
On the (In)Security of the Diffie-Hellman
Oblivious PRF with Multiplicative

Blinding

Stanis�law Jarecki1(B), Hugo Krawczyk2, and Jiayu Xu3

1 University of California, Irvine, Irvine, USA
stasio@ics.uci.edu

2 Algorand Foundation, New York, USA
3 George Mason University, Fairfax, USA

jiayux@uci.edu

Abstract. Oblivious Pseudorandom Function (OPRF) is a protocol
between a client holding input x and a server holding key k for a PRF
F . At the end, the client learns Fk(x) and nothing else while the server
learns nothing. OPRF’s have found diverse applications as components
of larger protocols, and the currently most efficient instantiation, with
security proven in the UC model, is Fk(x) = H2(x, (H1(x))k) computed
using so-called exponential blinding, i.e. the client sends a = (H1(x))r

for random r, the server responds b = ak, which the client unblinds as
v = b1/r to compute Fk(x) = H2(x, v).

However, this protocol requires two variable-base exponentiations on
the client, while a more efficient multiplicative blinding scheme replaces
one or both client exponentiations with fixed-base exponentiation, lead-
ing to the decrease of the client’s computational cost by a factor between
two to six, depending on pre-computation.

We analyze the security of the above OPRF with multiplicative blind-
ing, showing surprising weaknesses that offer attack avenues which are
not present using exponential blinding. We characterize the security of
this OPRF implementation as a “Correlated OPRF” functionality, a
relaxation of UC OPRF functionality used in prior work.

On the positive side, we show that the Correlated OPRF suffices for
the security of OPAQUE, the asymmetric PAKE protocol, hence allow-
ing OPAQUE the computational advantages of multiplicative blinding.
Unfortunately, we also show examples of other OPRF applications which
become insecure when using such blinding. The conclusion is that usage
of multiplicative blinding for Fk(x) defined as above, in settings where
correct value gk (needed for multiplicative blinding) is not authenticated,
and OPRF inputs are of low entropy, must be carefully analyzed, or
avoided all together. We complete the picture by showing a simple and
safe alternative definition of function Fk(x) which offers (full) UC OPRF
security using either form of blinding.

c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 380–409, 2021.
https://doi.org/10.1007/978-3-030-75248-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_14

On the (In)Security of the Diffie-Hellman Oblivious PRF 381

1 Introduction

An Oblivious Pseudorandom Function (OPRF) scheme consists of a Pseudoran-
dom Function (PRF) F for which there exists a two-party protocol between a
server S holding a PRF key k and a client C holding an input x through which
C learns Fk(x) and S learns nothing (in particular, nothing about the input
x or the output Fk(x)). More generally, the security properties of the PRF,
namely indistinguishability from a random function under polynomially many
queries, must be preserved by the protocol. The OPRF notion was introduced
explicitly in [8] but constructions, particularly those based on blinded DH, were
studied earlier (e.g., [5,7,23]). OPRF has been formally defined under different
models [8,10,11,18] with the last two works framing them in the Universally
Composable (UC) framework [4]. The OPRF notion has found many applica-
tions, and recently such applications have been proposed for actual deployment
in practice, including the Privacy Pass protocol [6] and the OPAQUE password-
authenticated key exchange protocol [17]. This gave rise to standardization pro-
posals for OPRFs [25] and the OPAQUE protocol [21,22,26], which further moti-
vates understanding the costs and benefits of possible OPRF implementations.

Exponential vs. Multiplicative Blinding in Hashed Diffie-Hellman
PRF.1 In several of the above mentioned applications, the underlying PRF
is instantiated with a (Double) Hashed Diffie-Hellman construction (2HashDH)
[11], namely:

Fk(x) = H2(x, (H1(x))k) (1)

where hash functions H1,H2 are defined respectively as H1 : {0, 1}∗ → G\{1}
and H2 : {0, 1}∗ × G → {0, 1}τ for a multiplicative group G of prime order q,
and the PRF key k is a random element in Zq, while τ is a security parameter.
The protocol for the oblivious computation of 2HashDH used e.g. in [2,7,10,11]
employs the so-called exponential blinding method, i.e. protocol Exp-2HashDH
shown in Fig. 1: Client C sends to server S its input x blinded as a = (H1(x))r,
for r ←R Zq, and then unblinds the server’s response b = ak as v = b1/r [=
(ak)1/r = (((H1(x))r)k)1/r = (H1(x))k] and outputs H2(x, v). It is easy to see
that the client’s input is perfectly hidden from the server because if H1(x) �= 1
then a is a random element in G independent from x.

An alternative multiplicative blinding technique, denoted Mult-2HashDH, is
shown in Fig. 2. The protocol is an equivalent of Chaum’s technique for blinding
RSA signatures: Given generator g of group G, the client blinds its input as
a = H1(x) · gr, and using the server’s public key z = gk corresponding to the
PRF key k, the client unblinds the server’s response b = ak as v = b · z−r [=
ak · (gk)−r = (H1(x) · gr)k · g−kr = (H1(x))k]. It is easy to see that this blinding
hides x with perfect security, as in the case of Exp-2HashDH.

Comparing the computational cost of the two techniques, we see that both
require a single variable-base exponentiation for the server. However, for the
1 In the context of additive groups, “multiplicative” would be replaced with “additive”

and “exponential” with “scalar-multiplicative”. A less confusing terminology could
refer to these as fixed-base and var-base blindings, respectively.

382 S. Jarecki et al.

Parameters: group G of order q, functions H1, H2 onto resp. G \ {1} and {0, 1}�

Client C(x) Server S(k)

Pick r ←R Zq, set a ← (H1(x))r �a

If b ∈ G output y = H2(x, v) for
v = b1/r (otherwise abort)

� b If a ∈ G set b ← ak

(otherwise abort)

Fig. 1. Exp-2HashDH: Oblivious PRF using Exponential Blinding [11]

Parameters: as in Fig. 1, plus generator g of group G

Client C(x) Server S(k, z = gk)

Pick r ←R Zq, set a ← H1(x) · gr �a

If b, z ∈ G output y = H2(x, v) for
v = b · z−r (otherwise abort)

�(b, z) If a ∈ G set b ← ak

(otherwise abort)

Fig. 2. Mult-2HashDH: Oblivious PRF using Multiplicative Blinding

client, Exp-2HashDH requires two variable-base exponentiations (for blinding
and unblinding) while Mult-2HashDH involves a single fixed-base exponentiation
for blinding and a variable-base exponentiation (to the base z) for unblinding.

In applications where the client stores z,2 the latter exponentiation can use
fixed-base optimization, reducing the client’s total computation to two-fixed base
exponentiations. Given that exponentiation with a fixed base is about 6–7 times
faster than with a variable base (cf. [3,13]), Mult-2HashDH becomes at least
1.7 faster than Exp-2HashDH and 6x faster if z is stored at the client and
treated as a fixed base. On the other hand, in cases where the client does not
hold z, Mult-2HashDH requires the server to store z and send it with each
execution of the OPRF protocol. This cost may not be significant in some cases
but in constrained environments where bandwidth and/or storage is a costly
resource (e.g., mobile and IoT scenarios) [9], Exp-2HashDH may be preferred.
Fortunately, 2HashDH allows an application to choose the blinding mechanism
that best fits its needs, possibly choosing one technique or the other depending
on the network setting and client configuration.

These are good news for performance and implementation flexibility, but
regarding security, things are not as straightforward, as we explain next.

2 For example, in a password protocol such as OPAQUE [17], a user can cache values
z corresponding to servers it accesses frequently, e.g., Google, Facebook, etc.

On the (In)Security of the Diffie-Hellman Oblivious PRF 383

Is Multiplicative Blinding Secure? On the face of it, it would seem
that exponential and multiplicative blindings are equivalent, functionally and
security-wise, thus allowing for performance optimization and flexibility as dis-
cussed above. However, determining the security of Mult-2HashDH turns out
to be non-trivial, showing unexpected attack avenues which are not present in
Exp-2HashDH. In particular, while Exp-2HashDH has been proven to satisfy
the UC OPRF notion from [11], protocol Mult-2HashDH is not secure under
this same definition. The problem is, broadly speaking, that the dependency
of the protocol on z implies that multiplicative blinding does not ensure full
independence between OPRF instances indexed by different public keys.3

Let us elaborate. In protocol Exp-2HashDH, server’s response b to the client’s
message a �= 1 defines a unique key k = DL(a, b) for which C computes y =
Fk(x). (Since client’s output is y = H2(x, v) for v = b1/r and a = (H1(x))r, it
follows that v = ak/r = (H1(x))k and therefore y = Fk(x) for k = DL(a, b).) In
other words, server’s response b commits the server to a single value k, hence
to a unique function Fk(x). This commitment to a unique function is central
to the OPRF UC modeling from [11]. The same, however, does not hold for
Mult-2HashDH where the server’s response (b, z) to the client’s message a gives
the attacker an additional degree of freedom in manipulating C’s output y =
H(x, b · z−r). Specifically, response (b, z) given a determines pair (δ, z) where
δ = b/ak for k = DL(g, z), thus leading to the following function:

F(δ,z)(x) � H2(x, δ · (hx)k) for z = gk and hx = H1(x) (2)

which an honest C computes on its input x given S’s response (b, z) in the
Mult-2HashDH protocol. Indeed, if a = hx · gr, z = gk and δ = b/ak then

v = b · z−r = b · (gk)−r = b · (gr)−k = b · (a/hx)−k = (b/ak) · (hx)k = δ · (hx)k

The important point is that value δ = b/ak for k = DL(g, z) introduces a mul-
tiplicative shift in the value v computed by C. Moreover, an adversarial S can
exploit this shift to create correlated responses that leak information on the
client’s input. In particular, for any choice of client input x̄, an attacker S can
find values δ1, δ2, k1, k2 such that

δ1 · (hx̄)k1 = δ2 · (hx̄)k2 for z1 = gk1 , z2 = gk2 and hx̄ = H1(x̄) (3)

Using these values the attacker can respond to the first client’s query a1 with
(b1, z1) = (δ1a1

k1 , gk1), and to a second query a2 with (δ2a2
k2 , gk2), leading C to

compute values v1, v2 that coincide if C’s input is x = x̄ and do not coincide if
x �= x̄. In other words, F(δ1,z1)(x̄) = F(δ2,z2)(x̄), showing that in contrast to the
family {Fk} defined by Eq. (1), the function family {F(δ,z)} defined by Eq. (2)
is not a family of independent random functions in ROM.4

3 The potential insecurity of multiplicative blinding as UC OPRF was pointed out in
[17], which left its security analysis as an open question.

4 Note that an honest server’s response (b, z) = (ak, gk) corresponds to δ = 1 and the
evaluated function F(1,z) is identical to the intended function Fk.

