
More Efficient Digital Signatures
with Tight Multi-user Security

Denis Diemert(B), Kai Gellert, Tibor Jager, and Lin Lyu

Bergische Universität Wuppertal, Wuppertal, Germany
{denis.diemert,kai.gellert,tibor.jager,lin.lyu}@uni-wuppertal.de

Abstract. We construct the currently most efficient signature schemes
with tight multi-user security against adaptive corruptions. It is the
first generic construction of such schemes, based on lossy identification
schemes (Abdalla et al.; JoC 2016), and the first to achieve strong exis-
tential unforgeability. It also has significantly more compact signatures
than the previously most efficient construction by Gjøsteen and Jager
(CRYPTO 2018). When instantiated based on the decisional Diffie–
Hellman assumption, a signature consists of only three exponents.

We propose a new variant of the generic construction of signatures
from sequential OR-proofs by Abe, Ohkubo, and Suzuki (ASIACRYPT
2002) and Fischlin, Harasser, and Janson (EUROCRYPT 2020). In com-
parison to Fischlin et al., who focus on constructing signatures in the
non-programmable random oracle model (NPROM), we aim to achieve
tight security against adaptive corruptions, maximize efficiency, and to
directly achieve strong existential unforgeability (also in the NPROM).
This yields a slightly different construction and we use slightly different
and additional properties of the lossy identification scheme.

Signatures with tight multi-user security against adaptive corrup-
tions are a commonly-used standard building block for tightly-secure
authenticated key exchange protocols. We also show how our construc-
tion improves the efficiency of all existing tightly-secure AKE protocols.

1 Introduction

The commonly accepted standard security goal for digital signatures is exis-
tential unforgeability under adaptive chosen message attacks (EUF-CMA). This
security model considers a single-user setting, in the sense that the adversary
has access to a single public key and its goal is to forge a signature with respect
to this key. A stronger security notion is EUF-CMA-security in the multi-user set-
ting with adaptive corruptions (MU-EUF-CMAcorr). In this security model, the
adversary has access to multiple public keys, and it is allowed to adaptively cor-
rupt certain users, and thus obtain their secret keys. The goal of the adversary
is to forge a signature with respect to the public key of an uncorrupted user.

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823.

c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 1–31, 2021.
https://doi.org/10.1007/978-3-030-75248-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_1

2 D. Diemert et al.

A straightforward argument, which essentially guesses the user for which the
adversary creates a forgery at the beginning of the security experiment, shows
that EUF-CMA security implies MU-EUF-CMAcorr security. However, this guess-
ing incurs a linear security loss in the number of users, and thus cannot achieve
tight MU-EUF-CMAcorr security.

The question how tightly MU-EUF-CMAcorr-secure signatures can be con-
structed, and how efficient these constructions can be, is interesting for different
reasons. Most importantly, MU-EUF-CMAcorr security seems to reflect the secu-
rity requirements of many applications that use digital signatures as building
blocks more directly than EUF-CMA security. This holds in particular for many
constructions of authenticated key exchange protocols (AKE) that use sign-
ing keys as long-term keys to authenticate protocol messages. Standard AKE
security models, such as the well-known Bellare–Rogaway [8] or the Canetti–
Krawczyk [10] model and their countless variants and refinements, allow for
adaptive corruption of users, which then translates to adaptive corruptions of
secret keys. Therefore Bader et al. [5] introduced the notion of MU-EUF-CMAcorr

as a building block to construct the first tightly-secure AKE protocol. This secu-
rity model was subsequently used to construct more efficient tightly-secure AKE
protocols [23,28,34], or to prove tight security of real-world protocols [14,15].
Note that tight security is particularly interesting for AKE, due to the perva-
sive and large-scale use of such protocols in practice (e.g., the TLS Handshake
is an AKE protocol). Furthermore, we consider the goal of understanding if,
how, and how efficiently strong security notions for digital signatures such as
MU-EUF-CMAcorr can be achieved with tight security proofs also as a general
and foundational research question in cryptography.

The Difficulty of Constructing Tightly MU-EUF-CMAcorr-Secure Signatures. The
already mentioned straightforward reduction showing that EUF-CMA security
implies MU-EUF-CMAcorr security guesses the user for which the adversary cre-
ates a forgery. Note that this user must not be corrupted by a successful adver-
sary. Hence, the reduction can define this user’s public key as the public key
obtained from the EUF-CMA experiment. The keys of all users are generated by
the reduction itself, such that it knows all corresponding secret keys. On the one
hand, this enables the reduction to respond to all corruption queries made by the
adversary, provided that it has guessed correctly. On the other hand, this makes
the reduction lossy, since it may fail if the reduction did not guess correctly.

A reduction proving MU-EUF-CMAcorr security tightly (under some complex-
ity assumption) has to avoid such a guessing argument. However, note that this
implies that the reduction must satisfy the following two properties simultane-
ously:

1. It has to know the secret keys of all users, in order to be able to respond to a
corruption query for any user, without the need to guess uncorrupted users.

2. At the same time, the reduction has to be able to extract a solution to the
underlying assumed-to-be-hard computational problem, while knowing the
secret key of the corresponding instance of the signature scheme.

More Efficient Digital Signatures with Tight Multi-user Security 3

Since these two properties seem to contradict each other, one might think that
tight MU-EUF-CMAcorr security is impossible to achieve. Indeed, one can even
prove formally that MU-EUF-CMAcorr security is not tightly achievable [6] (under
non-interactive assumptions1), however, this impossibility result holds only for
signature schemes satisfying certain properties. While most schemes indeed sat-
isfy these properties, and thus seem not able to achieve tight MU-EUF-CMAcorr

security, there are some constructions that circumvent this impossibility result.

Known Constructions of Tightly MU-EUF-CMAcorr-Secure Signatures. To our
best knowledge, there are only a few schemes with tight MU-EUF-CMAcorr

security under non-interactive hardness assumptions (cf. Table 1). Bader et al.
(BHJKL) [5] describe a scheme with constant security loss (“fully-tight”), but it
uses the tree-based scheme from [27] as a building block and therefore has rather
large signatures. The scheme is proven secure in the standard model, using pair-
ings. Bader et al. also describe a second scheme with constant-size signatures,
which is also based on pairings and in the standard model, but which has a lin-
ear security loss in the security parameter (“almost-tight”) and has linear-sized
public keys. The currently most efficient tightly MU-EUF-CMAcorr-secure scheme
is due to Gjøsteen and Jager (GJ) [23]. It has constant-size signatures and keys,
as well as a constant security loss, in the random oracle model. The security
proof requires “programming” of the random oracle in the sense of [19].

