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2 Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas,
Lisboa, Portugal

3 Cloudflare, Lisbon, Portugal
4 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),

Lyon, France
amit.deo@ens-lyon.fr

5 COSIC-imec, KU Leuven, Leuven, Belgium
nigel.smart@kuleuven.be

6 Department of Computer Science, University of Bristol, Bristol, UK

Abstract. Verifiable Oblivious Pseudorandom Functions (VOPRFs)
are protocols that allow a client to learn verifiable pseudorandom func-
tion (PRF) evaluations on inputs of their choice. The PRF evaluations
are computed by a server using their own secret key. The security of
the protocol prevents both the server from learning anything about the
client’s input, and likewise the client from learning anything about the
server’s key. VOPRFs have many applications including password-based
authentication, secret-sharing, anonymous authentication and efficient
private set intersection. In this work, we construct the first round-optimal
(online) VOPRF protocol that retains security from well-known subexpo-
nential lattice hardness assumptions. Our protocol requires constructions
of non-interactive zero-knowledge arguments of knowledge (NIZKAoK).
Using recent developments in the area of post-quantum zero-knowledge
arguments of knowledge, we show that our VOPRF may be securely
instantiated in the quantum random oracle model. We construct such
arguments as extensions of prior work in the area of lattice-based zero-
knowledge proof systems.

1 Introduction

A verifiable oblivious pseudorandom function (VOPRF) is an interactive proto-
col between two parties; a client and a server. Intuitively, this protocol allows a
server to provide a client with an evaluation of a pseudorandom function (PRF)
on an input x chosen by the client using the server’s key k. Informally, the secu-
rity of a VOPRF, from the server’s perspective, guarantees that the client learns
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nothing more than the PRF evaluated at x using k as the key where the server
has committed to k in advance. Informally, security from the perspective of the
client guarantees the conditions below:

1. the server learns nothing about the input x;
2. the client’s output in the protocol is indeed the evaluation on input x and

key k;

The fact that the client is ensured that its output corresponds to the key com-
mitted to by the server makes the protocol a verifiable oblivious PRF. If we were
to remove this requirement, the protocol would be an oblivious pseudorandom
function (OPRF). From a multi-party computation perspective, an OPRF can be
seen as a protocol that securely achieves the functionality g(x, k) = (Fk(x),⊥)
where Fk is a PRF using key k and ⊥ indicates that the server receives no
output. Applications of (V)OPRFs include secure keyword search [24], private
set intersection [32], secure data de-duplication [33], password-protected secret
sharing [29,30], password-authenticated key exchange (PAKE) [31] and privacy-
preserving lightweight authentication mechanisms [18].

A number of these applications have had recent and considerable real-world
impact. The work of Jarecki et al. [31] constructs a PAKE protocol, known
as OPAQUE, using an OPRF as a core primitive. The OPAQUE protocol is
intended for integration with TLS 1.3 to enable password-based authentication,
and it is currently in the process of being standardised [34] by the Crypto Forum
Research Group (CFRG)1 as part of the PAKE selection process [17]. In addition,
the work of Davidson et al. [18] constructs a privacy-preserving authorisation
mechanism (known as Privacy Pass) for anonymously bypassing Internet reverse
Turing tests based entirely on the security of a VOPRF. The Privacy Pass pro-
tocol is currently used at scale by the web performance company Cloudflare [46],
and there have also been recent efforts to standardise the protocol design [19].
Both Privacy Pass and OPAQUE use discrete-log (DL) based (V)OPRF con-
structions to produce notably performant protocols. Finally, there is a separate
and ongoing effort being carried forward by the CFRG [20] focusing directly on
standardising performant DL-based VOPRF constructions.

Unfortunately, and in spite of the practical value of VOPRFs, all of the
available constructions in the literature to date (at the time of writing) are based
on classical assumptions, such as decisional Diffie-Hellman (DDH) and RSA. As
such, all current VOPRFs would be insecure when confronted with an adversary
that can run quantum computations. Therefore, the design of a post-quantum
secure VOPRF is required to ensure that the applications above remain secure
in these future adversarial conditions.2 In fact, for full post-quantum security,
both the PRF and the VOPRF protocol itself must be secure in the quantum
adversarial model. While PRF constructions with claimed post-quantum security
are standard, it remains an open problem to translate these into secure VOPRF
protocols.
1 A subsidiary of the Internet Research Task Force (IRTF).
2 Note that using post-quantum secure VOPRF primitives in either the OPAQUE or

Privacy Pass examples above would immediately result in PQ-secure alternatives.
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Constructions of PRFs arising from lattice-based cryptography originated
from the work of Banerjee, Peikert and Rosen [6]. These constructions are post-
quantum secure assuming the hardness of the learning with errors (LWE) prob-
lem against quantum adversaries [45]. To get around the fact that the LWE
problem involves the addition of random small errors, carefully chosen rounding
is used to obtain deterministic outputs for PRFs based on the LWE assump-
tion [5,6,11]. These earlier works on LWE-based PRFs were followed by con-
structions of more advanced variants of PRFs [14,16,44]. Despite this, there is
yet to be an OPRF protocol for any LWE-based PRF. The same is true for
variants of these constructions based on the ring LWE (RLWE) problem [5].

Contributions. In this work, we instantiate a round-optimal3 VOPRF whose
security relies on subexponential hardness assumptions over lattices. Our con-
struction assumes certain non-interactive zero-knowledge arguments of knowl-
edge (NIZKAoKs). We use the protocol of Yang et al. [47] as an example instan-
tiation of the required NIZKAoKs, to argue knowledge of inputs to the input-
dependent part of PRF evaluations from the Banerjee and Peikert design [5]
(henceforth BP14) in the ring setting. Alternatively, one can use Stern-like meth-
ods such as those in [36] and the recent protocol of Beullens [7]. These choices
come with the advantage that results stating the validity of the Fiat-Shamir
transform in the quantum random oracle model (QROM) [22,37] will apply.

We stress that our results show the feasibility of round-optimal VOPRF pro-
tocols based on lattice assumptions, rather than practicality. The performance
of the VOPRF is negatively impacted by the required size of parameters (see
Sect. 5.3). These parameters are necessary for instantiating our construction
using reasonable underlying lattice assumptions – a consequence of using the
BP14 PRF construction with our proof technique. Moreover, we require heavy
zero-knowledge proof computations to ensure that neither participant deviates
from the protocol. Some of these proofs may be removed by considering certain
optimisations of our main protocol (see Sect. 3.2). Additionally, removing all
zero-knowledge proofs and considering an honest-but-curious setting may result
in a relatively efficient protocol (see Sect. 5.3).

Technical Overview. We design a VOPRF for a particular instantiation of the
BP14 PRF in the ring setting. Specifically, for a particular function aF :
{0, 1}L → R1×�

q where Rq := Zq[X]/〈Xn + 1〉, we set out to design a VOPRF
for the PRF

Fk(x) =
⌊

p

q
· aF (x) · k

⌉

where the key k ∈ Rq has small coefficients when represented in {−q/2, . . . , q/2},
and �·� represents rounding a rational to the nearest natural number. Our
VOPRF protocol can be easily modified to handle other choices of aF (x) (up to
a change in parameter requirements). The security of this BP14 PRF construc-
tion can be reduced to the hardness of RLWE. Consider the PRF for 2-bit

3 Meaning that only two messages are sent in the online (query) phase.
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inputs: then aF (x) = a1 ·G−1 (a2) where a1,a2 ∈ R1×�
q are uniform and public,

G = (1, 2, . . . , 2�−1) and G−1 (a2) ∈ R�×�
2 is binary. Very informally, for small

e,e′′ ∈ R1×�
q , uniform e′ ∈ R1×�

q /(Rq ·G) and q much larger than p, we can write⌊
p

q
· aF (x) · k

⌉
=

⌊
p

q
· k · a1 · G−1(a2)

⌉
=

⌊
p

q
· (k · a1 + e) · G−1(a2)

⌉

≈c

⌊
p

q
· (u) · G−1(a2)

⌉
(RLWE)

=
⌊

p

q
(u′G + e′) · G−1(a2)

⌉
=

⌊
p

q
(u′a2 + e′′) +

p

q
e′ · G−1(a2)

⌉

≈c

⌊
p

q
· u′′ +

p

q
· e′ · G−1(a2)

⌉
(RLWE)

=
⌊

p

q
· ũ

⌉

where u,u′′, ũ are uniform in R1×�
q and u′ is uniform in Rq. The proof of pseu-

dorandomness builds on these ideas.
To provide intuition for our VOPRF design, we describe the rough form of

our protocol (without zero-knowledge proofs). Given a public uniform a ∈ R1×�
q ,

the high level overview is as follows:

1. The server publishes some commitment c := a · k + e to a small key k ∈ Rq.
2. On input x, the client picks small s ∈ Rq, small e1 ∈ R1×�

q and sends cx =
a · s + e1 + aF (x).