384 S. Jarecki et al.

Potential Vulnerabilities. The core advantage a corrupt server may gain by
exploiting the above correlations is the ability to test whether a given value of
x has been input by the client in a previous interaction with the server. Our
analysis of Mult-2HashDH shows that the server can test at most one such
input per interaction. For OPAQUE, this property suffices to prove the security
of the protocol with Mult-2HashDH. The intuitive reason is that in OPAQUE, a
malicious server already has the ability to test guesses for the client’s inputs (a
password in the case of OPAQUE) with each interaction with the client, thus
the above attack based on correlation does not add to the attacker’s power. In
contrast, in Sect. 7 we show examples of applications where the correlated nature
of Mult-2HashDH opens attack avenues not available with exponential blinding.
This demonstrates that the two OPRF implementations, Exp-2HashDH and
Mult-2HashDH, are not equivalent vis-à-vis security, and replacing one with
another within some application needs to be analyzed on a per-case basis, as we
do here for OPAQUE.

Modeling Mult-2HashDH as Correlated OPRF. To analyze the security
of applications that use Mult-2HashDH, we show that there are limits on the
correlations which an adversary can create among the functions effectively eval-
uated in the Mult-2HashDH protocol. Specifically, each pair of functions can be
correlated only as in Eq. (3) and only on one argument x. We prove this for-
mally by introducing a relaxation of the UC OPRF functionality of [11] which
we call Correlated OPRF. The purpose of this relaxation is to model the exact
nature of function correlations which multiplicative blinding gives to a malicious
server. We show that Mult-2HashDH realizes the Correlated OPRF functionality
under the Gap+-OMDH assumption in ROM, a mild strengthening of the Gap-
OMDH assumption which sufficed for Exp-2HashDH to satisfy the UC OPRF
functionality [11].

Security of OPAQUE under both Blindings. Based on the UC modeling
of Mult-2HashDH as a Correlated OPRF, we prove the OPAQUE strong asym-
metric PAKE protocol [17] secure using 2HashDH with multiplicative blinding.
(Strong asymmetric PAKE is secure against pre-computation of password hashes
before server compromise.) Specifically, we show that OPAQUE remains secure
if the OPRF building block it uses is relaxed from the UC OPRF notion of [11]
to the Correlated OPRF defined here. This means that the asymmetric PAKE
standard being defined by the IETF on the basis of OPAQUE [21,22,26] can
use the 2HashDH function and leave the choice of exponential or multiplicative
blinding to individual implementations.

We believe that the same holds for another construction from [17], which
shows that a composition of UC OPRF and any asymmetric PAKE results in
a strong asymmetric PAKE. This transformation was proven secure using UC
OPRF, implemented by Exp-2HashDH and we believe that this result can also
be “upgraded” to the case of UC Correlated OPRF, i.e. using Mult-2HashDH,
but we leave the formal verification of that claim to future work.

On the (In)Security of the Diffie-Hellman Oblivious PRF 385

When is it Safe to Use Mult-2HashDH? In cases where the client has access
to the value gk in some authenticated/certified form, such as in applications
requiring a Verifiable OPRF [10], e.g., Privacy Pass [6], one can use (1) with
either blinding. For multiplicative blinding, one just uses the authenticated z in
the unblinding. However, when z is received from the server in unauthenticated
way, much care is needed, and security under multiplicative blinding needs to be
proven on a per-application basis. Even then, small changes in applications and
implementations may turn this mechanism insecure as evidenced by the case of
using OPAQUE with a threshold OPRF which we show in Sect. 7 to be insecure
if used with Mult-2HashDH. As a rule of thumb, it seems prudent to advise not
to use Mult-2HashDH in setting with unauthenticated gk and where the input to
the OPRF is taken from a low-entropy space.

An Alternative OPRF Specification. Another fix is to replace function
2HashDH defined in Eq. (1) with the following simple modification, where z = gk

is included under the hash, which is secure using either blinding:

F ′
k(x) = H2(x, z,H1(x)k) where z = gk (4)

It can be shown that this scheme avoids the correlation attacks5, and therefore
can be proven secure with either blinding method as a realization of the UC
OPRF functionality from [11]. The security holds even when the value z input
into the hash by the client is the (unauthenticated) z received from the server.

However, while this scheme allows an implementation to choose (even at
execution time) the blinding mechanism it prefers, it forces the transmission of
z from server to client even in the case of exponential blinding, a drawback in
constrained settings discussed above, e.g. [9]. In the case of OPAQUE, one can
still use the simpler 2HashDH without transmitting z but with the subtleties
and warnings surrounding security as demonstrated in this paper.6

2 Preliminaries

The Gap One-More Diffie-Hellman Assumptions. The security of protocol
Mult-2HashDH as UC Correlated OPRF relies on the interactive Gap+One-More
Diffie-Hellman (Gap+-OMDH) assumption, a mild strengthening of the Gap-
OMDH assumption used to realize UC OPRF [11] or verifiable UC OPRF [10].
Let G be a group of prime order q, and let g be an arbitrary generator of G. Let
(·)k for k ∈ Zq denote an oracle which returns y = xk on input x ∈ G. Let CDHg

denote a CDH oracle which returns gxy on input (gx, gy). Let DDHg denote
a DDH oracle which returns 1 on input (A,B,C) s.t. C = CDHg(A,B), and 0

5 The correlation between functions F(δ1,z1) and F(δ2,z2) would now require that z1 =
z2, hence k1 = k2, in which case Eq. (3) holds only if δ1 = δ2, hence (δ1, z1) = (δ2, z2).

6 Another way for 2HashDH to realize UC OPRF with multiplicative blinding, is to
add to Mult-2HashDH a zero-knowledge proof that (g, z, a, b) is a DDH tuple, but
this would void the performance benefit of Mult-2HashDH.

386 S. Jarecki et al.

otherwise. Let DDH+
g denote an oracle which returns 1 on input (A,B,A′, B′, C)

s.t. C = CDHg(A,B) ·CDHg(A′, B′), and 0 otherwise. The (N,Q)-Gap+-OMDH
assumption on group G states that for any polynomial-time algorithm A,

Pr
k←RZq, h1,...,hN←RG

[
A(·)k,DDH+

g (g, gk, h1, . . . , hN) = (J, S)
]

is negligible, where J = (j1, . . . , jQ+1), S = ((hj1)
k, . . . , (hjQ+1)

k), Q is the
number of A’s (·)k queries, and j1, . . . , jQ+1 are distinct elements in {1, . . . , N}.

In other words, Gap+-OMDH models the following experiment: Let A have
access to a DDH+ oracle and an “exponentiation to k-th power” oracle for ran-
dom k in Zq, and the number of queries to the latter is limited by Q. A is given
N random elements in G as the challenge values, and since A is allowed to query
the exponentiation oracle Q times, it is able to compute the k-th power of any
Q of the N elements, but the assumption postulates that it is infeasible that
A computes the k-th power of any Q+ 1 of the N group elements, i.e. that it
computes the k-th power of “one more” element.

The Gap-OMDH assumption is defined in the exact same way as Gap+-
OMDH, except A has access to oracle DDHg instead of DDH+

g . We believe that
Gap+-OMDH is a mild strengthening of Gap-OMDH because assuming OMDH
in a group with a bilinear map implies both assumptions: Given an efficiently
computable map e : G × G → GT s.t. e(ga, gb) = e(g, g)ab, one can implement
DDHg oracle, by checking if e(A,B) = e(g, C), as well as DDH+

g oracle, by
checking if e(A,B) · e(A′, B′) = e(g, C). In the full version [15] we show that
the Gap+-OMDH assumption holds in the generic group model, which extends
similar argument given for Gap-OMDH in [12].

3 The Correlated OPRF Functionality FcorOPRF

As we explain in Sect. 1, we will model the type of PRF-correlations which
protocol Mult-2HashDH allows with a correlated OPRF functionality, and here
we define it as functionality FcorOPRF shown in Fig. 3. In Sect. 4 we will argue that
protocol Mult-2HashDH, i.e. the multiplicative blinding protocol together with
the PRF defined in Eq. (1), realizes functionality FcorOPRF under Gap-OMDH
assumption in ROM.

Functionality FcorOPRF is a relaxation of the OPRF functionality FOPRF of
[17], which is an adaptive extension of the UC OPRF defined in [11]. To make
this relation easier to see we mark in Fig. 3 all the code fragments which are
novel with respect to functionality FOPRF of [17]. Below we will first explain
the basic properties which FcorOPRF shares with FOPRF, and then we explain the
crucial differences which make FcorOPRF a relaxation of FOPRF.

Correlated OPRF Model: Basic Logic. Functionality FcorOPRF models
OPRF in a similar way as FOPRF of [11,17]. First, when an honest server S
initializes a PRF by picking a random key, this is modeled in the ideal world
via call Init from S, which initializes a random function FS : {0, 1}∗ → {0, 1}�.

On the (In)Security of the Diffie-Hellman Oblivious PRF 387

Public Parameters: PRF output-length �, polynomial in security parameter τ .
Conventions: ∀ i, x value Fi(x) is initially undefined, and if undefined Fi(x) is
referenced then FcorOPRF sets Fi(x) ←R {0, 1}�. Variable P ranges over all honest
network entities and A∗, and we assume all corrupt entities are operated by A∗.

Initialization

– On (Init, sid) from S, set tx ← 0, N ← [S], E ← {}, G ← (N , E) .
Ignore all subsequent Init messages.
Below “S” stands for the entity which sent the Init message.

Server Compromise

– On (Compromise, sid) from A∗, declare server S as compromised.
(If S is corrupted then it is declared compromised as well.)

Offline Evaluation

– On (OfflineEval, sid, i, x, L) from P do:

(1) If P = A∗ and i N∈� then append i to N and run Correlate(i, L);
(2) Ignore this message if P = A∗, S is not compromised, and (i, S, x) ∈ E ;
(3) Send (OfflineEval, sid, Fi(x)) to P if (i) P= S and i = S or (ii) P = A∗

and either i �= S or S is compromised.

Online Evaluation

– On (Eval, sid, ssid, S′, x) from P, send (Eval, sid, ssid,P, S′) to A∗. On prfx
from A∗, reject it if prfx was used before. Else record 〈ssid,P, x, prfx, 0〉 and
send (Prefix, ssid, prfx) to P.

– On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′, S) to
A∗. On prfx′ from A∗ send (Prefix, ssid′, prfx′) to S. If there is a record
〈ssid,P, x, prfx, 0〉 s.t. prfx=prfx′, change it to 〈ssid,P, x, prfx, 1〉, else set tx++.

– On (RcvComplete, sid, ssid,P, i, L) from A∗, retrieve 〈ssid,P, x, prfx, ok?〉
(ignore the message if there is no such record) and do:

(1) If i N∈� then append i to N and run Correlate(i, L);
(2) If S is not compromised and ok? = 0 do:

If i = S or [(i,S, x) ∈ E and P = A∗] do:
If tx=0 then ignore this message, else set tx−−;

(3) Send (Eval, sid, ssid, Fi(x)) to P.

Correlate(i, L):

– Reject if list L contains elements (j, x), (j′, x′) s.t. j = j′ and x �= x′.
Else, for all (j, x) ∈ L s.t. j ∈ N , add (i, j, x) to E and set Fi(x) ← Fj(x).