Strong Existential Unforgeability. Currently there exists no signature scheme
with tight multi-user security under adaptive corruptions that achieves strong
existential unforgeability. Here “strong” unforgeability refers to a security model
where the adversary is considered to successfully break the security of a signature
scheme, even if it outputs a new signature for a message for which it has already
received a signature in the security experiment. Hence, strong unforgeability
essentially guarantees that signatures additionally are “non-malleable”, in the
sense that an adversary is not able to efficiently derive a new valid signature σ∗

for a message m when it is already given another valid signature σ for m, where
σ �= σ∗.

Strong unforgeability is particularly useful for the construction of authenti-
cated key exchange protocols where partnering is defined over “matching con-
versations”, as introduced by Bellare and Rogaway [8]. Intuitively, matching
conversations formalize “authentication” for AKE protocols, by requiring that
a communicating party must “accept” a protocol session (and thus derive a key
for use in a higher-layer application protocol) only if there exists a unique part-
ner oracle to which it has a matching conversation, that is, which has sent and
received exactly the same sequence of messages that the accepting oracle has
received and sent.

Consider for instance the “signed Diffie–Hellman” AKE protocol. Standard
existential unforgeability of the signature scheme is not sufficient to achieve
security in the sense of matching conversations, because this security notion does
1 One can always prove tight MU-EUF-CMAcorr security under the interactive assump-

tion that the scheme is MU-EUF-CMAcorr secure.

4 D. Diemert et al.

Table 1. Comparison of existing tightly-secure signature schemes in the multi-user
setting with adaptive corruptions. “BHJKL 1” refers to the generic construction from
[5] instantiated with the scheme from [27], “BHJKL 2” is the new scheme constructed
in [5]. |σ| indicates the size of a signature and |pk | the size of public keys, where
|G| is the size of an element of the underlying group G, |q| is the size of the binary
representation of an integer in the discrete interval [0, q − 1], where q is order of G,
and λ is the security parameter. The column “Setting” indicates whether pairings/the
Programmable Random Oracle (PRO) model/the Non-Programmable Random Oracle
(NPRO) model is used. The column “sEUF” refers to whether the scheme is proven
strongly existentially unforgeable.

Scheme |σ| |pk | Loss Assumption Setting sEUF

BHJKL 1 [5,27] O(λ)|G| O(1)|G| O(1) DLIN Pairings –

BHJKL 2 [5] 3|G| O(λ)|G| O(λ) SXDH Pairings –

GJ [23] 2|G| + 2λ + 4 |q| 2|G| O(1) DDH PRO –

Ours 3 |q| 4|G| O(1) Lossy ID NPRO �

not guarantee that signatures are non-malleable. Hence, an adversary might, for
instance, be able to efficiently re-randomize probabilistic signatures, and thus
always be able to break matching conversations efficiently. This is a commonly
overlooked mistake in many security proofs for AKE protocols [33]. Therefore
Bader et al. [5] need to construct a more complex protocol that additionally
requires strongly-unforgeable one-time signatures to achieve security in the sense
of matching conversations. Gjøsteen and Jager [23] had to rely on the weaker
partnering notion defined by Li and Schäge [33] in order to deal with potential
malleability of signatures.

Hence, strongly-unforgeable digital signatures are particularly desirable in
the context of AKE protocols, in order to achieve the strong notion of “matching
conversation” security from [8].

Our Contributions. We construct strongly MU-EUF-CMAcorr-secure digital sig-
nature schemes, based on lossy identification schemes as defined by Abdalla
et al. [2,3] and sequential OR-proofs as considered by Abe et al. [4] and Fischlin
et al. [18]. This construction provides the following properties:

– It is the first generic construction of MU-EUF-CMAcorr-secure digital signa-
tures, which can be instantiated from any concrete hardness assumption that
gives rise to suitable lossy identification schemes. This includes instantia-
tions from the decisional Diffie–Hellman (DDH) assumption, and the φ-Hiding
assumption.

– It is the first construction of MU-EUF-CMAcorr-secure digital signatures that
achieves strong existential unforgeability. Here we use “uniqueness” of the
lossy identification scheme in the sense of [2,3].

– When instantiated under the DDH assumption, a signature consists of only
three elements of Zq, where q is the order of the underlying algebraic group.

More Efficient Digital Signatures with Tight Multi-user Security 5

For comparison, Schnorr signatures [36] and ECDSA [16], for instance, have
signatures consisting of two elements of Zq, but do not enjoy tight secu-
rity proofs (not even in the single-user setting) [17,20–22,35,37]. In case of
Schnorr signatures [36], security can be based on the weaker discrete log-
arithm assumption, though. Katz-Wang signatures [29] also consist of two
Zq-elements and have tight security in the single-user setting, but not in the
multi-user setting with adaptive corruptions.

– Similar to the work by Fischlin et al. [18], the proof does not rely on pro-
gramming a random oracle, but holds in the non-programmable random oracle
model [19]. This yields the first efficient and tightly multi-user secure signa-
ture scheme that does not require a programmable random oracle.

Our construction is almost identical to the construction based on sequential
OR-proofs (as opposed to “parallel” OR-proofs in the sense of [13]), which was
originally described by Abe et al. [4]. Fischlin, Harasser, and Janson [18] formally
analyzed this construction and showed that it implies EUF-CMA-secure digital
signatures based on lossy identification schemes. Their main focus is to achieve
security in the non-programmable random oracle model [19], since the classi-
cal construction of signatures from lossy identification schemes [2,3] requires a
programmable random oracle.

We observe that this approach also gives rise to tightly-secure signatures in a
multi-user model with adaptive corruptions, by slightly modifying the construc-
tion. Due to the fact that the reduction is always in possession of a correctly dis-
tributed secret key for all users, it can both (i) respond to singing-queries and (ii)
respond to corruption-queries without the need to guess in the MU-EUF-CMAcorr

security experiment.
Also, our security proof is based on slightly different and additional properties

of the lossy identification scheme. We use that a sequential OR-proof is perfectly
witness indistinguishable when both instances of the lossy identification scheme
are in non-lossy mode. This enables us to argue that the adversary receives no
information about the random bit b chosen by the key generation algorithm of
one user, such that the probability that the adversary creates a forgery with
respect to sk1−b is 1/2. This enables us then to construct a distinguisher for the
lossy identification scheme with only constant security loss.