3. On input small k ∈ Rq, the server sends dx = cx · k + e′ for small e′ ∈ R1×�
q .

4. The client outputs y =
⌊

p
q · (dx − c · s)

⌉
.

For server security, note that dx = a·s·k+aF (x)·k+e1·k+e′. Suppose that we
choose e′ from a distribution that hides addition of terms e1 ·k,e·s and ex (where
ex is from some other narrow distribution). Then, from the perspective of the
client, the server might as well have sent dx = (a·k+e)·s+e′+(aF (x)·k+ex) =
c ·s+(aF (x) ·k+ex)+e′. Picking ex from an appropriate distribution [5] makes
the term in brackets i.e. aF (x) · k + ex computationally indistinguishable from
uniform random under a RLWE assumption, even given the value of c which is
also indistinguishable from random by a RLWE assumption. This implies that
the message dx leaks nothing about the server’s key k.

For client security, we pick s from a valid RLWE secret distribution and a
Gaussian e. This implies that cx = a · s + e + aF (x) is indistinguishable from
uniform by RLWE. Finally, we must show that the client does indeed recover
Fk(x) as its output y. For correctness, we would like to say that⌊

p

q
· (dx − c · s)

⌉
=

⌊
p

q
· aF (x) · k +

p

q
(e1 · k − e · s + e′)

⌉
=

⌊
p

q
· aF (x) · k

⌉
.

Thus, we guarantee correctness if all coefficients of p
q · aF (x) · k are at least∣∣∣p

q (e1 · k − e · s + e′)
∣∣∣
∞

away from Z + 1
2 . It turns out that this condition is
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satisfied with extremely high probability due to the 1-dimensional short integer
solution (1D-SIS) assumption [15] regardless of the way an efficient server chooses
its key. The form of aF (x) is crucial to the connection with the 1D-SIS problem.
In particular, we rely on the fact that we can decompose aF (x) as a′

1 ·a′
2 where

a′
1 ∈ R1×�

q is uniform random and a′
2 ∈ R�×�

q has entries that are polynomials
with binary coefficients.

Ultimately, the security of our VOPRF construction (with particular choices
of NIZKAoK instantiations) holds in the QROM and relies on the hardness of
sub-exponential RLWE and 1D-SIS which are both at least as hard as certain
lattice problems. We discuss parameters in Sect. 5.3.

Related Work and Discussion. Subsequent to this work, Boneh et al. [10] con-
structed a post-quantum (V)OPRF with comparatively good efficiency from iso-
genies. Their construction also uses the random oracle model, but is also proven
secure in the universal composability (UC) model unlike the construction in this
work. A related primitive to a VOPRF is a verifiable random function (VRF).
A VRF is a keyed pseudorandom function allowing an entity with the key to
create publicly verifiable proofs of correct evaluation. Recently, Yang et al. [47]
showed a lattice-based construction of a VRF using the definition of [42]. In
fact, the proof systems of Yang et al. serve as a crucial foundation for one way
of instantiating the proof systems used in our VOPRF. However, it should be
noted that the Yang et al. construction (like ours) is not in the standard model
due to the use of the Fiat-Shamir [23] transform.

While our work provides a first construction for a post-quantum VOPRF, it
does not resolve this question completely. The reason VOPRFs enjoy popularity
is their efficiency in the discrete logarithm setting. In contrast, our construction –
while practically instantiable – is far less efficient. This relative inefficiency is
partly due to our choice of relying on lattice-based constructions for our zero-
knowledge proof systems, along with the super-polynomial factors required for
the RLWE-based PRF and noise drowning. Improving these areas thus suggests
ways to achieve concretely more efficient schemes. In fact, we do discuss attempts
to optimise our main protocol with a view to reducing the impact of the zero-
knowledge proofs. In particular, one can amortise the costs of the client zero-
knowledge proof by sending queries in batches and sending one proof of a more
complex statement. This saves a small additive term in the overall cost compared
to sending the queries one at a time. Additionally, we discuss the use of a cut-and-
choose approach to removing the server’s zero-knowledge proof at the effective
cost of extra repetitions of the protocol. Ultimately, this does not improve overall
efficiency, but it does dramatically reduce the burden on the server. For more
details, see Sect. 3.2. An alternative approach is to accept, for now, that VOPRFs
are less appealing building blocks in a post-quantum world, and to revisit their
applications to provide post-quantum alternatives on a per application basis.

One could alternatively instantiate VOPRFs using generic techniques for
establishing Multi-Party Computation (MPC) protocols by treating a single exe-
cution of the VOPRF protocol, for a PRF like AES, as a single invocation of
a classical two-party actively secure MPC protocol. But this does not give the
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round-optimality that we are after. See the full version of this work for a discus-
sion about this.

Road Map. We begin with preliminaries in Sect. 2. Note that Definition 1 devi-
ates from the usual MPC definition. In particular, we argue security against
malicious clients when k is sampled from a key distribution for which the PRF
is pseudorandom, rather than arguing security for arbitrary fixed k. Next is the
VOPRF construction and discussion of optimisations (Sect. 3) followed by a high-
level description of the zero-knowledge proof instantiations (Sect. 4). Finally, we
give the security proof for our VOPRF protocol in Sect. 5.

2 Preliminaries

All algorithms will be considered to be randomised algorithms unless explicitly
stated otherwise. A PPT algorithm is a randomised (i.e. probabilistic) algorithm
with polynomial running time in the security parameter κ. We consider the prob-
ability distribution of outputs of algorithms as being over all possible choices of
the internal coins of the algorithm. For a distribution D, we denote the sampling
of x according to distribution D by x ← D. We write x ← S for a finite set S to
indicate sampling uniformly at random from S. We use the notation D1 ≈c D2 to
mean the distributions D1 and D2 are computationally indistinguishable and ≈s

to denote statistical indistinguishability. We use the standard asymptotic nota-
tions. We let negl(κ) denote a negligible function (i.e. a function that is κ−ω(1))
and write r1 � r2 as short-hand for r1 ≥ κω(1) · r2. We say a distribution D is
(B, δ)-bounded if Pr[‖x‖ ≥ B | x ← D ] < δ. If a distribution is (B, δ)-bounded
for a negligible δ, then we say that distribution is simply B-bounded.

In this work we will use power of two cyclotomic rings. In particular, for some
integer q, we will be considering polynomials in the power-of-two cyclotomic ring
R = Z[X]/〈Xn + 1〉 and Rq := R/qR where n is a power-of-two. R≤c is the set
of elements of R where all coefficients have an absolute value at most c. We also
use a rounding operation from Zq to Zq′ where q′ < q. For x ∈ Zq, this rounding
operation is defined as

�x�q′ := �(q′/q) · x�
where �·� denotes rounding to the nearest integer (rounding down in the case
of a tie). If q′ divides q, we can lift rounded integers back up to Zq by simply
multiplying by q/q′. Note that lifting the result of a rounding takes an x ∈ Zq to
the nearest multiple of q/q′. Therefore, the difference between x and the result
of this rounding then lifting is at most q/(2 · q′). Polynomials and vectors are
rounded component-wise. We write ‖·‖ for the Euclidean norm and ‖·‖∞ for the
infinity norm. We define the norms of ring elements by considering the norms of
their coefficient vectors. Vectors whose entries are ring elements will be denoted
using bold characters and integer vectors will be indicated by an over-arrow e.g.
v has ring entries and #»w has integer entries. Suppose v = (v1, . . . , vn). A norm
of v is the norm of the vector obtained by concatenating the coefficient vectors
of v1, . . . , vn.
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Gaussian distributions. For any σ > 0, define the Gaussian function on R
n

centred at c ∈ R
n with parameter σ to be:

ρσ,c(x) = e−π·‖x−c‖2/σ2
, ∀x ∈ R

n.