Fig. 3. The Correlated OPRF functionality FcorOPRF. The (adaptive) OPRF function-

ality FOPRF of [16] is formed by omitting all text in gray boxes .

388 S. Jarecki et al.

Second, the real-world S can evaluate FS off-line on any argument, which is mod-
eled in the ideal world by call (OfflineEval, sid, i, x, L) from S with i = S and
L =⊥, which gives FS(x) to S. (The role of list L, which a malicious server can
make non-empty, is discussed further below.) Third, in addition to the off-line
evaluation, any client C can start an on-line OPRF protocol instance with S
on local input x, which is modeled by call (Eval, sid, ssid,S′, x) from P = C
with S′ = S, where ssid stands for sub-session ID, a fresh identifier of this
OPRF instance. If S honestly engages in this protocol, which is modeled by
call (SndrComplete, sid, ssid) from S, functionality FcorOPRF increments the
server-specific ticket-counter tx, initially set to 0. If the real-world adversary
allows an uninterrupted interaction between C and S, which is modeled by a
call (RcvComplete, sid, ssid,C, i, L) with i = S and L =⊥ from the ideal-world
adversary A∗, then FcorOPRF decrements counter tx and sends FS(x) to C.7

The man-in-the-middle adversary (our OPRF model does not rely on authen-
ticated links) who interacts with client C, can make C output Fi(x) for a different
function Fi �= FS, using a call (RcvComplete, ssid,C, i, L) for i �= S, which mod-
els a real-world adversary acting like the server but on a wrong key ki �= k in this
interaction. To model a real-world adversary choosing different PRF keys in
either offline or online evaluations, functionality FcorOPRF keeps a list of indexes
N of independent random functions, and effectively associates each real-world
key with a distinct index in N , whereas the key of the honest server S is associ-
ated with a special symbol S.

Practical Implications. Note that RcvComplete computes function FS on
P’s input x only if tx> 0, i.e. if the number of instances completed by S is
greater than the number of instances completed by any client. This implies that
if S engages in n OPRF instances this allows function FS to be computed, by all
other parties combined, on at most n arguments. However, the functionality does
not establish strict binding between these server and client instances. Indeed,
this ticket-based enforcement allows an OPRF functionality to be realized using
homomorphic blinding without zero-knowledge proofs. Note that in protocol
Exp-2HashDH of Fig. 1 the interaction between C and S can be “double blinded”
by the network adversary, who can modify P’s original message a as a′ = as,
and then modify S’s response b = ak as b′ = b1/s. Such interaction produces the
correct output on the client, but a′ which S sees is a random group element,
independent of a sent by C, which makes it impossible to identify the pair of C
and S instances which the network adversary effectively pairs up.

Another feature which enables efficient FcorOPRF realization is that the
argument x of client C engaging in an OPRF instance can be defined only
after server S completes this instance. Note that in the ideal world C out-
puts FS(x) even if S completes an OPRF instance first, by sending message
(SvrComplete, sid, ssid), and C only afterwards sends (Eval, sid, ssid,S, x), fol-

7 As in the adaptive version of UC OPRF FOPRF [17], we allow server S to be adaptively
compromised, via call Compromise from A∗, which models a leakage of the private
state of S, including its PRF key and all its authentication tokens. One consequence
of server compromise is that RcvComplete will no longer check that tx > 0.

On the (In)Security of the Diffie-Hellman Oblivious PRF 389

lowed by RcvComplete from A∗. Indeed, this “delayed input extraction” fea-
ture of FcorOPRF enables protocol Exp-2HashDH to realize it in ROM, where
the ideal-world adversary can extract argument x from the local computation of
the real-world client, namely from H2 query (x, v) for v = (H1(x))k, but that
computation (and input-extraction) happens after S completes the protocol.

In some applications, notably OPAQUE [17], see Sect. 5, it is useful for OPRF
to output a transcript, or its prefix, as a handle on OPRF instance in a higher-
level protocol. Functionality FcorOPRF allows each party to output a transcript
prefix prfx, and if prfx output by S and C match then FcorOPRF allows C session
to compute the PRF output without using the tx counter. This does not affect
the logic of tx-checking: Each run of SndrComplete either increments tx or
ok’s some particular client OPRF instance, so either way the number of on-line
OPRF evaluations is limited by the number of SndrComplete instances.

Relaxation of the UC OPRF Model. The crucial difference between the
Correlated OPRF functionality FcorOPRF and the OPRF functionality FOPRF of
[11] is that when any party evaluates function Fi for a new index i �∈ N , which
corresponds to a real-world adversary evaluating the (O)PRF either offline or
online on a new key, the adversary can supply a list L of correlations which
the new function Fi will have with previously initialized functions Fj , j ∈ N ,
potentially including the honest server function FS. Such correlations were not
allowed in FOPRF, and indeed FcorOPRF reduces to FOPRF if A∗ sets L as an empty
list in OfflineEval and RcvComplete messages. Argument L can specify a
sequence of pairs (j, x) where j ∈ N is an index of a previously initialized
function Fj , and the correlation consists of setting the value of the new function
Fi on x as Fj(x). After setting Fi(x) ← Fj(x) for all (j, x) ∈ L, the values of
Fi on all other arguments are set at random by FcorOPRF. Functionality FcorOPRF

keeps track of these correlations in a graph G = (N , E), where (i, j, x) ∈ E if
Fi(x) is set to Fj(x) in the above manner, i.e., an edge between i and j, labeled
x, represents a correlation between functions Fi and Fj on argument x.

A crucial constraint on the correlation list L is that for each j ∈ N list L can
contain only one entry of the form (j, ·), i.e. two functions Fi, Fj can be correlated
on at most one argument. Note that if the adversary correlates Fi with the honest
server function FS on argument x, and then evaluates Fi(x) via the online OPRF
instance, i.e. Eval and RcvComplete where P = A∗, functionality FcorOPRF

treats this as an evaluation of FS and decrements the ticket-counter tx. This
restriction is necessary because otherwise the adversary could effectively compute
FS on more than n arguments even if an honest server S engages in only n OPRF
instances: It could first correlate n′ > n adversarial functions F1, ..., Fn′ with FS,
each function Fi on a different argument xi, and each evaluation of Fi(xi) would
reveal the value of FS on all these arguments as well. However, our FcorOPRF

model allows A∗ to let any honest party P compute Fi(x) for Fi correlated with
FS without decrementing the ticket-counter tx. This is a weakness, e.g. if the
higher-level application reveals these OPRF outputs to the attacker. A stronger
version of FcorOPRF would decrement tx even if Fi(x) = FS(x) is computed by
honest parties, but we used a weaker version for two reasons: First, it suffices for

390 S. Jarecki et al.

OPAQUE security. Second, we can show that Mult-2HashDH realizes this weaker
version under Gap+-OMDH, and it is an open problem whether the same can
shown for the stronger version of the functionality.

Necessity of the Relaxation. As noted in Sect. 1, Exp-2HashDH satisfies
the UC OPRF notion of [11] because S’s response b to C’s message a defines
key k = DL(a, b) s.t. C outputs y = Fk(x) for function Fk defined in Eq. (1).
However, in Mult-2HashDH, S’s response (b, z) defines the function which C
effectively computes as F(δ,z) defined in Eq. (2). Moreover, different choices of
(δ, z) do not define independent random functions. Indeed, an efficient attacker
can easily pick (δ1, z1) and (δ2, z2) which satisfy Eq. (3) for any x, which implies
that the two functions will be correlated by constraint F(δ1,z1)(x) = F(δ2,z2)(x).

The consequences of such correlations can be illustrated by the following
example. Assume that the higher-level application allows a malicious server to
detect whether in two OPRF instances the client outputs the same two values or
not. Let x1 and x2 be two client input candidates. If the server picks two indexes
(δ1, z1) and (δ2, z2) s.t. F(δ1,z1)(x1)= F(δ2,z2)(x1) and F(δ1,z1)(x2) �= F(δ2,z2)(x2)
and inputs (δ1, z1) into the first OPRF instance and (δ2, z2) into the second one,
then the client’s outputs in these two executions will be the same if its input
is x1 and different if its input is x2, and by the assumption on the application
context the server will learn which one is the case. (In Sect. 7 we show examples
of applications where this knowledge creates an attack avenue.)

The UC OPRF notion of [11] does not allow for this attack avenue because
in that model each choice of a function index which server S can input into
an OPRF instance defines an independent (pseudo)random function. However,
no choice of two functions Fi, Fj for these two instances allows S to distinguish
between C’s input x1 and x2: If Fi = Fj then C’s output in the two instances will
be the same for any x, and if Fi �= Fj then C’s output in the two instances will
be different, also for any x, except for a negligible probability that S finds two
functions Fi, Fj among the polynomially-many random functions it can query
offline s.t. Fi(x) = Fj(x) for x ∈ {x1, x2}.

4 Security Analysis of Multiplicative DH-OPRF

Figure 2 in Sect. 1 shows the OPRF protocol Mult-2HashDH, which uses multi-
plicative blinding for oblivious evaluation of the (Double) Hashed Diffie-Hellman
function defined in Eq. (1), i.e. Fk(x) = H2(x, (H1(x))k). Here, in Fig. 4, we
render the same protocol as a realization of the Correlated OPRF functional-
ity FcorOPRF defined in Fig. 3. As we explain in Sect. 3, functionality FcorOPRF

reflects the correlations which a real-world adversary can introduce in the PRF
functions the honest users compute in this protocol. Indeed, as we show in
Theorem 1 below, under the Gap One-More Diffie-Hellman assumption protocol
Mult-2HashDH securely realizes this functionality in ROM.

Theorem 1. Protocol Mult-2HashDH realizes correlated OPRF functionality
FcorOPRF in the FRO-hybrid world under the Gap-OMDH assumption.

On the (In)Security of the Diffie-Hellman Oblivious PRF 391

Setting: − Group G of prime order q with generator g.
− Hash functions H2, H1 with ranges {0, 1}� and G, respectively.

Functions H2, H1 are specific to the OPRF instance initialized for a unique session
id sid, and in practice they should be implemented by folding sid into their inputs.

Initialization: On input (Init, sid), S picks k ←R Zq and records (sid, k, z = gk).

Server Compromise: On (Compromise, sid, S) from A, reveal k to A.

Offline Evaluation:
On (OfflineEval, sid, S, x, ·), S outputs (OfflineEval, sid, F (k, x)) where

F (k, x) � H2(x, (H1(x))k))
Evaluation:

– On input (Eval, sid, ssid, S, x), C picks r ←R Zq, records (sid, ssid, r), sends
(ssid, a) to S for a = H1(x) · gr, and locally outputs (Prefix, ssid, a).

– On input (SndrComplete, sid, ssid′) and message (ssid, a) from C s.t. a ∈ G,
server S retrieves (sid, k, z), sends (ssid, b, z) to C for b = ak, and locally
outputs (Prefix, ssid′, a). (Note that ssid and ssid′ can be different.)