Another difference to the proof by Fischlin et al. [18] is that we directly
achieve strong unforgeability by leveraging uniqueness of lossy identification
schemes, as defined by Abdalla et al. [2,3]. Also, their construction does not yet
leverage “commitment-recoverability” of a lossy identification scheme, such that
their DDH-based instantiation consists of four elements of Zq.

In particular, Table 2 shows that our scheme does not only improve the over-
all performance of all the presented protocols, but it also enables the proto-
cols by GJ and LLGW to catch up to the communication complexity of JKRS.
This means that when instantiated with our signature scheme, the constructions
by GJ, LLGW, and JKRS achieve the same communication complexity. This
observation suggests that especially constructions that exchange two or more
signatures will benefit from an instantiation with our new signature scheme.

6 D. Diemert et al.

Table 2. Comparison of existing tightly-secure AKE protocols when instantiated with
parameters for “128-bit security” (i.e., λ = 128). The columns Comm. count the values
exchanged during execution of the protocol with an abstract signature scheme, when
instantiated with the GJ signature scheme [23], and when instantiated with our DDH-
based signature scheme respectively. G is the number of group elements, H the number
of hashes or MACs, Sig. the number of signatures, Zq the number of exponents, and
“other” the amount of additional data in bits (nonces are 2λ-bit strings). The columns
Bytes contain the total amount of data in bytes when instantiating G with the NIST
P256 curve.

Protocol Comm.
(G, H, Sig., other)

With GJ Sigs. With our scheme

Comm.
(G, H,Zq, other)

Bytes Comm.
(G, H,Zq, other)

Bytes

GJ [23] (2, 1, 2, 0) (6, 1, 8, 4λ) 544 (2, 1, 6, 0) 288

TLS 1.3 [14,15] (2, 2, 2, 512) (6, 2, 8, 4λ + 512) 640 (2, 2, 6, 512) 384

SIGMA-I [14,32] (2, 2, 2, 512) (6, 2, 8, 4λ + 512) 640 (2, 2, 6, 512) 384

LLGW [34] (3, 0, 2, 0) (7, 0, 8, 4λ) 544 (3, 0, 6, 0) 288

JKRS [28] (5, 1, 1, 0) (7, 1, 4, 2λ) 416 (5, 1, 3, 0) 288

Applications to Tightly-Secure AKE Protocols. Since tightly MU-EUF-CMAcorr-
secure signatures are commonly used to construct tightly-secure AKE protocols,
let us consider the impact of our scheme on the performance of known protocols.
Since the performance gain obtained by the signature scheme has already been
discussed, we focus here only on the communication complexity of the considered
protocols, that is, the number of bits exchanged when running the protocol.
Table 2 shows the impact of our signature schemes on known AKE protocols
with tight security proofs. We compare instantiations with the signature scheme
by Gjøsteen and Jager [23] to instantiations with our signature scheme. Note
that the Gjøsteen–Jager scheme is also based on the DDH assumption, and so
are the considered protocols (except for TLS 1.3 and Sigma, which are based on
the strong Diffie–Hellman assumption).

We omit the protocol by Bader et al. [5], since it is more of a standard-model
feasibility result, which does not aim for maximal efficiency. Their protocol has
a communication complexity of O(λ) group elements when instantiated with
constant security loss, and 14 group elements plus 4 exponents when instantiated
with their “almost-tight” signature scheme with a security loss of O(λ). Cohn-
Gordon et al. [12] construct a protocol which entirely avoids signatures and aims
to achieve tightness, however, they achieve only a linear security loss and also
show that this is optimal for the class of protocols they consider.

Outline. The remainder of this work is organized as follows. In the next section,
we introduce standard definitions for signatures and their security. In Sect. 3, we
recall lossy identification schemes and their security properties. The generic con-
struction of our signature scheme from any lossy identification scheme alongside

More Efficient Digital Signatures with Tight Multi-user Security 7

a security proof is presented in Sect. 4. We conclude our work with a detailed
discussion on possible instantiations of our scheme in Sect. 5.

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by a ‖ b. For
an integer n ∈ N, we denote the set of integers ranging from 1 to n by [n] :=
{1, . . . , n}. For a set X = {x1, x2, . . . }, we use (vi)i∈X as a shorthand for the
tuple (vx1 , vx2 , . . .). We denote the operation of assigning a value y to a variable
x by x := y. If S is a finite set, we denote by x $←− S the operation of sampling
a value uniformly at random from set S and assigning it to variable x.

2.1 Digital Signatures

We recall the standard definition of a digital signature scheme by Goldwasser,
Micali, and Rivest [24] and its standard security notion.

Definition 1. A digital signature scheme is a triple of algorithms Sig = (Gen,
Sign,Vrfy) such that

1. Gen is the randomized key generation algorithm generating a public (verifica-
tion) key pk and a secret (signing) key sk.

2. Sign(sk ,m) is the randomized signing algorithm outputting a signature σ on
input of a message m ∈ M and a signing key sk.

3. Vrfy(pk ,m, σ) is the deterministic verification algorithm outputting either 0
or 1.

We say that a digital signature scheme Sig is ρ-correct if for (pk , sk) $←− Gen,
and any m ∈ M , it holds that

Pr[Vrfy (pk ,m,Sign(sk ,m)) = 1] ≥ ρ.

And we say Sig is perfectly correct if it is 1-correct.

Definition 2. Let Sig = (Gen,Sign,Vrfy) be a signature scheme and let N ∈ N

be the number of users. Consider the following experiment ExpMU-sEUF-CMAcorr

Sig,N (A)
played between a challenger and an adversary A:

1. The challenger generates a key pair (pk (i), sk (i)) $←− Gen for each user i ∈ [N],
initializes the set of corrupted users Qcorr := ∅, and N sets of chosen-message
queries Q(1), . . . ,Q(N) := ∅ issued by the adversary. Subsequently, it hands
(pk (i))i∈[N] to A as input.