Define ρσ(Z) :=
∑

i∈Z
ρσ(i). The discrete Gaussian distribution over Z, denoted

χσ assigns probability ρσ(i)/ρσ(Z) to each i ∈ Z and probability 0 to each non-
integer point. The discrete Gaussian distribution over R, denoted as R(χσ),
is the distribution over R where each coefficient is distributed according to χσ.
Using the results of [13,25], χσ can be sampled in polynomial time. Moreover the
Euclidean norm of a sample from R(χσ) can be bounded using an instantiation
of Lemma 1.5 of [4]. We state this lemma next.

Lemma 1. Let σ > 0 and n = poly(κ). Then

Pr
[
‖x‖ ≥ σ

√
n

∣∣ x ← R(χσ)
]

< negl(κ) .

In addition, following the same reasoning as in [21] we have the following “drown-
ing/smudging” lemma.

Lemma 2. Let σ > 0 and y ∈ Z. The statistical distance between χσ and χσ +y
is at most |y|/σ.

2.1 Verifiable Oblivious Pseudorandom Functions

Recall that the main goal of our work is to build a verifiable oblivious pseu-
dorandom function (VOPRF). A VOPRF is a protocol between two parties: a
server S and a client C, securely realising the ideal functionality in Fig. 1. The
functionality consists of two phases, the initialisation phase and the query phase.
The initialisation phase is divided into two steps: one run once by the server,
and one run once by any client who wishes to utilise the VOPRF provided by
the server. In the event that the functionality FVOPRF receives a valid input k
from S during the initialisation phase, it stores the key for use during the query
phase. This models a server (S) in a real protocol committing to a PRF key k.

Next comes the query phase, where a client C sends some value x to FVOPRF.
Once this value x has been received, the server S either sends the functionality
an instruction to abort or to deliver the value y = Fk(x) to C. Finally, the
functionality carries out this instruction. Importantly, (assuming that no abort
is triggered) the client has the guarantee that its output is indeed Fk(x) i.e. the
output of the client is verifiably correct when interacting with FVOPRF.

We now describe the distributions that arise in the security requirement. We
consider malicious adversaries throughout that behave arbitrarily and begin with
the distributions of interest when a server has been corrupted. First, we consider
a “real” world protocol Π between C(x) and S(k) along with an adversary A.
We denote realΠ,A,S(x, k, 1κ) to be the joint output distribution of A(k) (when
corrupting S(k)) and C(x) where C(x) behaves as specified by Π. In this setting,
A interacts directly with C. Now we introduce a simulator denoted Sim that lives
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This is a two party functionality between a server S and a client C. We assume
there is a fixed PRF function defined by Fk(x).

Init-S: On input of init from the server the functionality waits for an input k
from party S. If S returns abort then the functionality aborts. Otherwise, the
functionality stores the value k if it is a valid key† and aborts if not.

Init-C: On input of init from a client, the functionality will return abort if the init
procedure for the server has not successfully completed.

Query: On input of (query, x) from a client C, if x �=⊥ then the functionality
waits for an input from party S. If S returns deliver then the functionality sends
y = Fk(x) to party C. If S returns abort then the functionality aborts.

Fig. 1. The Ideal Functionality FVOPRF.
†The notion of a valid key refers to whether

the key conforms to a pre-determined distribution. See Definition 1 for more details on
this requirement.

in the “ideal” world. Specifically, still assuming A corrupts a server, Sim interacts
with A on one hand and with C(x) via FVOPRF on the other. In this setting, for
any client/server input pair (x, k), we define idealFVOPRF,Sim,A,S(x, k, 1κ) to be the
joint output distribution of A(k) and the honest client C(x) when A(k) interacts
via Sim. Informally, one may interpret Sim as an attacker-in-the-middle between
A and the outside world where Sim interacts with FVOPRF external to the view
of A. Security argues that whatever A can learn/affect in the real protocol can
be emulated via Sim in the ideal setting.

Next, we describe the distributions of interest when a client has been cor-
rupted by an adversary A. We let K denote the key distribution under which
PRF security of F holds. First, consider a “real” world case where A corrupts
C(x) and directly interacts with honest S(k) which follows the specification of
protocol Π. In this case, we use realΠ,A,C(x,K, 1κ) to denote the joint out-
put distribution of A(x) and S(k)4 where k ← K. Now consider an alternative
“ideal” world case where we introduce a simulator Sim interacting with A on
one hand and with S(x) via FVOPRF on the other hand. Once again, one may
wish to interpret the simulator as an attacker-in-the-middle interacting with
FVOPRF external to the view of A. In this alternative case, we denote the joint
output distribution of A(x) and S(k) where A interacts via Sim and k ← K as
idealFVOPRF,Sim,A,C(x,K, 1κ).

Finally, for protocol Π, let output(Π,x, k) denote the output distribution of
a client with input x running protocol Π with a server whose input key is k.
Using the notation established above, we can present our definition of a VOPRF.

Definition 1. A protocol Π is a verifiable oblivious pseudorandom function if
all of the following hold:

1. Correctness: For every pair of inputs (x, k),

Pr[output(Π,x, k) �= Fk(x)] ≤ negl(κ) .

4 Note that the output of S(k) is ⊥ in our construction.
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2. Malicious server security: For any PPT adversary A corrupting a server,
there exists a PPT simulator Sim such that for every pair of inputs (x, k):

idealFVOPRF,Sim,A,S(x, k, 1κ) ≈c realΠ,A,S(x, k, 1κ).

3. Average case malicious client security: For any PPT adversary A cor-
rupting a client, there exists a PPT simulator Sim such that for all client
inputs x:
– idealFVOPRF,Sim,A,C(x,K, 1κ) ≈c realΠ,A,C(x,K, 1κ).
– If A correctly outputs Fk(x) with all but negligible probability over the

choice k ← K when interacting directly with S(k) using protocol Π, then
A also outputs Fk(x) with all but negligible probability when interacting
via Sim.

We now discuss this definition. Note that the correctness and malicious server
security requirements are the standard ones used in MPC. Therefore, we restrict
this discussion to the condition that we call average case malicious client security.
The motivation for this non-standard property is that an honest server will
always sample a key from distribution K as it wishes to provide pseudorandom
function evaluations. In particular, PRF security holds with respect to this key
distribution K. Therefore, it makes sense to ask what a malicious client may
learn/affect only in the case where k ← K which leads to the first point of
our average case malicious client security requirement. The second point of the
requirement captures the fact that adversaries may have access to an oracle that
checks whether the PRF was evaluated correctly or not. Suppose that we give
the adversary A access to an oracle which can check an input/output pair to
the PRF is valid or not. Then A should not be able to distinguish whether
it is interacting with a real server S or a simulation Sim. Note that our proof
structure relies heavily on our alternative malicious client security definition. In
particular, the definition above allows us to argue over the entropy of secret keys
when making indistinguishability claims.

Alternative Definitions. Note that alternative security definitions exist for
(V)OPRFs. In the UC security models that are favoured by Jarecki et al. [29,30]
the output of the PRF is wrapped in the output of a programmable random
oracle evaluation. This is a fact that is utilised by the OPAQUE PAKE pro-
tocol [31] that allows arguing that the pseudorandom function evaluations are
pseudorandom even to the server (the key-holder). Unfortunately, using a sim-
ilar technique here is difficult as constructing programmable random oracles in
the quantum random oracle model (QROM) is known to be difficult [9].

2.2 Computational Assumptions

Here we present the presumed quantum hard computational problems that will
be used in our security proofs. Evidence that these problems are indeed quantum
hard follows via reductions from standard lattice problems (see the full version of
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this work). These reductions from lattice problems will be used to asymptotically
analyse secure parameter settings for our VOPRF. The first is the standard
decisional RLWE problem [40].

Definition 2. (RLWE problem) Let q,m, n, σ > 0 depend on κ (q,m, n are
integers). The decision-RLWE problem (dRLWEq,n,m,σ) is to distinguish between:

(ai, ai · s + ei)i∈[m] ∈ (Rq)
2 and (ai, ui)i∈[m] ∈ (Rq)

2

for ai, ui ← Rq; s, ei ← R(χσ).

We sometimes write dRLWEq,n,σ, leaving the parameter m (representing the
number of samples) implicit. The second problem is slightly less standard. It is
the short integer solution problem in dimension 1 (1D-SIS). The following for-
mulation of the problem was used in [15] in conjunction with a lemma attesting
to its hardness. See the full version of this work for more details.

Definition 3. (1D-SIS, [15, Definition 3.4]) Let q,m, t depend on κ. The one-
dimensional SIS problem, denoted 1D-SISq,m,t, is the following: Given a uniform
v ← Z

m
q , find non-zero z ∈ Z

m such that ||z||∞ ≤ t and 〈v,z〉 ∈ [−t, t] + qZ.