– On S’s message (ssid, b, z) from S s.t. b, z ∈ G and C holds tuple (sid, ssid, r)
for some r, party C outputs (Eval, sid, ssid, y) for y = H2(x, b · z−r).

Fig. 4. Protocol Mult-2HashDH of Fig. 2 as a realization of FcorOPRF.

Proof: We show that for any efficient environment Z and the real-world adver-
sary A (more precisely, for A in the FRO-hybrid world, i.e. the real world
amended by random oracle hash functions), there exists an efficient simulator
SIM, a.k.a. an “ideal-world adversary”, s.t. the environment’s view in the real
world, where the honest parties implement the Mult-2HashDH protocol interact-
ing with adversary A, is indistinguishable from its view in the ideal world, where
the honest parties are “dummy” entities which pass their inputs to (and outputs
from) the ideal functionality FcorOPRF, and where the real-world adversary A
is replaced by the simulator SIM (who locally interacts with A). The construc-
tion of SIM is shown in Fig. 5. While the real-world adversary A works in a
hybrid world with the random oracle modeled by functionality FRO, for notation
simplicity in Fig. 5 we short-circuit the FRO syntax and we assume that SIM
implements oracles H1, H2. Without loss of generality, we assume that A is a
“dummy” adversary who merely passes all messages between Z and SIM, hence
we will treat A as just an interface of Z. For brevity we also denote FcorOPRF

as F , and we omit the (fixed) session identifier sid from all messages. Also, the
simulator assumes that a unique party S for which this F instance is initialized
is honest, and that its identity “S” encoded as a bitstring is different from any
pair (δ, z) ∈ G

2.

392 S. Jarecki et al.

Initialization: Pick k ←R Z
∗
q //SIM picks S’s key//, set TH1 as an empty table,

set functions H1, H2 as undefined on all arguments, and set NSIM ← [S] //NSIM is
the list of identified function indices//.

Server Compromise: On (Compromise, S) from A, send (Compromise, S) to F
and reveal k to A.

Hash query to H1: On A’s fresh query x to H1, pick u ←R Zq \ {0}, define
hx � gu, set H1(x) ← hx, and add (x, u, hx) to table TH1 .
//TH1 records hx = H1(x) and the discrete-logarithm trapdoor u = DL(g, hx)//

Online Evaluation:

1. On (Eval, ssid,C, S′) from F , pick w ←R Zq, record (C, ssid, w), send (ssid, a)
for a ← gw to A, and send prfx = a to FcorOPRF. (Abort if FcorOPRF rejects it.)

2. On (SndrComplete, ssid′, S) from F and message (ssid, a′) from A s.t. a′ ∈ G,
send ssid and (b′, z∗) = ((a′)k, gk) to A and prfx′ = a′ to FcorOPRF.

3. On message (ssid, b, z) to C from A s.t. b, z ∈ G, retrieve record (C, ssid, w)
(ignore the message if there is no such record) and do:
//C should output F(δ,z)(x) for δ = b/aDL(g,z) = b/zw//
(1) Set δ ← b/zw, i ← (δ, z), L ← [];
(2) If i =(1, gk) //A lets C evaluate on FS// then (re)set i ← S;
(3) If i N∈� SIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = δ · zu then add (j, x′) for j =(δ′, z′) to L;
//correlation on x′ between Fi and Fj for j = (δ′, z′)//
If (hx′)k = δ · zu then add (S, x′) to L; //correlation on x′ with FS//

(4) Send (RcvComplete, ssid,C, i, L) to F , and append i to NSIM if i N∈� SIM.

Hash query to H2: On A’s fresh query (x, v) to H2, do:

1. If (x, u, hx) ∈ TH1 and v =(hx)k //A evaluates FS(x)// then do:
– If S is compromised, send (OfflineEval, S, x, ⊥) to F ; on F ’s response

(OfflineEval, y), set H2(x, v) ← y;
– Otherwise send (Eval, ssid, S, x) and then (RcvComplete, ssid, SIM, S, ⊥) to

F for a fresh ssid; if F replies (Eval, ssid, y) then set H2(x, v) ← y, otherwise
output halt and abort.

2. If (x, u, hx) ∈ TH1 and v �= (hx)k then for the first (δ, z) ∈ NSIM s.t. v = δ · zu

//A evaluates F(δ,z)(x)// send (OfflineEval, i =(δ, z), x, ⊥) to F ; on F ’s
response (OfflineEval, y), set H2(x, v) ← y.

3. If H2(x, v) remains undefined set i =(v, 1) and: //A evaluates F(v,1)(x)//
(1) If i N∈� SIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = v then add (j, x′) for j =(δ′, z′) to L;
If (hx′)k = v then add (S, x′) to L;

(2) Send (OfflineEval, i, x, L) to F ; on F ’s response (OfflineEval, y), set
H2(x, v) ← y, and append i to NSIM if i N∈� SIM.

Fig. 5. Simulator SIM for Protocol Mult-2HashDH //with comments inline//

On the (In)Security of the Diffie-Hellman Oblivious PRF 393

For a fixed environment Z, let qH1 , qH2 be the number of A’s queries to resp.
H1 and H2 hash functions, and let qC, qS be the number of Z’s invocations of
resp. client and server OPRF instances, via resp. queries Eval sent to some C
and query SndrComplete sent to S.

The Simulator. The simulator SIM, shown in Fig. 5, follows a similar simulation
strategy to the one used to show that exponential blinding protocol realizes UC
OPRF notions of [10,11,17]. At initialization, the simulator picks a random key
k on behalf of server S. If SIM receives SndrComplete from F , i.e. server S
wants to complete an OPRF instance, and SIM receives message a with matching
ssid from adversary A playing a client, SIM replies as the real-world S would,
i.e. with (b, z) = (ak, gk). Responding to A playing a server is more complex.
The simulator prepares for this by embeding discrete-logarithm trapdoors in H1

outputs and in messages a formed on behalf of honest clients. Namely, for each
x, SIM defines H1(x) as hx = gu for random u, and it forms each message a on
behalf of some honest client as a = gw for random w. The discrete-logarithm
trapdoor u = DL(g, a) enables SIM to compute, given response (b, z) sent by
A on behalf of some server, the function index i = (δ, z) for which a real-life
honest client would effectively compute its output as y = F(δ,z)(x) for F(δ,z)

defined as in Eq. (2). This is done by setting δ = b/zw because then δ = b/ak for
k = DL(g, z). (See Is multiplicative blinding secure? in Sect. 1 for why the client
effectively evaluates F(δ,z) for δ = b/ak.) If A responds as the honest server S
(or forwards S’s response), SIM detects it because then δ = 1, in which case SIM
sets the function index to the “honest S function”, i ← S.

Finally, SIM checks if i = (δ, z) is in NSIM, a sequence of function indices
which SIM has previously identified, and if i �∈ NSIM, i.e. if it is a new function,
SIM uses the trapdoors it embedded in H1 outputs to detect if Fi(x) = Fj(x)
for any x queried to H1 (without such query A cannot establish a correlation
on x except for negligible probability) and any previously seen function index
j ∈ NSIM or j = S. The first condition holds if δ′ · (hx)DL(g,z′) = δ · (hx)DL(g,z)

for i = (δ, z) and j = (δ′, z′) while the second one holds if (hx)k = δ · (hx)DL(g,z).
The simulator cannot compute DL(g, z) for an adversarial public key z, but the
trapdoor in the hash function output H1(x) = hx = gu allows for computing
(hx)DL(g,z) as zu.

There is a further complication in the simulator’s code, in responding to A’s
local H2 queries (x, v). Such calls can represent either (I) an offline PRF evalua-
tion on argument x of function F(δ,z) s.t. v = δ · (hx)DL(g,z), where (δ, z) ∈ NSIM,
or, if S is compromised (or corrupted), for (δ, z) = (1, gk); or (II) in case v = (hx)k

and S is not compromised, they can represent a finalization of the computation
of FS(x) by a malicious client in the online OPRF instance. Case (I) is treated
similarly as the detection of the correlations explained above: SIM searches for
index i = (δ, z) in NSIM s.t. v = δ · (hx)DL(g,z) = δ · zu where H1(x) = hx = gu,
in which case this is interpreted as evaluation of Fi and SIM sets H2(x, v) to
the value of Fi(x) which the functionality defines in response to the offline
evaluation call (OfflineEval, i, x, ·). If S is compromised then the simulator
does this also for i = S if v = (hx)k. However, in Case (II), i.e. if v = (hx)k

394 S. Jarecki et al.

but S is not compromised, such query could come from A’s post-processing of
an online OPRF evaluation, hence SIM in this case sends (Eval, ssid,S, x) and
(RcvComplete, ssid,SIM,S,⊥) to F . If F allows this call to evaluate success-
fully, i.e. if tx> 0, then F return y = FS(x) and SIM defines H2(x, v) ← y. Oth-
erwise F will ignore this RcvComplete call, in which case SIM outputs halt
and aborts, which the environment will detect as a simulation failure. Indeed,
this case corresponds to A evaluating function FS on more arguments than the
number of OPRF instances performed by S, i.e. the number of SndrComplete
calls from an ideal-world S to F .

Finally, SIM must carefully handle H2(x, v) queries which are not recognized
as evaluations of Fi(x) for any i ∈ NSIM ∪ {S}, because they can correspond
to evaluating F(δ,z)(x) for index (δ, z) which A will reveal in the future. SIM

picks the simplest pair (δ, z) s.t. δ · (hx)DL(g,z) = v, namely (δ, z) = (v, 1). If any
future index (δ, z) �= (v, 1) defined in a subsequent OPRF evaluation satisfies
δ · (hx)DL(g,z) = v, this will be detected by SIM as a correlation between F(δ,z)

and F(v,1). Note that SIM must process H2(x, v) query as evaluation of F(v,1)(x)
even if H1(x) is undefined, because regardless of the value of hx = H1(x) it will
hold that F(v,1)(x) = H2(x, v), because v · (hx)DL(g,1) = v · (hx)0 = v. Indeed, an
adversary can first query H2(x, v) for some (x, v), then compute hx = H1(x), and
then input (δ, z) into an OPRF instance for δ = v/(hx)DL(g,z), which corresponds
to oblivious evaluation of F(δ,z), which is correlated with F(v,1) on argument x.

Sequence of Games. Our proof uses the standard sequence of games method,
starting from the interaction of Z (and “dummy” adversary A) with the real-
world protocol, and ending with the ideal world, in which Z instead interacts
with the simulator SIM and functionality F . We fix an arbitrary efficient envi-
ronment Z which without loss of generality outputs a single bit, we use Gi

to denote the event that Z outputs 1 when interacting with Game i, and for
each two adjacent games, Game i and Game i+ 1, we argue that these games
are indistinguishable to Z, i.e. that there is a negligible difference between the
probabilities of events Gi and Gi+1, which implies that Z’s advantage in dis-
tinguishing between the real world and the ideal world is also negligible. Let
qH1 , qH2 be the total number of resp. H1,H2 queries made in the security game
with A and Z. Let qC and qS and q′

S be the number of resp. C and S sessions and
S offline PRF evaluations started by Z via resp. the Eval, SndrComplete, and
(OfflineEval,S, ·, ·) commands. Let εOMDH(G, N,Q) be the maximum advan-
tage of any algorithm with computational resources comparable to Z against
the (N,Q)-Gap+-OMDH problem in G.