2. The adversary may adaptively issue signature queries (i,m) ∈ [N] × M
to the challenger. The challenger replies to each query with a signature
σ $←− Sign(sk (i),m) and adds (m,σ) to Q(i). Moreover, the adversary may
adaptively issue corrupt queries Corrupt(i) for some i ∈ [N]. In this case, the
challenger adds i to Qcorr and forwards sk (i) to the adversary. We call each
user i ∈ Qcorr corrupted.

8 D. Diemert et al.

3. Finally, the adversary outputs a tuple (i∗,m∗, σ∗). The challenger checks
whether Vrfy(pk(i∗),m∗, σ∗) = 1, i∗ �∈ Qcorr and (m∗, σ∗) �∈ Q(i∗). If all of
these conditions hold, the experiment outputs 1 and 0 otherwise.

We denote the advantage of an adversary A in breaking the strong existential
unforgeability under an adaptive chosen-message attack in the multi-user setting
with adaptive corruptions (MU-sEUF-CMAcorr) for Sig by

AdvMU-sEUF-CMAcorr

Sig,N (A) := Pr
[
ExpMU-sEUF-CMAcorr

Sig,N (A) = 1
]

where ExpMU-sEUF-CMAcorr

Sig,N (A) is as defined as above.

3 Lossy Identification Schemes

We adapt the definitions of a lossy identification scheme [2,3,30].

Definition 3. A lossy identification scheme is a five-tuple LID = (LID.Gen,
LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) of probabilistic polynomial-time algo-
rithms with the following properties.

– LID.Gen is the normal key generation algorithm. It outputs a public verifica-
tion key pk and a secret key sk.

– LID.LossyGen is a lossy key generation algorithm that takes the security
parameter and outputs a lossy verification key pk.

– LID.Prove is the prover algorithm that is split into two algorithms:
• (cmt, st) $←− LID.Prove1(sk) is a probabilistic algorithm that takes as input

the secret key and returns a commitment cmt and a state st.
• resp ← LID.Prove2(sk , cmt, ch, st) is a deterministic algorithm2 that takes

as input a secret key sk, a commitment cmt, a challenge ch, a state st,
and returns a response resp.

– LID.Vrfy(pk , cmt, ch, resp) is a deterministic verification algorithm that takes
a public key, and a conversation transcript (i.e., a commitment, a challenge,
and a response) as input and outputs a bit, where 1 indicates that the proof
is “accepted” and 0 that it is “rejected”.

– cmt ← LID.Sim(pk, ch, resp) is a deterministic algorithm that takes a public
key pk, a challenge ch, and a response resp as inputs and outputs a commit-
ment cmt.

We assume that a public key pk implicitly defines two sets, the set of chal-
lenges CSet and the set of responses RSet.

2 All known instantiations of lossy identification schemes have a deterministic
LID.Prove2 algorithm. However, if a new instantiation requires randomness, then it
can be “forwarded” from LID.Prove1 in the state variable st. Therefore the require-
ment that LID.Prove2 is deterministic is without loss of generality, and only made
to simplify our security analysis.

More Efficient Digital Signatures with Tight Multi-user Security 9

Definition 4. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)
be defined as above. We call LID lossy when the following properties hold:

– Completeness of normal keys. We call LID ρ-complete, if

Pr

⎡
⎢⎢⎣LID.Vrfy(pk , cmt, ch, resp) = 1 :

(pk , sk) $←− LID.Gen
(cmt, st) $←− LID.Prove1(sk)
ch $←− CSet
resp $←− LID.Prove2(sk , cmt, ch, st)

⎤
⎥⎥⎦ ≥ ρ.

We call LID perfectly-complete, if it is 1-complete.
– Simulatability of transcripts. We call LID εs-simulatable if for (pk , sk) $←−

LID.Gen, (ch, resp) $←− CSet× RSet, the distribution of the transcript (cmt, ch,
resp) where cmt ← LID.Sim(pk, ch, resp) is statistically indistinguishable from
honestly generated transcript (with a statistical distance up to εs) and we
have that LID.Vrfy(pk , cmt, ch, resp) = 1. If εs = 0, we call LID perfectly
simulatable.
Note that this simulatability property is different from the original definition
in [2] where the simulator simulates the whole transcript.

– Indistinguishability of keys. This definition is a generalization of the standard
key indistinguishability definition of a lossy identification scheme extended to
N instances. For any integer N > 0, we define the advantage of an adversary
A breaking the N -key-indistinguishability of LID as AdvMU-IND-KEY

LID,N (A) :=
∣∣∣Pr

[
A(pk (1), · · · , pk (N)) = 1

]
− Pr

[
A(pk ′(1), · · · , pk ′(N)) = 1

]∣∣∣ ,

where (pk (i), sk (i)) $←− LID.Gen and pk ′(i) $←− LID.LossyGen for all i ∈ [N].
– Lossiness. Consider the following security experiment ExpIMPERSONATE

LID (A)
described below, played between a challenger and an adversary A:
1. The challenger generates a lossy verification key pk $←− LID.LossyGen and

sends it to the adversary A.
2. The adversary A may now compute a commitment cmt and send it to the

challenger. The challenger responds with a random challenge ch $←− CSet.
3. Eventually, the adversary A outputs a response resp. The challenger out-

puts LID.Vrfy(pk , cmt, ch, resp).
We call LID ε�-lossy if no computationally unrestricted adversary A wins the
above security game with probability

Pr[ExpIMPERSONATE
LID (A) = 1] ≥ ε�.

Below are two more properties for lossy identification schemes defined in
[2,3].

Definition 5. Let pk $←− LID.LossyGen be a lossy public key and let
(cmt, ch, resp) be any transcript which makes LID.Vrfy(pk , cmt, ch, resp) = 1. We
say LID is εu-unique with respect to lossy keys if the probability that there exists
resp′ �= resp such that LID.Vrfy(pk , cmt, ch, resp′) = 1 is at most εu, and perfectly
unique with respect to lossy keys if εu = 0.

10 D. Diemert et al.

Definition 6. Let (pk , sk) $←− LID.Gen be any honestly generated key pair and
C(sk) := {LID.Prove1(sk)} be the set of commitments associated to sk. We define
the min-entropy with respect to LID as

α := − log2

(
max

sk ,cmt∈C(sk)
Pr [LID.Prove1(sk) = cmt]

)

Below is another property for lossy identification schemes defined in [30].

