
case of 2 parties was given (implicitly) in [5]. The salient point of our construction
is that the online communication complexity of the MPC scheme is independent
of the size of the polynomial being computed. For certain regimes of parameters,
this leads to an exponential improvement in the communication complexity of
the online phase, when compared with general-purpose MPC solutions.

6.1 Protocol Description

In the following we describe our (semi-honest) MPC protocol for degree-d poly-
nomials assuming the existence of a (n,m + p, t)-HSS scheme with perfect cor-
rectness and a general purpose (semi-honest) m-party MPC that is resilient
against the corruption of up to t parties. For a definition of MPC and its notion
of simulation-based semi-honest security, we refer to [24]. The scheme is detailed
below.

Preprocessing: We assume that the (input-independent) preprocessing phase is
run by a trusted party, which can be substituted by an execution of a general-
purpose MPC protocol jointly executed by the m participants. The preprocessing
phase proceeds as follows.

1. Generate a key for the HSS scheme via (pk, sk) ← HSS.KGen(1λ).
2. Run HSS.PreProc(pk, 1n) to obtain (in1, . . . , inp, rec1, . . . , recp).
3. Run HSS.Eval(pk, j, f, inj) to obtain outj , for all j ∈ [p].
4. Let s be the concatenation of the variables (sk, in1, rec1, out1, . . . , inp, recp,

outp) as defined above. The preprocessing algorithm computes an t-out-of-
m5 secret sharing of s and returns to each party the public key pk and the
j-th share sj .

Online: The online phase is jointly executed by the m participants, who collec-
tively receive the inputs x, i.e., either x is secret shared among the m participants
or each participant has knowledge of a disjoint subset of entries of x. The j-th
party inputs the j-th output of the preprocessing phase (pk, sj) and its share of
x. The parties jointly compute the following function using a general-purpose
MPC protocol. For simplicity we assume that the function takes as input the
variable s as defined in the preprocessing, which can be obtained by running the
reconstruction procedure of the t-out-of-m secret sharing scheme.

1. Run HSS.ShareComp(in1, . . . , inp, rec1, . . . , recp,x) to obtain the tuple
(inp+1, . . . , inm+p, recp+1, . . . , recm+p).

2. The j-th participant is given inp+j and an t-out-of-m secret share of s̃ =
(recp+1, . . . , recm+p).

5 We use t-out-of-m secret sharing to refer to an m-party secret sharing scheme which
is resilient against t corrupt parties.

116 Y. Ishai et al.

The j-th party locally computes HSS.Eval(pk, p + j, f, inp+j) to obtain outp+j .
Then the m parties engage once again in a general-purpose MPC on input the
secret key sk, the output shares (out1, . . . , outm+p), and the reconstruction infor-
mation (rec1, . . . , recm+p). Whenever some information is not available to any
party in plain, the MPC protocol reconstructs it from the shares.

1. Run HSS.Dec(sk, out1, . . . , outm+p, rec1, . . . , recm+p)) and return the output
to all parties.

6.2 Analysis

The security of the MPC protocol follows from a standard argument, which
we sketch in the following. Observe that the view of the parties consist of the
public key of the HSS scheme together with HSS shares of the input x and the
t-out-of-m secret sharing of the variables s and s̃. By the semi-honest security
of the MPC protocol, the MPC transcript does not reveal anything beyond the
output of the computation. Thus the t-out-of-m security of the resulting MPC
follows by a reduction against the HSS scheme (observe that the variables s
and s̃ are information-theoretically hidden from the eyes of any t-subset of the
participants).

We analyze the communication complexity of our protocol when instantiating
the general-purpose MPC with any OT-based protocol (e.g. [25]) and the HSS
scheme with k-HE-compiled variant of WY� described in Sect. 5. To reduce
cluttering, we assume that t and 1 ≤ k ≤ � are constants, e.g., t = 1, k =
1, and � = 1 or 2. Recall that (compiled) WY� supports

⌊
t

�+1

⌋
-preprocessing.

We therefore set p =
⌊

t
�+1

⌋
= O(1). The communication complexity of the

preprocessing phase is upper bounded by

(|HSS.KGen| + |HSS.PreProc| + p|HSS.Eval(·, ·, f, ·)|) · poly(λ)

=
(
1 + � · n · p + p(|f |n�−1 + (�n2)�)

) · poly(λ)

=(|f |n�−1 + n2�) · poly(λ) .

On the other hand, the online communication is upper bounded by

(|HSS.ShareComp| + |HSS.Dec|) · poly(λ)

=
(
p · nt + m(� · n)�−k

) · poly(λ)

=mn�−k · poly(λ) .

In case t is a multiple of � + 1, the protocol allows the participants to jointly
evaluate a degree d multivariate polynomial where d < (�+1)m

t + 1, i.e., we gain
1 degree compared to using the k-HE-compiled WY� scheme as-is. The size of
the circuit representation of such a polynomial ranges from a constant to O(nd).
Thus for large enough m, the communication complexity of the online phase
is exponentially smaller than that of a naive implementation using a general-
purpose MPC protocol. We stress that this result is obtained without relying on
heavy machinery, such as fully-homomorphic encryption.

A Geometric Approach to Homomorphic Secret Sharing 117

7 Conclusion

With the conceptual observation that the HSS scheme of [31] can be abstractly
seen as compiling the CNF IT HSS using a k-HE, in this work we have constructed
a generic compiler which turns a class of compatible IT HSS for degree-d poly-
nomials into a computational one with more favourable parameters.