Game 1: (Real world, except for discrete-logarithm trapdoors in H1 outputs)
This is the real-world interaction, shown in Fig. 6, i.e. the interaction of envi-
ronment Z and its subroutine A with honest entities C and S executing protocol
Mult-2HashDH of Fig. 4. We assume that the interaction starts with server ini-
tialization, triggered by Init command from Z to S. We denote the public key
of server S as z∗ = gk. For visual clarity we omit the fixed sid tag and the
variable ssid tags from all messages in Fig. 6. We assume that when functions
H1,H2 are executed by C1, C2, and S2, these hash function calls are serviced

On the (In)Security of the Diffie-Hellman Oblivious PRF 395

as described in the lower-half of Fig. 6. Queries H2(x, v) are implemented as in
the real world except that the game records tuples (x, v,H2(x, v)) in table TH2 .
However, queries H1(x) are implemented with trapdoors embedded in values
hx = H1(x) by setting hx = gux for random ux ←R Zq and recording (x, ux, hx)
in table TH1 .

Game 2: (Abort on hash H1 collisions) Abort if the security game ever
encounters a collision in H1, i.e. if for some argument x queried either by A
or by the security game in oracles C1 and S2 (see Fig. 6), oracle H1 picks u s.t.
tuple (x′, u, gu) for some x′ �= x is already in TH1 . Clearly

|Pr[G2] − Pr[G1]| ≤ (qH1)
2

q

C1: �(Eval, S′, x) Z Server Initialization:
r ←R Zq;
a ← H1(x) · gr

�a A k ←R Zq; z∗ ← gk

Z �SndrComplete S1:
A �a

b ← ak

A � (b, z∗)

C2: � (b, z) A
y ←
H2(x, b · z−r)

�y Z

Z �(OfflineEval, S, x, ·)
S2:

Z � y
y ← H2(x, (H1(x))k)

H1: On query x, pick ux ←R Zq, set hx ← gux and H1(x) ← hx, add (x, ux, hx) to TH1 ;
H2: On query (x, v), pick y ←R {0, 1}�, set H2(x, v) ← y, add (x, v, y) to TH2 ;
S-compromise: On A’s message Compromise, send k to A.

Fig. 6. Game 1: Interaction of Z/A with Mult-2HashDH protocol.

Game 3: (Making C’s message input-oblivious) We change how oracle C1
generates message a so that it is generated obliviously of input x. Namely, instead
of computing a = H1(x) · gr = gux+r for r ←R Zq, oracle C1 will now generate
a = gw for w ←R Zq. The input x for this session ssid will be then passed to
oracle C2, which (1) queries H1 on x to retrieve (or create) tuple (x, ux, gux)
from TH1 , and (2) outputs y = H2(x, v) for v = b · zux−w. Note that for every x,
and hence every ux, value w = (ux + r) mod q is random in Zq if r random in
Zq, hence this modification does not change the distribution of values a output
by C1. Moreover, if w = (ux + r) mod q then z−r = zux−w, thus C2’s output is
the same as in Game 2, hence Game 3 and Game 2 are externally identical.

396 S. Jarecki et al.

Game 4: (Defining adversarial functions) We make a notational change in
oracle C2, so that it outputs y = H2(x, v) for v = δ · zux where δ = b/zw. Since
this is a merely notational difference, Game 4 and Game 3 are identical.

Note that this change makes oracles C1/C2 implement the following process:
C1’s message a = gw together with A’s response (b, z) define (δ, z) s.t. δ = b/zw,
which defines a function which C2 evaluates on Z’s input x as F(δ,z) for

F(δ,z)(x) � H2(x, δ · zux) where ux � DL(g,H1(x)) (5)

Note that Eq. (5) is equivalent to Eq. (2) where F(δ,z)(x) = H2(x, δ · (H1(x))k)
for k s.t. z = gk. For notational convenience we define also a “helper” function
family fi : {0, 1}∗ → G for i ∈ G

2 s.t.

f(δ,z)(x) = δ · zux where ux � DL(g,H1(x)) (6)

Note that F(δ,z)(x) = H2(x, f(δ,z)(x)).

We will argue that pairs (δ, z) encountered in the security game can be
thought of as indexes of random functions, including pair (δ, z) = (1, z∗) for
z∗ = gk which defines the “honest” random function of S, except that the
adversary can “program” a limited number of correlations in these functions,
by setting i = (δ, gk) and j = (δ′, gk′

) s.t. δ′/δ = (hx)k−k′
, which implies that

Fi(x) = Fj(x). In the next few game changes we will show that these correla-
tions are constrained as prescribed by functionality FcorOPRF, i.e. that (1) each
two functions can be “programmed” to have equal output only for a single argu-
ment, (2) that if an adversarial function Fi is correlated on some x with function
FS of the honest server S then evaluating Fi(x) is treated the same as FS(x), and
in particular requires that tx> 0, and (3) that otherwise all adversarial functions
are indistinguishable from independent random functions.

Game 5: (Building correlation graph) The security game will build a graph
of correlations between functions F(δ,z) occurring in the game. In particular the
game will maintain sequence NSIM and sets XH1 , E , all initially empty:

1. Set XH1 contains all inputs x queried to H1, by either A, C2, or S2.
2. Set NSIM contains all (δ, z) function indexes, including (1) the honest server

function index (1, z∗), (2) each (δ, z) defined by A’s interaction with oracles
C1/C2, as described in Game 4, and (3) (δ, z) = (v, 1) for every direct query
(x, v) of A to H2.

3. Set E contains labeled edges between indexes in NSIM, maintained as follows:
(1) When function index i = (β, z) �∈ NSIM is specified in C1/C2 then for each
j = (δ′, z′) in NSIM and x′ ∈ XH1 , test if fj(x′) = fi(x′), and if so then add
(i, j, x′), i.e. an edge (i, j) with label x′, to E .
(2) If H2 is queried on new (x, v) by A or by oracles C2 or S2 for (v, 1) �∈ NSIM

then do step (1) above for i = (v, 1). (Note that f(v,1)(x′) = v for all x′.)

Since these are only notational changes Game 5 and Game 4 are identical.
Game 6: (Discarding double links) We add an abort if there are two distinct

values x, x′ in XH1 and two distinct function indexes i = (δ, z) and j = (δ′, z′) in

On the (In)Security of the Diffie-Hellman Oblivious PRF 397

NSIM s.t. fi(x) = fj(x) and fi(x′) = fj(x′). These conditions imply respectively
that δ′/δ = (z/z′)ux and δ′/δ = (z/z′)ux′ . Since H1 collisions are discarded
beginning in Game 2, it follows that ux′ �= ux, which implies that (δ, z) = (δ′, z′),
i.e. this abort cannot happen. Consequently, Game 6 and Game 5 are identical.

Game 7: (Discarding future correlations) We add an abort in H1 processing
if new query x �∈ XH1 samples hx = H1(x) s.t. there exists two distinct function
indexes i, j ∈ NSIM s.t. fi(x) = fj(x). Note that in this case there would be
no edge (i, j, x) in E , and that this is the only case in which fi(x) = fj(x) but
(i, j, x) �∈ E . However if query x to H1 is made after defining i, j then hx = H1(x)
is independent of i, j, in which case Pr[fi(x) = fj(x)] = 1/q, because this equa-
tion holds only for a single value hx s.t. ux = DL(g, hx) = DL((zi/zj), (δj/δi)). If
there are qC instances of C2 and qH2 queries to H2 then there can be at most qC
indexes (δ, z) in NSIM s.t. z �= 1 and at most qH2 indexes (δ, z) s.t. z = 1. Since
condition fi(x) = fj(x) cannot be met if i = (v, 1) and j = (v′, 1) for v �= v′,
each new query x to H1 causes an abort only if ux falls in the solution set of at
most qC · (qH2 + qC) equations, which implies that

|Pr[G7] − Pr[G6]| ≤ qH1 · qC · (qH2 + qC)
q

– Init: Initialize RF R, pick k ←R Zq, set NSIM ← [(1, gk)] and XH1 ← {}.
– H1: On input x �∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.
– S2: On input x, set i ← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x, w), send a = gw to A.
– C2: On input (b, z) ∈ G

2, recover (x, w) stored by C1 and set δ ← b/zw.
Assign i ← (δ, z). If i N∈� SIM then run Process(i). Send R(i, x) to A.

– H2: On new input (x, v) from A for v ∈ G, set i ← (v, 1). If i N∈� SIM then
run Process(i). Send R(i, x) to A.

– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z) ← i. Define list L s.t.

L = { (j, x) ∈ NSIM × XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }
Abort it L contains (j, x), (j, x′) s.t. x �= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x) ← R(j, x).

Fig. 7. Interaction defined by Game 9.

Game 8: (Implementing H2 using correlated random functions) We replace
hash function H2 using an oracle R that maintains a random function family, in
which the adversary can “program” correlations as follows:

– When R starts it initializes a random function R : {0, 1}∗ ×{0, 1}∗ → {0, 1}�

and an index sequence I ← [(1, z∗)];

398 S. Jarecki et al.

– On query Correlate(i, L), R rejects if i �∈ I or list L contains (j, x) and
(j′, x′) s.t. j = j′ and x �=x′. Otherwise it appends i to I, and for each
(j, x) ∈ L it re-defines R(i, x) ← R(j, x);

– On query Eval(i, x), R replies R(i, x) if i ∈ I, else ignores this query.

We use oracle R to change the implementation of H2 function called by oracles
S2, C2, or the direct calls to H2:

1. When A calls S2 on x: Assign H2(x, fi(x)) ← R.Eval(i, x) for i = (1, z∗).
2. When oracle C2 calls H2 on (x, fi(x)) for some i= (δ, z):

(a) if i �∈ NSIM then send Correlate(i, L) to R where L consists of all tuples
(j, x′) s.t. fi(x′) = fj(x′) for some j ∈ NSIM and x′ ∈ XH1 ;

(b) set H2(x, fi(x)) ← R.Eval(i, x).
3. When A calls H2 on (x, v): Service it as in Step 2 but use i = (v, 1).

To see the correspondence between Game 8 and Game 7, observe that starting
from Game 5 function H2 is evaluated only on pairs of the form (x, fi(x)) for
some i ∈ NSIM. Define R(i, x) as H2(x, fi(x)). Function R is not random even
if H2 is, because we have that R(i, x) = R(j, x) for any i, j, x s.t. fi(x) = fj(x).
However, from Game 7 this equation can hold, for any i, x s.t. H2 is queried on
(x, fi(x)), only if i is a new index, i = (δ, z) or i = (v, 1), appended to NSIM in a
query to oracles resp. C1/C2 and H2, for values j, x s.t. j ∈ NSIM and x ∈ XH1

at the time this query is made. Note that list L sent for a new function fi to
R in Game 8 by oracles C1/C2 and H2 consists exactly of all such pairs (j, x),
hence it follows that Game 8 and Game 7 are identical.