2.3 Non-interactive Zero-Knowledge Arguments of Knowledge

The foundations of zero-knowledge (ZK) proof systems were established in a
number of works [8,23,27,28]. At a high level, a ZK proof system for language L
allows a prover P to convince a verifier V that some instance x is in L, without
revealing anything beyond this statement. Further, a ZK argument of knowledge
(ZKAoK) system allows P to convince V that they hold a witness w attesting to
the fact that x is in L (where the L is defined by a relation predicate PL(x,w)).

Definition 4. (NIZKAoK) Let P be a prover, let V be a verifier, let L be a
language with accompanying relation predicate PL(·, ·). Let WL(x) be a generic
set of witnesses attesting to the fact that x ∈ L, i.e. ∀x ∈ L, and w ∈ WL(x) we
have PL(x,w) = 1. Let nizk = (Setup,P,V) be a tuple of algorithms defined as
follows:

– crs ← nizk.Setup(1κ): outputs a common random string crs.
– π ← nizk.P(crs, x, w): on input crs, a word x ∈ L and a witness w ∈ WL(x);

outputs a proof π ∈ {0, 1}poly(κ).
– b ← nizk.V(crs, x, π): on input crs, a word x ∈ L and a proof π ∈ {0, 1}poly(κ);

outputs b ∈ {0, 1}.

Definition 5. (NIZKAoK Security) We say that nizk is a non-interactive zero-
knowledge argument of knowledge (NIZKAoK) for L if the following holds.

1. (Completeness): Consider x ∈ L and w ∈ WL(x), where PL(x,w) = 1. Then:

Pr
[
1 ← nizk.V(crs, x, π)

∣∣∣crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

]
≥ 1 − negl(κ).
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2. (Computational knowledge extraction): The proof system satisfies computa-
tional knowledge extraction with knowledge error κ̄ if, for any PPT prover
P

∗ with auxiliary information aux, the following holds. There exists a PPT
algorithm nizk.Extract and a polynomial p such that, for any input x, then:

Pr[1 ← PL(x,w′)|w′ ← nizk.Extract(P∗(crs, x, aux))] ≥ ν − κ̄

p(|x|)

is satisfied, where ν is the probability that nizk.V(crs, x,P∗(crs, x, aux)) outputs
1.

3. (Computational zero-knowledge): There exists a simulated setup algorithm
nizk.SimSetup(1κ) outputting crsSim and a trapdoor T along with a PPT algo-
rithm nizk.Sim(crsSim, T , x) satisfying
{
crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

}
≈c

{ crsSim
πSim←nizk.Sim(crsSim,T ,x)|(crsSim, T ) ← nizk.SimSetup(1κ)

}

∀x ∈ L and w ∈ WL(x).

Interactive Proof Systems. An interactive proof system is one where the proving
algorithm (P) requires interaction with the verifier. Such an interaction could be
an arbitrary protocol, with many message exchanges, but a typical (in the hon-
est verifier case) scenario is a three-move protocol consisting of a commitment
(from the prover), a uniformly chosen challenge (from the verifier) and then a
response (from the prover). Such protocols are referred to as Σ-protocols. Fiat
and Shamir [23] established a mechanism of switching a (constant-round) hon-
est verifier zero-knowledge interactive proof of knowledge into a non-interactive
zero-knowledge proof of knowledge in the random oracle model (ROM). In par-
ticular, the random challenge provided by the verifier is replaced with the output
of a random oracle evaluation taking as input the statement x and the provers ini-
tial commitment. It was recently shown that the standard Fiat-Shamir transform
is also secure in the quantum ROM (QROM) [22,37] assuming the underlying
Σ-protocol satisfies certain properties.

2.4 Lattice PRF

We will use an instantiation of the lattice PRF from [5]. Below, we present
relevant definitions/results, all of which are particular cases of definitions/results
from [5]. We set � = �log2 q� throughout. The construction from [5] makes use
of gadget matrices that can be found in many previous works [5,15,26,43].

Gadgets G,G−1. Define G : R�×�
q → R1×�

q to be the linear operation correspond-
ing to left multiplication by (1, 2, . . . , 2�−1). Further, define G−1 : R1×�

q → R�×�
q

to be the bit decomposition operation that essentially inverts G i.e. the ith col-
umn of G−1(a) is the bit decomposition of ai ∈ Rq into binary polynomials.

The instantiation of [5] that we will present our VOPRF with respect to is
defined as Fk(x) = �ax · k�p for ax ∈ R1×�

q given below.
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Definition 6. Fix some a0,a1 ← R1×�
q . For any x = (x1, . . . , xL) ∈ {0, 1}L.

We define ax ∈ R1×�
q as

ax := ax1 · G−1
(
ax2 · G−1

(
ax3 · G−1

(
. . .

(
axL−1 · G−1 (axL

)
))))

∈ R1×�
q .

The pseudorandomness of this construction follows from the ring learning
with errors (RLWE) assumption (with normal form secrets).

Theorem 1 ([5]). Sample k ← R(χσ). If q � p · σ ·
√

L · n · �, then the function
Fk(x) = �ax · k�p is a PRF under the dRLWEq,n,σ assumption.

When we eventually prove security of our VOPRF, it will be useful to define
a special error distribution such that ax · k + e remains indistinguishable from
uniform (under RLWE) when e is sampled from this special error distribution.
To this end, we introduce the distributions Ea0,a1,x,σ followed by a lemma that
is implicit in the pseudorandomness proof of the PRF from [5].

Definition 7. For a0,a1 ∈ R1×�
q , define

ax\i := G−1
(
axi+1 · G−1

(
axi+2 · G−1

(
· · ·

(
axL−1 · G−1 (axL

)
)
· · ·

)))
∈ R�×�

q .

Furthermore, let Ea0,a1,x,σ be the distribution that is sampled by choosing ei ←
R(χσ)1×� for i = 1, . . . , L and outputting

e =
L−1∑
i=1

ei · ax\i + eL.

Lemma 3 (Implicit in [5]). If a0,a1 ← R1×�
q ,e ← Ea0,a1,x,σ and s ← R(χσ),

then for any fixed x ∈ {0, 1}L,

(a0, a1, ax · s + e)

is indistinguishable from uniform random by the dRLWEq,n,σ assumption.

In addition to introducing Ea0,a1,x,σ, it will be useful to write down an upper
bound on the infinity norm on errors drawn from this distribution. The following
lemma follows from the fact that for y ← χσ, ‖y‖∞ ≤ σ

√
n with all but negligible

probability by Lemma 1. In fact, we could use the result that ‖y‖∞ ≤ σnc′
with

probability at least 1−c ·exp(−πn2c′
) for any constant c′ > 0 and some universal

constant c to reduce the upper bound, but we choose not to for simplicity.

Lemma 4 (Bound on Errors). Let x ∈ {0, 1}L, � = �log2 q� and n = poly(κ).
Samples from Ea0,a1,x,σ have infinity norm at most L · � · σ · n3/2 with all but
negligible probability.



Round-Optimal Verifiable Oblivious Pseudorandom Functions 273

3 A VOPRF Construction from Lattices

In this section, we provide a construction emulating the DH blinding construction
H(x)k = (H(x) · gr)k

/(gk)r. In what follows, we will initially ignore the zero-
knowledge proofs establishing that all computations are performed honestly. A
detailed description of the protocol is in Fig. 2 but the main high-level idea
follows.

Recall that we are working with power-of-two cyclotomic rings. Informally,
suppose a client wants to obtain a′ · k + e′ ∈ Rq (where e′ is relatively small)
from a server holding a short k without revealing a′ ∈ Rq. Further, suppose that
the server has published an LWE instance (a, c := a ·k + e) for truly uniformly a
and small Gaussian e. One way to achieve our goal is to have the client compute
cx := a · s + e1 + a′ for Gaussian (s, e1). Next the server responds by computing
dx := cx · k + e′′ for relatively small e′′ and the client finally outputs

dx − c · s = (a · s + e1 + a′) · k + e′′ − (a · k + e) · s

= a′ · k + (e1 · k − e · s + e′′)
≈ a′ · k.

The above gives the intuition behind our actual protocol. Roughly, the idea
is to replace a′ with ax from a BP14 evaluation. As mentioned above, a more
detailed formulation of our construction is given in Fig. 2. In the protocol descrip-
tion, Pi and Vi denote prover and verifier algorithms for three different zero-
knowledge argument systems indexed by i ∈ {0, 1, 2}.