A generic compiler has many advantages. For starters, it allows instantia-
tion with WY, which, unlike CNF, scales well with a large number of servers.
In contrast, [31] using CNF becomes exponentially inefficient. Due to degree-
amplification, this improvement is significant in practice as higher degrees can
be supported by simply employing more servers. The preprocessing property
of WY also allows application to preprocessing MPC, which was not possible
with [31]. Other choices of instantiating the IT-HSS and k-HE potentially yield
further improvements.

Acknowledgment. Yuval Ishai is supported by ERC Project NTSC (742754), ISF
grant 2774/20, NSF-BSF grant 2015782, and BSF grant 2018393. Russell W. F. Lai is
supported by the State of Bavaria at the Nuremberg Campus of Technology (NCT) – a
research cooperation between the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg Georg Simon Ohm (THN).

References

1. Akavia, A., Feldman, D., Shaul, H.: Secure search via multi-ring fully homomorphic
encryption. IACR Cryptology ePrint Archive 2018/245 (2018)

2. Akavia, A., Gentry, C., Halevi, S., Leibovich, M.: Setup-free secure search on
encrypted data: faster and post-processing free. Proc. Privacy Enhancing Tech-
nol. 2019(3), 87–107 (2019)

3. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with applica-
tions to database search problems. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 24

4. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comput. Sci.
22(3), 317–330 (1983). https://doi.org/10.1016/0304-3975(83)90110-X

5. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

6. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 7

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS, vol. 4324, p. 4325 (2015)

https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1007/978-3-540-30576-7_18

118 Y. Ishai et al.

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

10. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

11. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 14

12. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018, vol. 94, pp. 21:1–21:21. LIPIcs,
January 2018. https://doi.org/10.4230/LIPIcs.ITCS.2018.21

13. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices with-
out FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 1

14. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

15. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 1518–1529. ACM Press, October 2015. https://doi.org/10.1145/2810103.
2813624

16. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance.
In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS,
vol. 8976, pp. 194–212. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48051-9 15

17. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part II. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 17

18. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure efficient multiparty
computing of multivariate polynomials and applications. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 8

19. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

22. Franklin, M., Mohassel, P.: Efficient and secure evaluation of multivariate polyno-
mials and applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol.
6123, pp. 236–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13708-2 15

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/2810103.2813624
https://doi.org/10.1145/2810103.2813624
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-21554-4_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-13708-2_15
https://doi.org/10.1007/978-3-642-13708-2_15

A Geometric Approach to Homomorphic Secret Sharing 119

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009. https://doi.
org/10.1145/1536414.1536440

24. Goldreich, O.: Foundations of Cryptography: vol. 2, 1st edn. Basic Applications.
Cambridge University Press, New York (2009)

25. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

26. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5 1

27. Harsha, P., Ishai, Y., Kilian, J., Nissim, K., Venkatesh, S.: Communication vs. com-
putation. Comput. Complex. 16(1), 1–33 (2007). https://doi.org/10.1007/s00037-
007-0224-y10.1007/s00037-007-0224-y

28. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-theoretic private
information retrieval (extended abstract). In: 31st ACM STOC, pp. 79–88. ACM
Press, May 1999. https://doi.org/10.1145/301250.301275

29. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proceedings of IEEE Global Telecommunication Conference (Globe-
com 1987), pp. 99–102 (1987)

30. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 167–176. ACM Press,
June 2011. https://doi.org/10.1145/1993636.1993660

31. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part
III. LNCS, vol. 11274, pp. 279–309. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03332-3 11

32. Mishkov, R.: Generalization of the formula of Faa di Bruno for a composite function
with a vector argument. Int. J. Math. Math. Sci. 24, 481–491 (2000)

33. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption
be practical? In: Proceedings of the 3rd ACM Cloud Computing Security Work-
shop, CCSW 2011, pp. 113–124. ACM (2011). https://dl.acm.org/citation.cfm?
id=2046682

34. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

35. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive
t-secure homomorphic secret sharing for low degree polynomials. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
763–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 34

36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
37. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic pri-

vate information retrieval. In: 20th Annual IEEE Conference on Computational
Complexity (CCC 2005), pp. 275–284. IEEE (2005)

38. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Packed homo-
morphic encryption based on ideal lattices and its application to biometrics. In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 55–74. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40588-4 5

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/s00037-007-0224-y10.1007/s00037-007-0224-y
https://doi.org/10.1007/s00037-007-0224-y10.1007/s00037-007-0224-y
https://doi.org/10.1145/301250.301275
https://doi.org/10.1145/1993636.1993660
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-030-03332-3_11
https://dl.acm.org/citation.cfm?id=2046682
https://dl.acm.org/citation.cfm?id=2046682
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-65277-7_34
https://doi.org/10.1007/978-3-642-40588-4_5
https://doi.org/10.1007/978-3-642-40588-4_5

	A Geometric Approach to Homomorphic Secret Sharing
	1 Introduction
	1.1 Homomorphic Secret Sharing
	1.2 Power of Low-Degree Polynomials
	1.3 Our Results
	1.4 Related Work

	2 Preliminaries
	2.1 Homomorphic Encryption for Degree-k Polynomials (k-HE)

	3 Definition of Homomorphic Secret Sharing
	4 Information-Theoretic Homomorphic Secret Sharing
	4.1 CNF Secret Sharing
	4.2 -th Order Woodruff-Yekhanin HSS

	5 Compiler from IT HSS to HSS Using HE
	5.1 The Compiler
	5.2 Computation Complexity
	5.3 Preprocessing
	5.4 Instantiations

	6 Application to MPC with Preprocessing
	6.1 Protocol Description
	6.2 Analysis

	7 Conclusion
	References