Game 9: (Walking back aborts in H1) We remove the aborts in H1 introduced
in Game 2 and Game 7, i.e. we no longer abort if (1) the same uX was chosen
before on some previous query to H1, or (2) if there are two function indices
i = (z, δ) and j = (z′, δ′) in NSIM s.t. fi(x) = fj(x), i.e. δ ·zux = δ′ ·(z′)ux . By the
same arguments used above where these games are introduced, these two changes
can be observed with probability at most (q2H1

)/q and (qH1 · qC · (qH2 + qC))/q,
respectively, which implies that

|Pr[G9] − Pr[G8]| ≤ q2H1
+ qH1 · qC · (qH2 + qC)

q

Security Game Review. In Fig. 7 we put together all the changes made so far
and review how the game oracles operate in Game 9.

Game 10: (Identifying existing functions in H2 processing) In Game 9 a
fresh query (x, v) to H2 is answered as R(i, x) for i = (v, 1), and if (v, 1) �∈ NSIM

then function R((v, 1), ·) is created and correlated with all previous functions
{R(i, ·)}i∈NSIM

by the rule that R((v, 1), x′) ← R(i, x′) for each x′ ∈ XH1 and
i ∈ NSIM s.t. fi(x′) = v. In Game 10 we modify the code of oracle H2 so that
when it gets a fresh query (x, v) s.t. x ∈ XH1 it first checks if

v = fi(x) for any index i ∈ NSIM (7)

On the (In)Security of the Diffie-Hellman Oblivious PRF 399

(Note that if x ∈ XH1 the game can evaluate f(δ,z)(x) = δ · zux for any δ, z.) If
v = fi(x) for some i ∈ NSIM then Game 10 takes the first index i in NSIM s.t.
v = fi(x) holds, replies R(i, x), and does not create a new function R((v, 1), ·)
even if (v, 1) �∈ NSIM. (Note that this condition can hold for several indexes i in
NSIM, and indeed it will hold for all indexes of functions which are correlated on
argument x. Note also that the index i = (1, z∗) of the “honest server function”
occurs as the first in NSIM.) If x �∈ XH1 or for all i ∈ NSIM v �= fi(x) then the
processing is as before, i.e. the game processes this query as a call to R((v, 1), x).
We show the modification done by Game 10 in Fig. 8.

– H2: On new input (x, v) from A for v ∈ G:
1. If x ∈ XH1 and v = (gk)ux : Set i ← (1, gk), send R(i, x) to A
2. If x ∈ XH1 and v �= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i

to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A
3. Else set i ← (v, 1). If i N∈� SIM then run Process(i). Send R(i, x) to A.

Fig. 8. Game 10: modification in Fig. 7

Note that this modification doesn’t change the value returned by H2(x, v):
If condition (7) holds then either way H2(x, v) = R(i, x). The only other change
this modification causes is that if (7) holds then function R((v, 1), ·) is not cre-
ated. However, this does not affect any future interactions with the random func-
tion R. Let XH1 and NSIM are the values of these variables at the time R((v, 1), ·)
is created in Game 9. Consider that at some subsequent step an evaluation call,
either C2 or H2, creates a new function R(i, ·) s.t. fi(x) = f(v,1)(x) for some
x ∈ X ′

H1
where X ′

H1
and N ′

SIM denote the new values of these variables. Assume
also that until this point there was no other opportunity to create R((v, 1), ·)
in Game 10, i.e. i = (v, 1) was not used in oracle C2, and H2(x′, v) was not
queried on any x′ s.t. fi(x′) �= v for some i ∈ N ′

SIM. (This is the case when
the modification of Game 10 can affect the security experiment.) There are two
cases to consider: (1) If x ∈ XH1 and f(v,1)(x) = fj(x) for some j ∈ NSIM, then
whether or not R((v, 1), ·) is created in both games it holds that R(i, x) = R(j, c);
(2) If x �∈ XH1 , or x ∈ XH1 but f(v,1)(x) �= fj(x) for any j ∈ NSIM, then
R((v, 1), x) is uncorrelated with previous functions, but since R((v, 1), x) is not
used before, it does not matter if R(i, x) is chosen at random or assigned as
R(i, x) ← R((v, 1), x). It follows that Game 10 and Game 9 are identical.

Game 11: (Ideal-world interaction) In Fig. 9 we show the ideal-world game,
denoted Game 11, defined by the interaction of simulator SIM of Fig. 5 and
functionality FcorOPRF of Fig. 3. We use the same notation used for Game 9
for the correlated random functions, i.e. we define FS(x) = R((1, z∗), x) and for
all i �= S we define Fi(x) = R(i, x). Also, we rename oracles which the game
implements as in Game 9: S1 implements Z’s query SndrComplete to S, S2
implements Z’s query OfflineEval to S, C1 implements Z’s query Eval to C,
and C2 responds to A’s message (b, z) to C.

400 S. Jarecki et al.

– Init: Initialize RF R, k ←R Z
∗
q , NSIM ← [(1, gk)], XH1 ← {}, tx ← 0.

– H1: On input x �∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.

If ∃ record (x, w, a, 0) change it to (x, w, a, 1), else tx++.
– S2: On input x, set i ← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x, w, a, 0), send a = gw to A.
– C2: On input (b, z) ∈ G

2, recover (x, w, a, ok?) stored by C1 and set δ ← b/zw.
Assign i ← (δ, z). If i N∈� SIM then run Process(i). Send R(i, x) to A.
If S not compromised, ok? = 0, and i = (1, gk) then do:

If tx = 0 then abort the game, else set tx−−
– H2: On new input (x, v) from A for v ∈ G:

1. If x ∈ XH1 and v = (gk)ux : Set i ← (1, gk), send R(i, x) to A, and do:
If S not compromised and tx = 0 then abort the game
If S not compromised and tx > 0 then set tx−−

2. If x ∈ XH1 and v �= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i
to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A

3. Else set i ← (v, 1). If i N∈� SIM then run Process(i). Send R(i, x) to A.
– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z) ← i. Define list L s.t.

L = { (j, x) ∈ NSIM × XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }
Abort it L contains (j, x), (j, x′) s.t. x �= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x) ← R(j, x).

Fig. 9. Game 11: Interaction of Z/A with the ideal-world execution

Figure 9 simplifies the ideal-world game by not accounting for function cor-
relations using edge set E , as done by FcorOPRF, and ignoring some of the con-
ditional clauses in the code of simulator SIM. However, we argue that these
overlooked clauses are never triggered. Assume that whenever sub-procedure
Process(i) programs a correlation R(i, x) ← R(j, x) the game adds set (i, j, x)
to E . The conditional clauses missing from Game 11 figure are in clauses (2)
and (3) in H2 processing. In clause (2), SIM ignores this call, and the game
does not send R(i, x) to A, if S was not compromised and either i = (1, gk)
or (i, (1, gk), x) ∈ E . However, condition i = (1, gk) implies that v = (gk)ux ,
which is excluded by case (2). Likewise, condition (i, (1, gk), x) ∈ E implies that
fi(x) = f(1,gk)(x) = (gk)ux , which would trigger case (1) and is excluded in case
(2). In clause (3) SIM would ignore this call and not send R(i, x) to A under
the same conditions, i.e. if S was not compromised and either i = (1, gk) or
(i, (1, gk), x) ∈ E . Case i = (v, 1) = (1, gk) implies k = 0, which is excluded by
sampling k in Z

∗
q = Zq \ {0}, and case (i, (1, gk), x) ∈ E implies that x ∈ XH1

and fi(x) = f(1,gk)(x), which would trigger clause (1).
Finally, in Fig. 9 in two clauses when tx = 0, in C2 and H2 case (1), we wrote

that the game aborts. In the actual ideal-world game, the first case corresponds to
functionality FcorOPRF dropping the (RcvComplete, ...,C, ...) call from SIM, and

On the (In)Security of the Diffie-Hellman Oblivious PRF 401

not sending R(i, x) to C, and thus to Z. The second case corresponds to FcorOPRF

not responding with R(i, x) to SIM’s call (RcvComplete, ...,SIM, ...), in which
case SIM aborts. The difference is in the first case, but it is a syntactical difference
because we can equate Z’s not receiving any output from C in response to
(RcvComplete, ...,C, ...), or any output from H2 call, with the game returning
an abort symbol.

The differences between Game 10 and Game 11, apart of the trivial difference
of constraining key k s.t. k �= 0 in Game 11, consist of the following:

1. S1 either increments tx or changes ok? in some C1-record from 0 to 1.
2. C2 decrements tx if S not compromised, ok? = 0, i = (1, gk), and tx > 0.
3. C2 aborts the game if S not compromised, ok? = 0, i = (1, gk), and tx = 0.
4. H2, clause 1, decrements tx if S not compromised, i = (1, gk), and tx > 0
5. H2, clause 1, aborts the game if S not compromised, i = (1, gk), and tx = 0.

Let E be the event that game aborts either in C2 or H2, denoted resp.
EC2 and EH2 . Note that unless event E happens Game 10 and Game 11 are
identical (except for 1/q probability that k = 0 in Game 10), and that event E
can happen only if S is not compromised, thus the two games diverge only before
S compromise. Note that EC2 requires that i = (1, gk), i.e. that A sends (b, z) to
C2 s.t. z = gk and b = zw = gkw = ak. Call such C2 query k-computed. Note that
EH2 requires that i = (1, gk), i.e. that A queries H2 on (x, v) for v = (hx)k. Call
such H2 query k-computed as well. Since counter tx is decremented, or C-record
(x,w, a, 1) is “processed” only on such k-computed C2 and H2 queries, and tx
is incremented or record (x,w, a, 1) is created with each query to S1, hence E
happens only if A triggers more k-computed C2/H2 queries than S1 queries.

Correlations Monitored only at Evaluation. Before we show that event E can
happen with at most negligible probability, we need to change the way Game 10
and Game 11 build correlations in function R. Instead of setting them at the
time a new function is added, in the modified games the correlations are checked
only when a function is evaluated, i.e. the game keeps track of each referenced
value of function R, i.e. each triple (δ′, z′, x′) s.t. R((δ′, z′), x′) was queried eiter
in S2, C2, or H2. When the game queries a new point, R(i, x) for i = (δ, z),
the game looks for the first record (δ, z′, x′) on the list of queries s.t. x′ = x
and f(δ′,z′)(x) = f(δ,z)(x), i.e. δ′(z′)ux = δ(z)ux . If so, the game first assigns
R(i, x) ← R(i′, x) for i = (δ, z) and i′ = (δ′, z′) and only then replies R(i, x). It
is easy to see that this is an equivalent process of keeping correlations because
indeed the only information about these functions R(i, ·) which the game reveals
is through evaluated points, so it makes no difference if we postpone correlating
values of R(i, x) with R(i′, x) until R(i, x) is actually queried.