Definition 7. A lossy identification scheme LID is commitment-recoverable if
the algorithm LID.Vrfy(pk , cmt, ch, resp) first recomputes a commitment cmt′ =
LID.Sim(pk , ch, resp) and then outputs 1 if and only if cmt′ = cmt.

Below, we define a new property for lossy identification schemes which
requires that the LID.Sim algorithm is injective with respect to the input chal-
lenge.

Definition 8. A lossy identification scheme LID has an injective simulator if
for any (pk , sk) $←− LID.Gen, any response resp ∈ RSet, any ch �= ch′, it holds
that LID.Sim(pk, ch, resp) �= LID.Sim(pk, ch′, resp).

In Sect. 5 we give a detailed discussion which of the existing lossy identifica-
tion schemes [1–3,26,29] satisfy which of the above properties.

4 Construction and Security of Our Signature Scheme

Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be a lossy iden-
tification scheme and let H : {0, 1}∗ → CSet be a hash function mapping finite-
length bitstrings to the set of challenges CSet. Consider the following digital
signature scheme Sig = (Gen,Sign,Vrfy).

Key generation. The key generation algorithm Gen samples a bit b $←− {0, 1}
and two independent key pairs (pk0, sk0) $←− LID.Gen and (pk1, sk1) $←−
LID.Gen. Then it sets

pk := (pk0, pk1) and sk := (b, sk b)

Note that the secret key consists only of sk b and the other key sk1−b is
discarded.

Signing. The signing algorithm Sign takes as input sk = (b, sk b) and a message
m ∈ {0, 1}∗. Then it proceeds as follows.
1. It first computes (cmtb, stb) $←− LID.Prove1(sk b) and sets

ch1−b := H(m, cmtb)

Note that the ch1−b is derived from cmtb and m.

More Efficient Digital Signatures with Tight Multi-user Security 11

2. It generates the simulated transcript by choosing resp1−b
$←− RSet and

cmt1−b := LID.Sim(pk1−b, ch1−b, resp1−b)

using the simulator.
3. Finally, it computes

chb := H(m, cmt1−b) and respb := LID.Prove2(sk b, chb, cmtb, stb)

and outputs the signature σ := (ch0, resp0, resp1). Note that ch1 is not
included in the signature.

Verification. The verification algorithm Vrfy takes as input a public key pk =
(pk0, pk1), a message m ∈ {0, 1}∗, and a signature σ = (ch0, resp0, resp1). It
first recovers

cmt0 := LID.Sim(pk0, ch0, resp0)

From cmt0 it can then compute

ch1 := H(m, cmt0)

and then recover

cmt1 := LID.Sim(pk1, ch1, resp1)

Finally, the reduction outputs 1 if and only if ch0 = H(m, cmt1).

One can easily verify that the above construction Sig is perfectly correct if LID
is commitment-recoverable and perfectly complete. Also, note that, even though
algorithm LID.Vrfy is not used in algorithm Vrfy, we have that Vrfy(pk ,m, σ) = 1
implies that LID.Vrfy(pk j , cmtj , chj , respj) = 1 for both j ∈ {0, 1}. This is
directly implied by our definition of the lossy identification scheme’s simulata-
bility of transcripts.

Theorem 9. If H is modeled as a random oracle and LID is commitment-
recoverable, perfectly simulatable, ε�-lossy, εu-unique, has α-bit min-entropy and
has an injective simulator, then for each adversary A with running time tA
breaking the MU-sEUF-CMAcorr security of the above signature scheme Sig, we
can construct an adversary B with running time tB ≈ tA such that

AdvMU-sEUF-CMAcorr

Sig,N (A) ≤ 4 · AdvMU-IND-KEY
LID,N (B) +

2qSqH
2α

+
2

|CSet| + 2εu + 2Nq2Hε�,

where qS is the number of signing queries and qH is the number of hash queries.

Proof. We prove Theorem 9 through a sequence of games. See Table 3 for an
intuitive overview of our proof. In the sequel, let Xi denote the event that the
experiment outputs 1 in Game i.

Game 0. This is the original security experiment ExpMU-sEUF-CMAcorr

Sig,N (A). In this
experiment, adversary A is provided with oracles Sign and Corrupt from the secu-
rity experiment, as well as a hash oracle H since we are working in the random
oracle model. In the following, it will be useful to specify the implementation of
this game explicitly:

12 D. Diemert et al.

Table 3. Overview of the sequence of games used in the proof of Theorem 9.

Game # Changes Remark

0 – The MU-sEUF-CMAcorr game

1 We rule out repeating
commitments cmt

This ensures that every signing
query makes fresh hash queries

2 We ensure the two hash queries in
the final verification have been
made before.

We will need this in Game 4

3 We exclude the case where
(cmt∗0, cmt∗1) is re-used from a
signing query

The adversary does not use
“implicit” knowledge of the secret
bit b(i

∗)

4 The adversary can only win if hash
query “(1 − b(i

∗))” is made first
b(i

∗) is perfectly hidden, prepa-
ration to achieve statistically small
winning probability

5 We make all “(1 − b(i))” public
keys lossy

This game has statistically small
winning probability for any
adversary

– The game initializes the chosen-message sets Q(1), . . . ,Q(N) := ∅, the set
of corrupted users Qcorr := ∅ and an implementation of the random oracle
L := ∅. It then runs the signature key generation algorithm Gen N times
to get the key pair (pk(i), sk(i)) for each i ∈ [N]. More precisely, the game
samples a bit b(i) $←− {0, 1} and two independent key pairs (pk (i)

0 , sk (i)
0) $←−

LID.Gen and (pk (i)
1 , sk (i)

1) $←− LID.Gen. Then it sets pk(i) := (pk (i)
0 , pk (i)

1)
and stores (pk(i), b(i), sk

(i)
0 , sk

(i)
1). Finally, it runs adversary A with input

(pk(i))i∈[N]. In the following proof, to simplify the notation, we will use
pk (i)

b , pk (i)
1−b, sk

(i)
b , sk (i)

1−b to denote pk (i)

b(i)
, pk (i)

1−b(i)
, sk (i)

b(i)
, sk (i)

1−b(i)
respectively.