3.1 Zero-Knowledge Argument of Knowledge Statements

The arguments of Pi algorithms fall into two groups separated by a colon. Argu-
ments before a colon are intended as “secret” information pertaining to a witness
for a statement. Arguments after a colon should be interpreted as “public” infor-
mation specifying the statement that is being proved.

Client Proof. The client proof denoted P1(x, s,e1 : crs1, cx,a,a0,a1) should
prove knowledge of

– x ∈ {0, 1}L

– s ∈ R where ‖s‖∞ ≤ σ · √
n

– e1 ∈ R1×� where ‖e1‖∞ ≤ σ
√

n

such that cx = a · s + e1 + ax mod q.
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CRS SetUp: To set up the CRS execute the following steps:
– Pick a0,a1 ← R1×�

q

– Sample a ← R1×�
q , sample crs0 for proof system P0 and set crs0 := (crs0,a)

– Sample crs1 and crs2 for proof systems P1 and P2 respectively
Init: The initialisation procedure is executed by the server S and a client C both

with initial input crs0.
– Init-S: The server S executes the following steps

• k ← R(χσ),e ← R(χσ)1×�.
• c ← a · k + e mod q.
• π0 ← P0(k, e : crs0,c).

and sends (c, π0) to a client C.
– Init-C: On receipt of (c, π0) a client executes

• b ← V0(crs0,c, π0).
• Output abort if b = 0, otherwise store c.

Query: This is a two round protocol between a client and the server, with a client
going first.
1. On input of (x ∈ {0, 1}L, crs1, crs2) a client C executes the following steps

– s ← R(χσ),e1 ← R(χσ)1×�.
– ax = ax1 · G−1 · · · axL−1 · G−1 (axL)

) · · · ) mod q.
– cx ← a · s + e1 + ax mod q.
– π1 ← P1(x, s,e1 : crs1,cx,a,a0,a1).

and sends (cx, π1) to the server S.
2. On receipt of (cx, π1) the server S executes the following steps

– b ← V1(crs1,cx,a0,a1, π1).
– Output abort if b = 0
– e′ ← R(χσ′)1×�.
– dx = cx · k + e′ mod q.
– π2 ← P2(k,e′,e : crs2,c,dx,cx,a).

and sends (dx, π2) to a client C while outputting ⊥.
3. On receipt of (dx, π2) a client C executes

– b ← V2(crs0, crs2,c,dx,cx, π2).
– Output abort if b = 0.
– yx = �dx − c · s�p.
– Output yx.

Fig. 2. VOPRF construction

Server Proofs. The server proof in the initialisation phase denoted P0(k,e :
crs0, c) has the purpose of proving knowledge of k ∈ R,e ∈ R1×� where ‖k‖∞,
‖e‖∞ ≤ σ · √n such that c = a · k + e mod q where crs0 contains a.
The server proof in the query phase denoted by P2(k,e′,e : crs2, c,dx, cx,a) has
the purpose of proving that there is some

– k ∈ R where ‖k‖∞ ≤ σ · √
n

– e ∈ R1×� where ‖e‖∞ ≤ σ · √n
– e′ ∈ R1×� where ‖e′‖∞ ≤ σ′ · √

n
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such that

c = a · k + e mod q,

dx = cx · k + e′ mod q. (1)

It is important to note that both c and dx each consist of � ring elements.
Therefore, the above system consists of a total of 2� noisy products of public
ring elements and k. Note that the well-definedness of normal form RLWE (where
the secret is drawn from the error distribution) implies that the witnesses used
by the prover in π0 and π2 share the same value k.

3.2 Optimisations

Removing P0 using Trapdoors. The main purpose of proof system 0 is to
allow the security proof to extract k and forward it on to the functionality.
On removing this proof, if the server does not commit to its key properly, it
cannot carry out the zero-knowledge proof in the Query phase, leading to a
protocol where no evaluations are given to clients. An alternative to the server’s
NIZKAoK in the Init-S phase, the proof could extract k via trapdoors. Using
the methods of Micciancio and Peikert [41], one can sample a trapdoored a ∈ Rm

q

for m = O(�) that is indistinguishable from uniform where the trapdoor permits
efficient inversion of the function ga(k,e) = a · k + e for small e. Therefore, the
malicious server security proof could extract k in the Init-S phase by using a
trapdoored a along with the inversion algorithm. For clarity and simplicity, we
do not incorporate these ideas directly into our protocol.

Truncating the PRF. Although the protocol in Fig. 2 is concerned with
the evaluation of the full BP14 PRF, we may consider a truncated version of
the PRF to improve efficiency. In particular, the BP14 PRF is evaluated as
Fk(x) := �ax · k�p ∈ R1×�

p but we could easily truncate particular quantities in
our protocol to consider the PRF F ′

k(x) := �ax · k�p where ax is the ring element
appearing in the first entry of ax. The relevant values that are truncated from
� ring elements to a single ring element from our protocol are c,ax, cx,dx,yx.
Ignoring the zero-knowledge elements of the protocol, this saves us a factor of
�. However, computation of the full ax must still be performed by the client
in order to calculate the truncated value. Additionally, the computation of ax

will still need to be considered by the client’s zero-knowledge proof. As we will
see in Sect. 4, the computation of ax is the main source of inefficiency in the
zero-knowledge proofs and our overall protocol. Therefore, we do not trivially
save a factor of � in computation time and zero-knowledge proof size by using a
truncated BP14 PRF.
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Batching Queries. We can save on the cost of zero-knowledge proof of the
server in the Query phase by batching VOPRF queries. When the client sends
a single value cx, the server proves that c and cx are computed with respect
to the same k. If the client sends N individual queries, the server proves that
c and cx1 are with respect to the same k and then independently proves that
c and cx2 are with respect to the same k and so on. Instead, the server could
simply prove that c, cx1 , . . . , cxN

are all with respect to the same k in one shot,
saving an additive term of O(N · �) in communication over N different VOPRF
evaluations (although the overall complexity of the communication does not
change asymptotically).

Cut-and-Choose. Another way in which we can improve efficiency (from the
server’s perspective) is to remove some of the zero-knowledge proofs using a
cut-and-choose methodology. In particular, we can remove the need for the zero-
knowledge proof from the server in the Query phase as follows. Firstly, in the
Init-S phase, we make the server publish (for small k) the value y := �ax′ · k�p

for some fixed x′ in addition to the value a · k + e as well as a zero-knowledge
proof attesting to the correct computation of these values for small k. The next
change comes in the client message in the Query phase. Instead of sending a
single pair (cx, π1), the client chooses a uniform subset X of {1, . . . , N} of size K.
The client then sends N values (cx1 , . . . , cxN

) where for all j ∈ X, xj = x′ and
for all j′ /∈ X, xj′ = x for some x chosen by the client and a NIZKAoK attesting
to this computation. The server then computes dx1 , . . . ,dxN

as it does in Fig. 2
using cx1 , . . . , cxN

respectively. Next, the client processes each dxi
individually

to compute the values yx1 . . .yxN
as in the plain protocol. Finally, the client

aborts if any of the following hold:

– there exists a j∗ ∈ X such that yxj∗ �= y
– yxj′ are not all equal for j′ /∈ X
– yxj′ = y for all j′ /∈ X (see explanation below)

Otherwise, the client accepts yx = yxj′ for any j′ /∈ X as the evaluation at
x. The client now must create N proofs for the most complex statements. On
the other hand, the server does not need to create any proofs whatsoever in the
online phase. The only way for the server to cheat now is to somehow guess
the N − K transcripts containing input x which can be done with probability
at most 1/

(
N
K

)
. Thus, the computational burden is mostly shifted to the client,

which might be desirable in some settings.
On close inspection, there is a slight problem with the cut-and-choose opti-

misation described above. The issue is that a client might ask for an eval-
uation on input x such that �ax · k�p = �ax′ · k�p in which case the third
condition causes an abort, even though the client obtained the correct eval-
uation. One way to get around this is to redefine the PRF slightly so that
such collisions only occur with negligible probability. For example, for L − 1 bit
inputs x ∈ {0, 1}L−1, suppose we use the alternative PRF F ′

k(x) :=
⌊
a0‖x · k

⌉
p
.