We show a reduction to the Gap+-OMDH assumption in the case E happens
in Game 10. Reduction R takes the Gap+-OMDH challenge (g, z∗, h1, . . . , hN)
where N = (qH1 + qC), and responds to A’s queries as follows:

402 S. Jarecki et al.

1. Initialize NSIM ← [(1, z∗)] and S ← [].
2. Embed OMDH challenges into H1 and C1 outputs, i.e. assign each H1(x)

output, and each value a sent by C1, to a unique OMDH challenge hi.
3. On message a to S1, use oracle (·)k to send back b = ak and z = z∗.
4. On query x to S2, set (a, b, z) ← (1, 1, z∗), run Correlate((a, b, z), x), and

output R((a, b, z), x)
5. On message (b, z) to C2, recovers C1 input x and output a, run

Correlate((a, b, z), x), and output R((a, b, z), x).
6. On query (x, v) to H2, set (a, b, z) ← (1, v, 1), run Correlate((a, b, z), x),

and output R((a, b, z), x).
7. If A queries S-Compromise, R aborts.
8. Correlate((a, b, z), x): Return if (a, b, z, x) ∈ S. Otherwise, set hx ← H1(x),

and if ∃ (a′, b′, z′, x) in S s.t.

b · CDHg(z, hx/a) = b′ · CDHg(z′, hx/a′) (8)

then set R((a, b, z), x) ← R((a′, b′, z′), x). Otherwise add (a, b, z, x) to S.

Observe that R can verify Eq. (8) using oracle DDH+
g . Secondly, observe that

b · CDHg(z, hx/a) correctly evaluates fi(x) for the corresponding index i: In S2
we set (a, b, z) = (1, 1, z∗), so b · CDHg(z, hx/a) = CDHg(z∗, hx) = (hx)k where
z∗ = gk, as in Game 10; In C2, in Game 10 we compute fi(x) = f(δ,z)(x) =
δ · (z)ux = δ ·CDH(z, hx), but since δ = b/zw = b ·CDH(z, a−1) this implies that
fi(x) = δ ·CDH(z, hx/a); In H2 we set (a, b, z) = (1, v, 1), so b ·CDHg(z, hx/a) =
v · CDHg(1, hx) = v, also as in Game 10.

Therefore R presents a view which is ideantical to Game 10 as long as S-
Compromise is not queried. Therefore event E occurs in the interaction with
R with the same probability as in Game 10. Let Q = qS be the number of S1
queries, hence the number of (·)k oracle accesses by R. Event E implies that the
number of k-computed C2 queries and k-computed H2 queries is larger than Q,
i.e. at least Q+1. Note that a k-computed H2 query is a pair (x, v) s.t. v = (hx)k,
so each such query computes (hi)k = CDH(hi, z

∗) on a unique OMDH challenge
hi. Likewise, a k-computed C2 query is a response (b, z) = (ak, gk) to C1’s
message a, and since R embeds a unique OMDH challenge hi into each a, such
query also computes ak = CDH(hi, z

∗) on a unique OMDH challenge hi. Since R
can use DDH+

g oracle to implement DDH, and test whether any H2 or C2 query
is k-computed, R will solve Q + 1 OMDH challenges if event E happens, which
implies

|Pr[G11] − Pr[G10]| ≤ εOMDH(G, qH1 , qS)

Summing up we conclude that the real-world and the ideal-world interactions
are indistinguishable under the Gap-OMDH assumption.

5 Strong aPAKE Protocol Based on FcorOPRF

We show that the OPAQUE protocol of [17] remains secure as UC Strong aPAKE
even if it is instantiated with the UC Correlated OPRF of Sect. 3 instead of UC

On the (In)Security of the Diffie-Hellman Oblivious PRF 403

OPRF of [11]. This implies that one can safely modify the OPAQUE protocol
by replacing the exponential blinding in the Hashed Diffie-Hellman OPRF with
the multiplicative blinding (as done in [22]), thus shaving off either 1 variable-
base exponentiation from the client, or 2 such exponentiations if the protocol is
routinely performed with the same server.

Technically, we show that the OPAQUE compiler construction of [17], which
shows that OPRF + AKE → saPAKE, can be used to construct UC saPAKE
from any UC Correlated OPRF and any UC AKE which is adaptively secure
and resilient to Key-Compromise Impersonation attack (AKE-KCI). We call
this compiler OPAQUE+ and show it in Fig. 10. It is exactly the same as the
OPAQUE compiler except that the OPRF functionality FOPRF used in [16] is
replaced with the Correlated OPRF functionality FcorOPRF. We show that pro-
tocol OPAQUE+ realizes the UC saPAKE functionality.

The saPAKE and AKE-KCI Functionalities. Protocol OPAQUE+ and its
analysis build on two functionalities from of [16]: The (strong) aPAKE function-
ality FsaPAKE and the adaptively-secure UC AKE-KCI functionality FAKE−KCI.
We refer to that paper for their detailed description and rationale. We note that
AKE-KCI protocol can be instantiated, for example, by the 3-message version of
the HMQV protocol, called HMQV-C in [20], or the 3-message SIGMA protocol
[19] underlying the design of TLS 1.3.

Security of OPAQUE+. We now state the security of OPAQUE+ in
Theorem 2. As in [17], we assume that the adversary A always sends
(Compromise, sid) aimed at FcorOPRF and (StealPwdFile, sid) aimed at S
simultaneously, since in the real world when the attacker compromises the server,
the corresponding OPRF session is always compromised simultaneously.

Theorem 2. If protocol Π realizes functionality FAKE−KCI, then protocol
OPAQUE+ in Fig. 10 realizes the strong aPAKE functionality FsaPAKE in the
(FcorOPRF,FRO)-hybrid model.

The security argument is very similar to that of OPAQUE in [17]; we briefly
explain the differences. First of all, note that when the adversary acts as the client
in Correlated OPRF, its power is exactly the same as the client in OPRF, hence
for that case the security argument is the same in OPAQUE+ as in OPAQUE.

Secondly, an additional power which Correlated OPRF gives to the adversary
is to make correlations between OPRF functions while acting as the server. Yet,
this does not change the fact that for every function index i (no matter if i = S
or i is an index created by the adversary) and every value y ∈ {0, 1}�, with
overwhelming probability there is at most one argument x s.t. y = Fi(x). In
Correlated OPRF the adversary can find Fi with two arguments that form a
collision in Fi if it finds (i1, x1) and (i2, x2) s.t. Fi1(x1) = Fi2(x2) and then sets
Fi to be correlated with Fi1 on x1 and with Fi2 on x2. In OPRF the adversary
must look for such collisions within each function separately, but in either case
the probability of a collision is upper-bounded by q2/2� where q is the number
of F evaluations on all indices. Hence the ciphertext c∗ sent from the adversary

404 S. Jarecki et al.

Public Components:

– KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pu, Pu;
– Random-key robust and equivocable authenticated encryption

(AuthEnc,AuthDec) (see [17] for definitions of these properties);
– Functionality FcorOPRF with output length parameter τ ;

Password Registration

1. On input (StorePwdFile, sid,C, pw), S generates keys (ps, Ps) and
(pc, Pc) and sends (Init, sid) and (OfflineEval, sid, S, pw, ⊥) to
FcorOPRF. On FcorOPRF’s response (OfflineEval, sid, rw), S computes
c ← AuthEncrw(pc, Pc, Ps) and records file[sid] ← (ps, Ps, Pc, c).

Server Compromise

1. On (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.

Login

1. On (UsrSession, sid, ssid, S, pw′), C sends (Eval, sid, ssid, S, pw′) to FcorOPRF

and records FcorOPRF’s response (Prefix, ssid, prfx).
2. On (SvrSession, sid, ssid), S retrieves file[sid] = (ps, Ps, Pc, c), sends c to C,

sends (SndrComplete, sid, ssid) to FcorOPRF, and given FcorOPRF’s response
(Prefix, ssid, prfx′) it runs Π on input (ps, Ps, Pc) and ssidΠ = [ssid||prfx′].

3. On (Eval, sid, ssid, rw′) from FcorOPRF and c from S, C computes m ←
AuthDecrw′(c). If m = (p′

c, P
′
c, P

′
s) then C retrieves (Prefix, ssid, prfx) and runs

Π on input (p′
c, P

′
c, P

′
s) and ssidΠ = [ssid||prfx]; else C outputs (abort, sid, ssid)

and halts.
4. Given Π’s local output SK, each party outputs (sid, ssid, SK).

Fig. 10. OPAQUE+: Strong aPAKE in the (FcorOPRF,FRO)-Hybrid World

to an honest client together with index i∗ of the random function Fi∗ which the
adversary makes that honest client compute on its password, together commit to
a unique password guess pw∗ such that AuthDecrw∗(c∗) �=⊥ for rw∗ = Fi∗(pw∗).

Lastly, in the Correlated OPRF an adversarial function Fi∗ is not guaranteed
to be completely independent from the honest server’s function Fk for every
i∗ �= S. Instead, the adversary can correlate Fi∗ with Fk, although on only a
single point x. This allows the adversary a potentially damaging behavior in
which it forwards ciphertext c∗ = c from the honest server to the honest client
and lets the honest client evaluate Fi∗ on its password. In case both parties’
passwords are equal to x the client will compute Fi∗(x) = Fk(x), and thus the
two parties will establish a key if their shared passwords are equal to x, and
fail to establish a key otherwise. This “conditional password test” could not be
done in protocol OPAQUE, and yet it is not an attack on saPAKE, because it
requires the adversary to guess the password; therefore, the simulator can (1)
use a TestAbort command to check if the client and server’s passwords match,
and if so, it can then (2) use a TestPwd command to check if the adversary’s

On the (In)Security of the Diffie-Hellman Oblivious PRF 405

password guess is correct. If both checks pass, the simulator can compromise
both client’s and server’s sessions, and make these two sessions connect with the
same session key; if either check fails, the simulator can force the client to abort.

We present the full proof of Theorem2 in the full version of this paper [15].

6 Concrete OPAQUE+ Instantiation Using HMQV

Figure 11 shows a concrete instantiation of protocol OPAQUE+ of Fig. 10, where
the UC Correlated OPRF is instantiated with protocol Mult-2HashDH, and UC
AKE is instantiated with HMQV [20]. Note that the protocol takes 3 flows
(τs can be piggybacked with S’s earlier message), and 2 fixed-base (fb) and 2
variable-base (vb) (multi-base) exp’s for C and resp. 1fb and 2vb exp’s for S.

7 Insecure Applications of Multiplicative Blinding

As we noted in the introduction, the correlations allowed by Mult-2HashDH can
be exploited in some applications for the benefit of a corrupt server. We illustrate
this ability with several examples.