– H(x). When the adversary or the simulation of the experiment make a hash
oracle query for some x ∈ {0, 1}∗, the game checks whether (x, y) ∈ L for
some y ∈ CSet. If it does, the game returns y. Otherwise the game selects
y $←− CSet, logs (x, y) into set L and returns y.

– Sign(i,m). When the adversary queries the signing oracle with user i and
message m, the game first sets b := b(i), then computes

(cmtb, stb) $←− LID.Prove1(sk
(i)
b)

and sets ch1−b := H(m, cmtb) by making a hash query. Then, the game
chooses resp1−b

$←− RSet and uses the simulator to compute cmt1−b :=
LID.Sim(pk (i)

1−b, ch1−b, resp1−b). Finally, the game queries hash oracle to get
chb := H(m, cmt1−b) and then uses LID.Prove2 to compute

respb := LID.Prove2(sk
(i)
b , chb, cmtb, stb).

More Efficient Digital Signatures with Tight Multi-user Security 13

The game outputs signature σ := (ch0, resp0, resp1) to A and logs the pair
(m,σ) in set Q(i).

– Corrupt(i). When the adversary A queries the Corrupt oracle for the secret
key of user i, the game returns sk(i) := (b(i), sk (i)

b) to the adversary and logs
i in the set Qcorr.

– Finally, when adversary A outputs a forgery attempt (i∗,m∗, σ∗), the game
outputs 1 if and only if Vrfy(pk(i∗),m∗, σ∗) = 1, i∗ �∈ Qcorr, and (m∗, σ∗) /∈
Q(i∗) hold. More precisely, for σ∗ = (ch∗

0, resp
∗
0, resp

∗
1), the game recovers

cmt∗0 := LID.Sim(pk (i∗)
0 , ch∗

0, resp
∗
0) and queries the hash oracle to get ch∗

1 :=
H(m∗, cmt∗0). Then it recovers cmt∗1 := LID.Sim(pk (i∗)

1 , ch∗
1, resp

∗
1) and queries

the hash oracle to get ch∗ := H(m∗, cmt∗1). Finally, the game outputs 1 if and
only if ch∗

0 = ch∗, i∗ �∈ Qcorr and (m∗, σ∗) /∈ Q(i∗).

It is clear that Pr[X0] = AdvMU-sEUF-CMAcorr

Sig,N (A).

Game 1. Game 1 is the same with Game 0 except with one change. Denote
with cmtColl the event that there exists a signing query Sign(i,m) such that at
least one of the two hash queries H(m, cmtb(i)) and H(m, cmt1−b(i)) made in this
signing query has been made before.

Game 1 outputs 0 when cmtColl happens. In other words, X1 happens if and
only if X0 ∧ ¬cmtColl happens. We can prove the following lemma.

Lemma 10.
Pr[X1] ≥ Pr[X0] − 2qSqH

2α

where qS is the number of signing queries made by A and qH is the number of
hash queries made in Game 0.

Proof. To prove Lemma 10, we divide the event cmtColl into two subevents.

– There exists a signing query Sign(i,m) such that H(m, cmtb(i)) has been made
before. If this happens, then cmtb(i) is the output of LID.Prove1(sk (i)) for
any signing query. Since LID has α-bit min-entropy (cf. Definition 6), the
probability that this happens is at most qSqH/2α by a union bound.

– There exists a signing query Sign(i,m) such that H(m, cmt1−b(i)) has been
made before. Note that cmt1−b(i) is the output of

LID.Sim(pk
(i)
1−b, ch1−b(i) , resp1−b(i))

where ch1−b(i) = H(m, cmtb(i)). Since LID.Sim is deterministic, we know that
cmt1−b(i) is determined by pk

(i)
1−b,m, cmtb(i) and resp1−b(i) . Furthermore, since

LID.Sim is injective with respect to challenges (cf. Definition 8), we know that
the entropy of cmt1−b(i) in any fixed signing query is at least the entropy of
cmtb(i) in that query. Thus, we obtain that the probability that this subevent
happens is at most qSqH/2α.

Thus, we have that Pr[cmtColl] ≤ 2qSqH/2α and Lemma 10 follows. �

14 D. Diemert et al.

Remark 11. Note that, from Game 1 on, the hash queries H(m, cmtb(i)) and
H(m, cmt1−b(i)) are not made before any signing query Sign(i,m) if the game
finally outputs 1. This implies that each signing query uses independent and
uniformly random ch1−b(i) and chb(i) , and they are not known to the adversary
at that time.

Game 2. Game 2 differs from Game 1 only in the way the game checks the
winning condition. More precisely, Game 1 issues two hash queries H(m∗, cmt∗0)
and H(m∗, cmt∗1) to check the validity of a forgery attempt (i∗,m∗, σ∗). In the
following, we call the former H(m∗, cmt∗0) a “0-query” and the latter H(m∗, cmt∗1)
a “1-query”. Let Both denote the event that both a 0-query and a 1-query have
been made by the signing oracle or by the adversary before submitting the
forgery attempt (i∗,m∗, σ∗).

Game 2 outputs 0 if event Both does not happen. In other words, X2 happens
if and only if X1 ∧ Both happens. We can prove the following lemma.

Lemma 12. Pr[X2] ≥ Pr[X1] − 2/|CSet|.
Proof. We know that Pr[X1] = Pr[X1 ∧ ¬Both] + Pr[X2]. We will prove that
Pr[X1 ∧ ¬Both] ≤ 2/|CSet| and the lemma follows. Note that

Pr[X1∧¬Both] ≤ Pr[X1∧1-query is never made]+Pr[X1∧0-query is never made]

– X1 ∧ 1-query is never made: Event X1 implies that Vrfy(pk(i∗),m∗, σ∗) = 1.
This further implies that the value ch∗

0 (chosen by the adversary) equals the
1-query hash result ch∗ = H(m∗, cmt∗1), which is a random element in CSet.
Since the 1-query is never made at this time, the adversary has no knowledge
about this value, which yields

Pr[X1 ∧ 1-query is never made] ≤ 1
|CSet| .