Since we can rewrite a0‖x · k = a0 · Zx,k where Zx,k has small entries as
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long as k is short. Then a collision in this PRF must lead to an equation
a0 · (Zx,k − Zx′,k) = u mod q where ‖u‖∞ ≤ q/p. Rearranging, this equation

becomes [1|a0] ·
[

u
(Zx,k − Zx′,k)

]
= 0 mod q which means that such a collision

would imply a solution to a ring-SIS problem with respect to [1|a] (in Hermite
normal form). Therefore, for fixed x and any short k, it is unlikely that a collision
in this alternative PRF will occur under some SIS assumption.

3.3 Correctness

Before proving correctness, we present a lemma that we will apply below. The
proof of this lemma is in the full version of this work.

Lemma 5. Fix any x ∈ {0, 1}L. Suppose there exists a PPT algorithm
Dx(a0,a1) that outputs r ∈ R such that ‖r‖∞ ≤ B and at least one coefficient of
ax · r is in the set (q/p) ·Z+ [−T, T ] with non-negligible probability (over a uni-
form choice of a0,a1 ← R�

q and its random coins). Then there exists an efficient
algorithm solving 1D-SISq/p,n�,max{n�B,T} with non-negligible probability.

Lemma 6 (Correctness). Adopt the notation of Fig. 2, assuming an honest
client and server. Define T := 2σ2 n2 + σ′√n. For any x ∈ {0, 1}L, k ∈ Rq such
that ‖k‖∞ ≤ σ · √n, we have that

Pr[yx �= Fk(x)] ≤ negl(κ)

over the choice of PRF parameters a0,a1 ← R1×�
q assuming the hardness of

1D-SISq/p,n�,T .

Proof. Fix an arbitrary x. Assume there exists a k′ such that ‖k′‖ ≤ σ ·√n where
Pr[yx �= Fk′(x)] is non-negligible over the choice of a0,a1 ← R1×�

q . Expanding
c and dx from the protocol, we have that

yx = �ax · k′ + e1 · k′ + e′ − e · s�p .

Note that e′′ := e1 · k′ − e · s + e′ has infinity norm less than T as defined in
the lemma statement with all but negligible probability. It follows that there
must be at least one coefficient of ax · k′ in the set (q/p) · Z + [T, T ] with non-
negligible probability, otherwise yx = �ax · k′�p =: Fk′(x). Applying Lemma 5
to the algorithm Dx(a0,a1) that ignores a0,a1 and simply outputs k′ implies
an efficient algorithm solving 1D-SISq/p,n�,max{n3/2�σ,T}. ��

The remainder of the security proof can be found in Sect. 5.

4 Lattice-Based NIZKAoK Instantiations

We now describe various instantiations of our zero-knowledge arguments of
knowledge. Note that we use the Fiat-Shamir transform (on parallel repetitions)
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to obtain non-interactive proofs. We recall that the Fiat-Shamir transform has
recently been shown to be secure in the QROM [22,37] in certain settings. We
place most of our attention on discussing how to instantiate Proof System 1,
as the other proof systems may be derived straight-forwardly using a subset of
the techniques arising in Proof System 1. For more precise details on how to
instantiate Proof System 1 using the protocol of Yang et al. [47], see the full
version of this work. Alternatively, one could use the same techniques as in [36]
to represent the statement of interest in Proof System 1 as a permuted kernel
problem and use the recent protocol of Beullens [7]. The advantage of doing so
would be that the protocol of Beullens has been shown to be compatible with
the aforementioned security results of the Fiat-Shamir transform in the QROM.

Note that the argument system of Yang et al. requires the modulus q to be
a prime power. In contrast, 1D-SIS is known to be at least as hard as standard
lattice problems when q has many large coprime factors [15]. In order to justify
the use of a prime power modulus along with the use of the 1D-SIS assumption,
we apply two minor lemmas given in the full version of this work. Alternatively,
if one wished to use a highly composite modulus, then a Stern-based protocol
such as in [35,36] or the more efficient recent protocol of Beullens [7] may still be
used. Nonetheless, all of the aforementioned argument systems involve rewriting
PRF evaluations as a large system of linear equations. In our context, applying
the argument system of Yang is slightly simpler. Additionally, a single execution
of the protocol of Yang et al. achieves a soundness error of 2/(2p̄ + 1) for some
polynomial p̄ much less than q. This is similar to the soundness error encountered
in the Beullens protocol, but significantly improves on the soundness of Stern-
based protocols. Therefore, roughly κ/ log p̄ repetitions are required to reach a
2−κ soundness error when using either of the protocol of Yang et al. or Beullens
protocols.

Proof System 0: Small Secret RLWE Sample. Let A ∈ Z
n�×n
q be the

vertical concatenation of the negacyclic matrices associated to multiplication by
the ring elements of a ∈ R1×�

q respectively. Further, let #»c ∈ Z
n�
q be the vertical

concatenation of coefficient vectors of ring elements in c ∈ R1×�
q respectively.

The first proof aims to prove in zero knowledge, knowledge of a short solution
#»x := ( #»x 1,

#»x 2), where ‖ #»x‖∞ ≤ σ · √n to the system

#»c = A · #»x 1 + #»x 2 mod q.

This is an inhomogeneous SIS problem, so the zero-knowledge proof may
be instantiated using either the protocol of Yang et al. or Beullens. Addition-
ally, for this proof system, we may also use the protocol from [12]. All of these
options avoid the so-called soundness gap seen in many lattice-based proof sys-
tems (e.g. [38,39]) although the efficient protocol in [39] has been shown to be
secure in the QROM when the Fiat-Shamir transform is applied [37]. Therefore,
for simplicity and neatness we prefer to consider these systems when writing the
security proof for our VOPRF although one may use the more efficient protocol
of [39] in practice.
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Proof System 1: Proofs of Masked Partial PRF Computation. This
proof system aims to prove that for a known a and c, the prover knows short
s and e along with a bit-string x such that c = a · s + e + ax where ax is
part of the BP14 PRF evaluation. At a high level, we will run the protocol of
Yang et al. [47] O(κ/ log p̄) times (for some p̄ = poly(κ)) in parallel and apply
the Fiat-Shamir heuristic. We focus on this instantiation for simplicity. We do
not actually concretely present any ZKAoK protocol in this work, but we do
highlight the reduction in the full version of this work showing that we may use
the protocol of Yang et al. Similar methods (e.g. the decomposition-extension
framework used by[36]) can be used to prove compatibility with the protocol of
Beullens. Let Pn represent the power set of {1, . . . , n}3. The protocol of Yang et
al. is a ZKAoK for the instance-witness set given by

R∗ =
{(

(A, #»y ,M), #»x
)

∈ Z
m×n
q × Z

m
q × Pn × Z

n
q : A · #»x= #»y mod q ∧

∀(i,j,k)∈M,xi=xj ·xk mod q

}
.

Therefore, in order to show that we may use the protocol, we simply reduce
our statement of interest to an instance ((A′, #»y ′,M′), #»w ′) ∈ R∗. Then, the
protocol of Yang et al. allows to argue knowledge of a witness #»w ′ such that
((A′, #»y ′,M′), #»w ′) ∈ R∗. Details on reducing statements of the relevant form
to instances in R∗ are given in the full version of this work, but a high level
overview follows.

First note that we can compute ax recursively (similarly to [36]) by setting
variables Bi ∈ R�×�

q for i = L − 1, . . . , 0 via BL−1 = G−1(axL−1), and Bi =
G−1(axi

· Bi+1) for i = L − 2, . . . , 0. Using this, we have ax = G · B0. We can
therefore use the system G ·Bi = axi

·Bi−1 to facilitate computation of ax along
with the linear equation c = a·s+e1+G·B0 to completely describe the statement
being proved. However, the resulting system is over ring elements and is not
linear in unknowns. To solve these issues, we simply replace ring multiplication
by integer matrix-vector products and then linearise the resulting system (which
places quadratic constraints amongst the entries of the solution). We also make
use of binary decompositions to bound the infinity norms of valid solutions and
ensure that necessary entries are in {0, 1} via quadratic constraints5.

Proof System 2: Proofs of Secret Equivalence. Recall that we wish to
prove existence of a solution to Eq. (1). Note that dx from the protocol in
Sect. 3 are vectors holding � ring elements. Therefore, Eq. (1) can be expressed
as a system

ci = ai · k + ei i = 1, . . . , �,

(dx)i = (cx)i · k + e′
i i = 1, . . . , �,

where ‖ei‖∞, ‖k‖∞ ≤ σ · √
n, ‖e′

i‖∞ ≤ σ′ · √
n. We can conceptualise the above

as a large linear system A′ · #»x = #»c where #»x is the concatenation of coefficient

5 Using the fact that x2 = x mod q ⇐⇒ x ∈ {0, 1} assuming q is a prime power.
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vectors of k, e1, . . . , e�, e
′
1, . . . , e

′
� and #»c is the concatenation of the coefficient vec-

tors of c1, . . . , c�, (dx)1, . . . , (dx)�. Using this interpretation, we may instantiate
this proof system using the same methods as in Proof System 0.