Consider a setting where a client C with input x interacts using
Mult-2HashDH with a server S with key k to compute y = Fk(x) = H2(x, (hx)k)
where hx denotes H1(x). C then uses y for some task; for concreteness, think of
x as a password and y as a key that allows C to authenticate to some applica-
tion. At some point S becomes corrupted and wants to check whether a given
value x′ equals the user’s input x. Using correlations as described in the intro-
duction, e.g., Eq. (3), S mounts the following attack: When C sends its blinded
value a = hxgr, S chooses random k′, sets z = gk′

and b = (hx′)k−k′
ak′

, and
sends (b, z) to C, who computes the unblinded value v = b(z)−r and outputs
y′ = H2(x, v). It can be checked that v = (hx)k if and only if x′ = x.8 If S can
observe whether C recovered the correct value y′ = y, e.g. whether it successfully
authenticated using the recoverd y′, then S learns whether C’s secret x equals
S’s guess x′.

The Correlated OPRF functionality, which Mult-2HashDH realizes, assures
that server S cannot test more than one guess x′ per interaction, and while in
some applications, like the PAKE protocol OPAQUE, this ability doesn’t affect
the application, e.g. because the application itself allows the attacker such on-line
guess-and-test avenue, in other cases this suffices to break the application. Below
we show a few application examples which are all secure with Exp-2HashDH,
but not with Mult-2HashDH. In all examples the application doesn’t expose the
client to on-line attacks, and using Exp-2HashDH ensures that the implemen-
tation does not either, but using Mult-2HashDH adds this exposure and breaks
the application.

8 Observe that v = bz−r = (hx′)k−k′
(hxgr)k′

(gk′
)−r = hk

x′(hx′/hx)k′
, hence v = (hx)k

iff hx = hx′ . Using the terminology of Eq. (2), C computes y′ = F(δ,z)(x) for F(δ,z)

which is correlated with Fk on x′, hence y′ = Fk(x) iff x = x′.

406 S. Jarecki et al.

Public Parameters and Components
Group G of prime order q with generator g;
Random-key robust and equivocable authenticated encryption
(AuthEnc,AuthDec) (see [17] for definitions of these properties);
Hash functions H1, H3, H5 : {0, 1}∗ → {0, 1}τ , H2 : {0, 1}∗ →G, H4 : {0, 1}∗ → Zq

Pseudorandom function (PRF) f : {0, 1}∗ → {0, 1}τ

S on (StorePwdFile, sid, pw)

Pick k, ps, pc ←R Zq, set (z, Ps, Pc) ← (gk, gps , gpc), rw ← Fk(pw), c ←
AuthEncrw(pc, Ps); record file[sid] ← 〈k, z, c, ps, Pc〉 and erase everything else

C on (UsrSession, sid, ssid, S, pw) S on (SvrSession, sid, ssid)

retrieve 〈k, z, c, ps, Pc〉 ← file[sid]
r, xc ←R Zq xs ←R Zq

a ← H2(pw) · gr, Xc ← gxc �a, Xc

rw ← H1(pw, b · z−r) �b, z, Xs, c
b ← ak, Xs ← gxs

parse (pc, Ps) ← AuthDecrw(c)
(if this parsing fails C outputs abort)

C and S set ssid′ ← H5(sid, ssid, a), ec ← H4(Xc, S, ssid′), es ← H4(Xs,C, ssid′)
K ← H3 (XsP

es
s)xc+ecpc

)
K ← H3 (XcP

ec
c)xs+esps

)

� τs τs ← fK(1, ssid′)

if τs �= fK(1, ssid′): (SK, τc) ← (⊥, ⊥)
else: SK ← fK(0, ssid′) and τc ← fK(2, ssid′)

�τc if τc �= fK(2, ssid′): SK ← ⊥
else: SK ← fK(0, ssid′)

output (sid, ssid, SK (tuptuo) sid, ssid, SK)

Fig. 11. Protocol OPAQUE+ (Fig. 10) with Mult-2HashDH and HMQV

OPAQUE with Outsourced Envelope. Recall that OPAQUE [17] combines
an OPRF with an authenticated key-exchange (AKE) protocol as follows: At
registration, the server and the user choose private-public AKE key pairs. The
user then runs an OPRF with the server where the user’s input is a password pw
and the server’s input is an OPRF key k. The output of the OPRF, learned only
by the user, is a random key rw = Fk(pw), and the user uses rw to authenticate-
encrypt her AKE private key and the server’s public key. The ciphertext c that
results from this encryption is stored by the server, together with the OPRF
key k, the user’s public AKE key, and the server’s AKE key pair. At login, the
user runs the OPRF with the server on input pw, learns rw, uses rw to decrypt
its own private key and the server’s public key encrypted in c, and uses these
keys to run the AKE with the server. Only a user in possession of the registered
password can successfully run the AKE.

On the (In)Security of the Diffie-Hellman Oblivious PRF 407

However, consider a modification where the user stores ciphertext c at some
other location than server S, e.g. a laptop or another server. In this case a
malicious S, who holds only OPRF key k and the AKE keys, cannot stage either
online or offline attacks on the user’s password: Without ciphertext c, S cannot
test candidate values rw = Fk(pw). However, this property is not ensured if
OPRF is implemented with Mult-2HashDH. Indeed, using the strategy described
above, a malicious S can test whether the user’s password is equal to a chosen
pw∗, by running login using function Fk∗ which is correlated on argument pw∗

with function Fk used in registration. If the user recovers its credentials and
authenticates in that login, S learns that pw = pw∗. Crucially, this online attack
opportunity for server S is not available using Exp-2HashDH.

Device-Enhanced PAKE. [14,24] presents a password protocol that uses an
auxiliary device (typically a smartphone but can also be an online server) in the
role of a password manager. When the user wishes to password-authenticate to a
server S, it communicates with the device who holds key k for 2HashDH OPRF.
The user’s input to the OPRF is her password, and the OPRF result rw = Fk(pw)
is used as the “randomized” password with service S. Using Exp-2HashDH, a
corrupt device learns nothing about the user’s password, but it can test a guess
for the user’s password at the cost of one online interaction with S per guess.
However, using Mult-2HashDH, the corrupt device can validate a guess without
interacting with S, by watching if the user’s interaction with S succeeded, thus
resulting in weaker security guarantees.

Threshold OPRF (Including Threshold OPAQUE). A multi-server
threshold implementation of Exp-2HashDH is presented in [12]. It ensures the
security of the OPRF as long as no more than a threshold of servers are compro-
mised. Such threshold OPRF can be used e.g. to construct Password-Protected
Secret Sharing (PPSS) [1,11], which in turn can implement Threshold PAKE. It
is straightforward to see that the above correlation attacks apply to these con-
structions if Exp-2HashDH is replaced with Mult-2HashDH. They allow a single
corrupted server to choose correlated values with which it can verify guesses for
the client’s inputs. As an illustration, consider a 2-out-of-2 Threshold OPRF
that computes hk

x as hk1+k2
x using two servers S1, S2 with respective keys k1, k2.

Such a scheme should ensure that nothing can be learned about the input x
without compromising both servers. However, a corrupted S2 can check whether
C’s input x equals any guess x′ by mounting the above attack using ony key
k2. If C reconstructs the correct y, then x = x′. This attack also applies to
OPAQUE with a multi-server threshold implementation of Mult-2HashDH.

All these examples show that in order to use Mult-2HashDH in an application
where an authenticated gk is not available to the client, a dedicated proof of
security (as the one we develop here for OPAQUE) is essential. Even in that
case, one can consider this as “fragile evidence”, as eventual changes to the
application may void the security proof. Thus a safer alternative is to use the
scheme (4) presented in the introduction, which implements UC OPRF using
both forms of blinding, and would be secure in all the above applications.

408 S. Jarecki et al.

References

1. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM Conference on Computer and Communications Security — CCS 2011.
ACM (2011)

2. Boyen, X.: HPAKE: password authentication secure against cross-site user imper-
sonation. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 279–298. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10433-6 19

3. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-
9 18

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science - FOCS 2001,
pp. 136–145. IEEE (2001)

5. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

6. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
bypassing internet challenges anonymously. In: Privacy Enhancing Technologies
Symposium - PETS 2018, pp. 164–180. Sciendo (2019)

7. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: IEEE 9th International Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises - WET ICE 2000, pp. 176–180. IEEE (2000)

8. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

9. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. In: CHES (2019)

10. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

11. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (Or: how to protect your bitcoin wallet online).
In: IEEE European Symposium on Security and Privacy - EuroS&P 2016, pp.
276–291. IEEE (2016)

12. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 3

13. Jarecki, S., Krawczyk, H., Resch, J.: Updatable oblivious key management for
storage systems. In: ACM Conference on Computer and Communications Security
— CCS 2019. ACM (2019)

14. Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Device-enhanced password
protocols with optimal online-offline protection. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pp. 177–188. ACM
(2016)

https://doi.org/10.1007/978-3-642-10433-6_19
https://doi.org/10.1007/978-3-642-10433-6_19
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3

On the (In)Security of the Diffie-Hellman Oblivious PRF 409

15. Jarecki, S., Krawczyk, H., Xu, J.: On the (In)Security of the Diffie-Hellman obliv-
ious PRF with multiplicative blinding. IACR Cryptology ePrint Archive 2021:273

16. Jarecki, S., Krawczyk, H., Xu. J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. IACR Cryptology ePrint Archive 2018:163

17. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

18. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

19. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

20. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

21. Krawczyk, H., The OPAQUE asymmetric PAKE protocol, May 2020. https://
tools.ietf.org/html/draft-krawczyk-cfrg-opaque

22. Krawczyk, H., Lewi, K., Wood, C.A.: The OPAQUE asymmetric PAKE protocol,
November 2020. https://tools.ietf.org/html/draft-irtf-cfrg-opaque

23. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

24. Shirvanian, M., Saxena, N., Jarecki, S., Krawczyk, H.: Building and studying a
password store that perfectly hides passwords from itself. IEEE Trans. Dependable
Secure Comput. 16, 5 (2019)

25. Sullivan, N.: Exported authenticators in TLS, May 2020. https://tools.ietf.org/
html/draft-ietf-tls-exported-authenticator

26. Sullivan, N., Krawczyk, H., Friel, O., Barnes, R.: Usage of OPAQUE with TLS 1.3,
March 2019. https://tools.ietf.org/html/draft-sullivan-tls-opaque

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque
https://tools.ietf.org/html/draft-irtf-cfrg-opaque
https://doi.org/10.1007/3-540-48910-X_23
https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator
https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator
https://tools.ietf.org/html/draft-sullivan-tls-opaque

	On the (In)Security of the Diffie-Hellman Oblivious PRF with Multiplicative Blinding
	1 Introduction
	2 Preliminaries
	3 The Correlated OPRF Functionality FcorOPRF
	4 Security Analysis of Multiplicative DH-OPRF
	5 Strong aPAKE Protocol Based on FcorOPRF
	6 Concrete OPAQUE+ Instantiation Using HMQV
	7 Insecure Applications of Multiplicative Blinding
	References