– X1 ∧ 0-query is never made: The 0-query value ch∗
1 = H(m∗, cmt∗0) is used

to recover cmt∗1 = LID.Sim(pk (i∗)
1 , ch∗

1, resp
∗
1). Since the 0-query is not made

at that time, the adversary has no knowledge about ch∗
1 except that it is a

random element in CSet. Together with the fact that algorithm LID.Sim is
injective (cf. Definition 8), the adversary only knows that cmt∗1 is uniformly
distributed over a set of size |CSet|. To make the verification pass, the adver-
sary would need to select ch∗

0 which equals to H(m∗, cmt∗1). However, there
are |CSet| possible values for cmt∗1 so that this can happen with probability
at most 1/|CSet|. Thus,

Pr[X1 ∧ 0-query is never made] ≤ 1
|CSet| .

Putting both together, we have Pr[X1 ∧ ¬Both] ≤ 2/|CSet|. �

More Efficient Digital Signatures with Tight Multi-user Security 15

Game 3. Game 3 is exactly the same as Game 2, except for one change. We
denote by ImplicitUsage the event that the first 0-query and the first 1-query are
made in a signing query Sign(i∗,m∗), and the pair (cmt∗0, cmt∗1) equals to the
pair (cmt0, cmt1), which is generated in this signing query. Game 3 outputs 0 if
event ImplicitUsage happens.

Hence, X3 happens if and only if X2 ∧¬ImplicitUsage happens. We prove the
following lemma.

Lemma 13. We can construct an adversary B with running time tB ≈ tA such
that

Pr[X3] ≥ Pr[X2] − 2 · AdvMU-IND-KEY
LID,N (B) − 2εu.

Remark 14. Note that this proof can be potentially simplified if we define the
uniqueness property of LID with respect to normal public keys. However, this
would introduce a non-standard LID property compared to the standard LID
definition by Abdalla et al. [2,3].

Proof. We know that Pr[X2] = Pr[X2 ∧ ImplicitUsage] + Pr[X3]. We will prove
that Pr[X2∧ImplicitUsage] ≤ 2AdvMU-IND-KEY

LID,N (B)+2εu such that the above lemma
follows.

Note that ImplicitUsage implies that

chj = H(m∗, cmt1−j) = H(m∗, cmt∗1−j) = ch∗
j

for j ∈ {0, 1}. Together with the fact that (m∗, σ∗) /∈ Q(i∗), we must have that
(resp∗

0, resp
∗
1) �= (resp0, resp1). Then two subcases are possible.

– X2 ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) = resp1−b(i∗)) ∧ (resp∗

b(i∗) �= respb(i∗)). This
subcase intuitively implies that the adversary successfully guesses the bit b(i

∗),
since the adversary has to choose resp∗

0, resp
∗
1 such that resp∗

1−b(i∗) is equal and
resp∗

b(i∗) is unequal. However, in Game 2, the secret bit b(i
∗) is perfectly hidden

to the adversary due to the following facts.
• The public key pk (i∗) is independent of b(i

∗).
• User i∗ is not corrupted (or otherwise the forgery is invalid, anyway), so

the bit b(i
∗) is not leaked through corruptions.

• The signature σ returned by oracle Sign(i∗,m) is independent of bit b(i
∗).

The reason is that X2 implies that cmtColl does not happen. As shown
in Remark 11, each Sign(i∗,m) query will use uniformly random ch1−b(i∗)

and chb(i∗) . Thus, the signature essentially contains the two transcripts

(cmtb(i∗) , chb(i∗) , respb(i∗)) and (cmt1−b(i∗) , ch1−b(i∗) , resp1−b(i∗))

Note that the b(i
∗) transcript is an “honestly generated” transcript and

the (1−b(i
∗)) transcript is a “simulated” transcript with uniformly random

ch1−b(i∗) and resp1−b(i∗) . Due to the perfect simulatability of LID, we know
that these two transcripts are perfectly identically distributed. Thus, A
gains no information about b(i

∗) through signatures.

16 D. Diemert et al.

In summary, we conclude that this subcase happens with probability

1
2

Pr[X2 ∧ ImplicitUsage].

– X2 ∧ ImplicitUsage∧ (resp∗
1−b(i∗) �= resp1−b(i∗)). For this subcase, we can prove

the following claim.

Claim. We can construct an adversary B with running time tB ≈ tA such that

Pr[X2 ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) �= resp1−b(i∗))] ≤ AdvMU-IND-KEY

LID,N (B) + εu.

Proof. To prove this claim, we define a new intermediate game Game 2′, which
is exactly the same as Game 2, except that we choose a lossy public key pk (i)

1−b
$←−

LID.LossyGen for every user i ∈ [N] in Game 2′. We can build an adversary B
with running time tB ≈ tA such that

∣∣∣∣
Pr[X2 ∧ ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗))]
−Pr[X2′ ∧ ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗))]

∣∣∣∣ ≤ AdvMU-IND-KEY
LID,N (B)

(1)

The construction of B using A is straightforward. It receives (pk ′
i)i∈[N], which

is either generated by algorithm LID.Gen or by LID.LossyGen. Then, it simulates
Game 2 for the adversary A and sets pk (i)

1−b := pk ′
i for all i ∈ [N]. Note that,

in Game 2, the secret key sk (i)
1−b is not used for any user i. So B is able to

simulate the game perfectly. Finally, B outputs 1 if and only if A wins and
ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗)) happens. It is clear that B perfectly
simulates Game 2 if it receives normal public keys and B perfectly simulates
Game 2′ if it receives lossy public keys. Thus, Eq. (1) follows.

Now in Game 2′, the key pk (i∗)
1−b is lossy. Since X2′ implies that σ∗ is a valid

signature with respect to m∗, we know that

LID.Vrfy(pk (i∗)
1−b, cmt∗1−b(i∗) , ch

∗
1−b(i∗) , resp

∗
1−b(i∗)) = 1.

Since the signing oracle Sign(i∗,m∗) also outputs valid signature σ for m∗, we
have that

LID.Vrfy(pk (i∗)
1−b, cmt1−b(i∗) , ch1−b(i∗) , resp1−b(i∗)) = 1.

In this subcase, we have (cmt1−b(i∗) , ch1−b(i∗)) = (cmt∗
1−b(i∗) , ch

∗
1−b(i∗)) and

resp1−b(i∗) �= resp∗
1−b(i∗) . Due to the uniqueness property of LID with respect

to lossy public keys, we must have

Pr[X2′ ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) �= resp1−b(i∗))] ≤ εu.