5 Security Proof

In this section, we show that the protocol in Fig. 2 is a VOPRF achieving security
against malicious adversaries. In particular, corrupted clients and servers that
attempt to subvert the protocol learn/affect only as much as in an ideal world,
where they interact via the functionality FVOPRF.

Theorem 2. (Security) Assume p|q. The protocol in Fig. 2 is a secure VOPRF
protocol (according to Definition 1) if the following conditions hold:

– ∀i ∈ {0, 1, 2}, (Pi,Vi) is a NIZKAoK
– dRLWEq,n,σ is hard,
– q

2p � σ′ � max{L · � · σn3/2, σ2n2},
– 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard.

Note that correctness of our protocol with respect to honest clients and
servers is shown in Sect. 3.3. Therefore, what remains is to show average mali-
cious client security and malicious server security.

Correctness of Non-aborting Malicious Protocol Runs. During the mali-
cious client proof, it will be useful to call on the fact that a non-aborting protocol
transcript enables computation of Fk(x) with overwhelming probability:

Lemma 7. Assume that dRLWEq,n,σ is hard, σ and n are poly(κ), and q
2p �

σ′ � max{L · � · σn3/2, σ2n2}. For any x ∈ {0, 1}L, consider a non-aborting run
of the protocol in Fig. 2 between a (potentially malicious) efficient client C∗ and
honest server S. Further, let s be the value that is extractable from the client’s
proof in the query phase. Then, the value of �dx − c · s�p is equal to �ax · k�p

with all but negligible probability.

Proof. We use the notation from Fig. 2. First note that for a non-aborting pro-
tocol run, any efficient client C

∗ must have produced cx correctly using some
x ∈ {0, 1}L, s,e1 where ‖s‖∞, ‖e1‖∞ ≤ σ · √

n. Suppose that ex ← Ea0,a1,x,σ.
We now use the fact that if σ′ � max{L · � · σn3/2, σ2n2}, then e′ ← R(χσ′)1×�

and (ex − e1 · k − e · s) + e′ are statistically close which follows from Lemmas 4
and 2. Therefore, replacing e′ by (ex − e1 · k − e · s) + e′ and noting that cx

must be well-formed due to the NIZKAoK, the client output equation in Fig. 2
can be written as ⌊

p

q
(dx − c · s)

⌉
=

⌊
p

q
(ax · k + ex) +

p

q
e′

⌉

To complete the proof, we will use the fact that p
q (ax · k + ex) is computation-

ally indistinguishable from uniform random over p
q R1×�

q when ex ← Ea0,a1,x,σ
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assuming the hardness of dRLWEq,n,σ (Lemma 3). This implies that every coef-
ficient in p

q (axk + ex) is at least T away from Z + 1/2 with all but negligible
probability for any T � 1. Setting T = p

q

(
σ′ · √

n + L · � · σn3/2
)

� 1 ensures
that T ≤ p

q · ‖ex + e′‖∞ with all but negligible probability. It then follows that

⌊
p

q
(ax · k + ex) +

p

q
e′

⌉
=

⌊
p

q
ax · k

⌉

as required. ��

5.1 Malicious Client Proof

Lemma 8 (Average-case malicious client security). Assume that σ and
n are poly(κ), and p|q, and let conditions (i) and (ii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) q

2p � σ′ � max{L · � · σn3/2, σ2n2}.

If the above conditions hold and (P1,V1) is a NIZKAoK, then the protocol in Fig. 2
has average-case security against malicious clients according to Definition 1.

Proof. We describe a simulation S that communicates with the functionality
FVOPRF (environment) on one hand, and the malicious client C∗ on the other. S
carries out the following steps:

1. During CRS SetUp, publish honest a,a0,a1, crs1 and (dishonest) simulated
versions of crs0 and crs2. Denote the simulated CRS elements crs′0 and crs′2.

2. Pass the init message onto FVOPRF, then send C
∗ a uniform c ← R1×�

q with a
simulated proof π0,Sim. Initialise an empty list received.

3. During the Query stage, for each message (cx, π1) from C
∗, do:

(a) b ← V1(crs1, cx,a,a0,a1, π1). If b = 0 send abort to the functionality and
abort the protocol with the malicious client. If b = 1 continue.

(b) Extract the values x, s,e1 from π1 using the ZKAoK extractor and send
(query, x) to the functionality.

(c) – If FVOPRF aborts:
S aborts.

– If FVOPRF returns y ∈ R1×�
p and ∀y∗, (x,y∗) /∈ received: (i.e. if this is

the first time x is queried) uniformly sample

yq ← R1×�
q ∩

(
q

p
y + R1×�

≤ q
2p

)

and do received.add(x,yq).
– If FVOPRF returns y ∈ R�

p and ∃y∗s.t.(x,y∗) ∈ received:
(i.e. x was previously queried) Then set yq = y∗.



282 M. R. Albrecht et al.

(d) Next pick ē′ ← χσ′ and set

d̄x = c · s + ē′ + yq mod q.

Finally, produce a simulated proof π2,Sim using crs′2 and send (d̄x, π2,Sim)
to C

∗.

We now argue that C
∗ cannot decide whether it is interacting with S or with a

genuine server. Firstly, recognise that (crs′0, crs
′
2) is indistinguishable from hon-

estly created (crs0, crs2). Secondly, the malicious client cannot distinguish the
simulator’s uniform c sent during the Init phase from the real protocol by the
dRLWEq,n,σ assumption (condition (i)). This implies that both the CRS SetUp
and Init phases that S performs are indistinguishable from the real protocol.

The most challenging step is arguing that the simulator’s behaviour in the
Query phase is indistinguishable from the real protocol from the malicious
client’s point of view. We will analyse the behaviour of the simulator assum-
ing that no abort is triggered. We begin by arguing that the server message
dx in the real protocol with respect to any triple (x, s,e1) can be replaced by a
related message c·s+ax ·k+ex+e′′′ where ex ← Ea0,a1,x,σ and e′′′ ← R(χσ′)1×�

without detection by the following statistical argument. We have that the server
response in the real protocol has dx of the form

c · s + e1 · k + ax · k + e′ (2)

where e′ ← R(χσ′)1×�. By Lemma 2, the message distribution in Eq. (2) is
statistically indistinguishable from

a · k · s + e · s + ax · k + e′′ = c · s + ax · k + e′′ (3)

where e′′ ← R(χσ′)1×� due to the fact that σ′ � σ2n2. By a similar argument
along with Lemma 4, the quantity given in Equation (3) is statistically close in
distribution to

c · s + e′′′ + (ax · k + ex). (4)

where ex ← Ea0,a1,x,σ and e′′′ ← R(χσ′)1×�. Next, using Lemma 3 and condition
(i), we have that the bracketed term in Equation (4) is indistinguishable from
random over R1×�

q by the hardness of dRLWEq,n,σ (Lemma 3). In particular, from
an efficient C

∗’s point of view, dx cannot be distinguished from

c · s + e′′′ + ux

Note that on repeated queries, the errors sampled from R(χσ′)1×� are fresh.
The fact that S samples yq as a uniformly chosen element of a uniformly cho-
sen interval implies the indistinguishability part of average-case malicious client
security.

Next, we show that if the malicious client does indeed compute the correct
value from the messages it receives from the honest server (in the real protocol),
then it can do the same with the messages that it receives from the simulator.
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In Lemma 7, we show that a malicious client which does not cause an abort can
compute �ax · k�p from the messages it receives from the honest server with all
but negligible probability. We now show that this is also the case with the mes-
sages it receives from S. Consider yq sampled by S and also the corresponding
value d̄x. In addition, define e
� := yq − (q/p) ·y ∈ R1×�

≤ q
2p

so that e
� follows the

uniform distribution over R1×�
≤ q

2p
. We have that

⌊
p

q

(
d̄x − c · s

)⌉
=

⌊
y +

p

q

(
e
� + ē′)⌉ . (5)

We also know that with all but negligible probability, ‖ē′‖∞ ≤ σ′√n, and that
‖e
�‖∞ is less than q/(2p) − T with all but negligible probability as long as
T � (q/2p). Taking T = σ′√n, we get that with all but negligible probability,

∥∥∥∥p

q

(
e
� + ē′)∥∥∥∥

∞
≤ 1

2
,

implying that the quantity in Equation (5) rounds correctly to y with all but
negligible probability. Therefore, both the real protocol and simulator enable
correct evaluation of the PRF. ��

5.2 Malicious Server Proof

Lemma 9. Let conditions (i) and (ii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard.

If the above conditions hold and (P0,V0) and (P2,V2) are both NIZKAoKs, then
the protocol in Fig. 2 is secure in the presence of malicious servers.

Proof. We construct a simulator S interacting with the malicious server S
∗ on

one hand and with the functionality FVOPRF on the other. The simulator S
behaves as follows:

1. During the CRS.SetUp phase, publish honest a,a0,a1, crs0, crs2 and (dishon-
est) simulated crs′1 to use with the proof systems.

2. During the Init-C phase, if S∗ sends c ∈ R1×�
q and an accepting proof π0,

then use the zero knowledge extractor to obtain a key k′ from π0 and forward
this on to the functionality. If the message is not of the correct format, or the
proof does not verify, then abort.

3. During the Query phase, select a uniform random value u ← R1×�
q , and

using the ZK simulator, produce a simulated proof π1,Sim using crs′1. Send the
message (u, π1,Sim). Wait for a response of the form (d̃x, π̃2) from S

∗. If the
proof π̃2 verifies, forward on deliver to FVOPRF. Otherwise, forward abort to
FVOPRF.
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We will show that the joint output of an honest client C and S
∗ in the real

world (where they interact directly) and the ideal world (where they interact via
FVOPRF and S) are computationally indistinguishable. We begin by arguing that
the malicious server S

∗ cannot distinguish whether it is interacting with a real
client or S, as described above. Firstly, replacing crs1 by crs′1 is indistinguishable
from the point of view of S∗ by definition of a simulated CRS. Importantly, if S∗

can produce valid proofs in the Init phase, the key k′ obtained by the simulator
is the unique ring element consistent with c (see the full version of this work for
more details).

All that is left to consider is the Query phase. Note that in the real protocol,
the client produces cx which takes the form of a RLWE sample offset by some
independent value. This implies that the value cx is pseudorandom under the
hardness of dRLWEq,n,σ. Therefore, the malicious server S∗ cannot distinguish a
real cx from the pair u that S uses. By the properties of a ZK simulator, it follows
that a real client message (cx, π1) and crs1 is indistinguishable from (u, π1,Sim)
and crs′1. Next, if the response from S

∗ has a valid proof, then S forwards on
deliver. This means that the ideal functionality passes a PRF evaluation to the
client using the server key k′. We now argue that this emulates the output on
the client side when running the real protocol with malicious server S

∗.
The case where the proof verification fails is trivial since the client aborts

in the real and ideal worlds. As a result, we focus on the case where the zero
knowledge proof produced by S

∗ verifies correctly. Let s ← R(χσ) and e1 ←
R(χσ)1×� be sampled by the honest client. For this honest client interacting
with malicious S

∗ in the real protocol, observe that
p

q
(dx − c · s) =

p

q
ax · k′ +

p

q
(e1 · k′ − e · s + e′) (6)

for k′,e′ chosen by S
∗ where ‖k′‖∞ ≤ σ · √

n and ‖e′‖∞ ≤ σ′ · √
n. Therefore,

rounding the quantity in Eq. (6) is guaranteed to result in the correct value if
every coefficient of p

q · ax · k′ is further than∥∥∥∥p

q
(e1 · k′ − e · s + e′)

∥∥∥∥
∞

away from Z + 1/2. In other words if S∗ can force incorrect evaluation, it has
found k′ ≤ σ · √

n such that a coefficient of ax · k′ is within a distance∥∥∥e1 · k′ − e · s + e′
∥∥∥

∞
≤ 2σ2n2 + σ′√n

of q
pZ+ q

2p ⊂ q
2pZ. We now apply Lemma 5 with 2 ·p, T = 2σ2n2 +σ′√n to show

that S
∗ forcing incorrect evaluation with non-negligible probability violates the

assumption that 1D-SISq/2p,n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard. Therefore, condi-
tion (ii) enforces correct evaluation. ��

5.3 Setting Parameters

Let κ be the security parameter. Ignoring the NIZKAoK requirements for sim-
plicity, Theorem 2 requires the following conditions:
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– dRLWEq,n,σ is hard,
– q

2p � σ′ � max{L · � · σn3/2, σ2n2},
– 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2 n2+σ′√n} is hard.

We will be using the presumed hardness of SIVPγ for approximation factors
γ = 2o(

√
n). The SIVPγ lattice dimension associated to RLWE will be n = κc

(for some constant c > 2); the dimension associated to 1D-SIS hardness will be
n′ = κ. We first choose L = κ, σ = poly(n) and σ′ = σ2n2 · κω(1), and then set
q = p·

∏n′

i=1 pi by picking coprime p, p1, . . . , pn′ = σ′ ·ω(
√

nn′ log q log n′). Having
made these choices, we argue that each of the three conditions are satisfied.
We argue RLWE hardness via SIVP for sub-exponential approximation factors
2 ˜O(n1/c) (for c > 2), noting that σ = poly(n) and

q = (σ′)n′ · ω((n · n′ · log q · log n′)n′/2)

= 2(2 log(nσ)+ω(1) log κ)·n1/c · ω((n · n′ · log q · log n′)n′/2)

= 2ω(1)·n1/c·log n · ω((n1+ 1
c · log q · log n)n1/c/2)

= 2 ˜O(n1/c).

Now substituting in � = log q implies that the second condition can be satisfied.
Finally for the 1D-SIS condition, we note that q/p =

∏n′

i=1 pi and

p1 = σ′ · ω(
√

n · n′ log q · log n′)

= σ2n2 · κω(1) · ω(
√

n · n′ · log q · log n′)

= (n′)ω(1) · ω(
√

n′1+c · log q · log n′).

So we get hardness of our 1D-SIS instance via the presumed hardness of SIVP
on n′-dimensional lattices for (n′)ω(1) · poly(n′) approximation factors. We sum-
marise the parameters of our construction in Table 1.

Table 1. Parameters of our VOPRF

Parameter Description Requirement Asymptotic

n Ring dimension n = poly(κ) poly(κ)

q Original modulus q = p · σ′ · κω(1) κω(1)

p Rounding modulus — poly(κ)

� log2(q) — ω(1)

σ Secret/error distribution q/σ = 2o(
√

n) poly(κ)

σ′ Drowning distribution σ′ = σ2n2 · κω(1) κω(1)

L Bit-length of PRF input — —

To give a rough estimate for concrete bandwidth costs, we start by observing
that we need q to be super-polynomial in κ for (a) PRF correctness and (b)
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noise drowning on the server side. We may pick log q ≈ 256 for κ = 128. Apply-
ing the “estimator” from [2] with the quantum cost model from [3] and noise
standard deviation σ = 3.2 suggests that n = 16, 384 provides security of > 2128

operations (indeed, significantly more, suggesting room for fine tuning). Thus, a
single RLWE sample takes about 0.5 MB. As specified in Sect. 3 our construc-
tion sends 2 � such samples. However, an implementation could send only two
such samples (see Sect. 3.2). Thus, each party would send about 1MB of RLWE
sample material. Of course, a more careful analysis and optimisation – picking
parameters, analysing bounds, applying rounding, perhaps removing the need
for super-polynomial drowning – would reduce this magnitude.

In addition to this, each party must send material for the zero-knowledge
proofs. In the full version of this work, we show that the statement associated
to the client proof may be written as an instance of R∗ consisting of more
than m′ = n�2(L−1) equations where the witness has a dimension of more than
n′ = 4n�2(L−1). Additionally, there are at least |M| := 4n�2(L−1) constraints.
This implies that the argument system of [47] requires the communication of at
least m′ +3n′ +4|M| = 9n�2(L− 1) integers modulo q per repetition. Using the
concrete parameters laid out above, we require > 9·16, 384·2562 ·127 > 240 bits of
communication per repetition. We remind the reader that choosing parameters of
the ZKAoK of Yang appropriately would allow us to only repeat a small number
of times and stress that this discussion gives a crude lower bound designed to
give an intuition on the inefficiency of our scheme, rather than a formal analysis
of the concrete cost of our scheme. We note that applying a SNARK or STARK
would reduce the bandwidth requirement for proofs.
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