Applying Eq. (1) to the obtained bounds, the claim follows. �

More Efficient Digital Signatures with Tight Multi-user Security 17

Putting both subcases together, we obtain that

Pr[X2 ∧ ImplicitUsage] ≤ 1
2

Pr[X2 ∧ ImplicitUsage] + AdvMU-IND-KEY
LID,N (B) + εu,

which implies that Pr[X2 ∧ ImplicitUsage] ≤ 2AdvMU-IND-KEY
LID,N (B) + 2εu. �

Game 4. Game 4 further modifies the winning condition. We denote Before as
the event that Both happens and the first (1 − b(i

∗))-query is made before the
first b(i

∗)-query is made. Game 4 outputs 0 if event Before does not happen.
Hence, X4 happens if and only if X3 ∧ Before happens. We can prove the

following lemma.

Lemma 15. Pr[X4] ≥ 1/2 · Pr[X3].

Proof. Since we know that event Both happens, we can divide X3 into three
subcases.

– Both the first 0-query and the first 1-query are made in one and the same
signing query Sign(i∗,m∗).
In this subcase, we have that two hash queries {H(m∗, cmt∗0),H(m∗, cmt∗1)}
made by the final verification algorithm have the same input as the two
hash queries {H(m∗, cmt0),H(m∗, cmt1)} made by the signing oracle. We
know that X3 implies that ImplicitUsage does not happen, so we must have
that (cmt∗0, cmt∗1) = (cmt1, cmt0). Since the signing algorithm always makes
a H(m∗, cmtb(i∗)) query before H(m, cmt1−b(i∗)), we have that event Before
always happens in this subcase.

– Both the first 0-query and the first 1-query are made in one signing query
Sign(i′,m∗) for some i′ �= i∗.
In this subcase, the b(i

′)-query is made first and Before happens if and only if
b(i

′) = 1 − b(i
∗).

– The first 0-query and the first 1-query are not made in exactly one signing
query. In other words, they lie in different signing queries or at least one of
them is made by the adversary.
In this subcase, the adversary A actually has full control which one is queried
first. Suppose the β-query is made first for some implicit bit β ∈ {0, 1} chosen
by the adversary. Then, event Before happens if and only if β = b(i

∗).

Similar to the proof of Lemma 13, we can show that the bit b(i
∗) is perfectly

hidden to the adversary. So if the second or the third subcase happens, the
probability that Before happens is 1/2. Together with the fact that Before always
happen in the first subcase, Lemma 15 follows. �

Game 5. In this game, we change the generation of the key pk (i)
1−b. Namely, the

key generation in Game 5 is exactly as in Game 4 except that we choose lossy
public keys pk (i)

1−b
$←− LID.LossyGen for every user i ∈ [N] in Game 5.

18 D. Diemert et al.

Lemma 16. We can construct an adversary B with running time tB ≈ tA such
that

|Pr[X4] − Pr[X5]| ≤ AdvMU-IND-KEY
LID,N (B).

Proof. The proof of the lemma is straightforward. We can construct B using
A as a subroutine. B receives as input (pk ′

i)i∈[N], which is either generated
by algorithm LID.Gen or by LID.LossyGen. Then, it simulates Game 5 for the
adversary A and set pk (i)

1−b := pk ′
i for all i ∈ [N].

�
Finally, we can prove the following lemma.

Lemma 17.
Pr[X5] ≤ N · q2H · ε�

where qH is the number of hash queries made in Game 5.

Note that the lossiness of LID guarantees that ε� is statistically negligible
(even for computationally unbounded adversaries). Hence, the multiplicative
term N · q2H does not break the tightness of our signature scheme. It will conve-
nient to prove this claim by reduction.

Proof. To prove this lemma, we build an adversary B against the lossiness of
LID. On getting a lossy public key pk $←− LID.LossyGen, B uniformly selects
i′ $←− [N], j1 $←− [qH − 1] and j2

$←− {j1 + 1, · · · , qH}. Then B generates all the
public keys for A according to Game 5 except that it sets pk (i′)

1−b := pk . Then B
invokes A and answers all the queries according to Game 5 with the following
exceptions.

– In the j1-th hash query H(m, cmt), B submits cmt to its own challenger and
get back ch $←− CSet.

– In the j2-th hash query H(m, cmt′), B returns ch as response and logs
((m, cmt′), ch) into the hash list L.

After A submits the forgery attempt (i∗,m∗, σ∗ = (ch∗
0, resp

∗
0, resp

∗
1)), B checks

whether all the following events happen:

– X5 happens,
– i′ = i∗,
– the first (1 − b(i

∗))-query is exactly the j1-th hash query,
– the first b(i

∗)-query is exactly the j2-th hash query.

If all of these events happen, B outputs resp∗
1−b(i∗) to its own challenger. Other-

wise, B halts and outputs nothing.
The probability that B does not halt is at least Pr[X5]/(N ·q2H). We will show

that in this case
LID.Vrfy(pk , cmt, ch, resp∗

1−b(i∗)) = 1,

and hence B wins the lossiness game. This is implied by the following facts.

More Efficient Digital Signatures with Tight Multi-user Security 19

– i′ = i∗ indicates that pk = pk (i∗)
1−b.

– The j1-th hash query is the first (1 − b(i
∗))-query indicates that cmt =

cmt∗
1−b(i∗) .

– The j2-th hash query is the first b(i
∗)-query indicates that ch = ch∗

1−b(i∗) .
– X3 happens indicates that Vrfy(pk (i∗),m∗, σ∗) = 1, which further indicates

that
LID.Vrfy(pk (i∗)

1−b, cmt∗1−b(i∗) , ch
∗
1−b(i∗) , resp

∗
1−b(i∗)) = 1.

Thus, we have that Pr[X5]/(N · q2H) ≤ Pr[B wins] ≤ ε� and Lemma 17 follows.
�

Theorem 9 now follows. �

5 Instantiations of Our Scheme

In the previous section we identified the necessary properties of the underlying
lossy identification scheme. We now continue to discuss how suitable schemes
can be instantiated based on concrete hardness assumptions. The constructions
described in this section are derived from [1–3,29] and are well-known. The
purpose of this section is to argue and justify that these constructions indeed
satisfy all properties required for our signature scheme.

5.1 Instantiation Based on Decisional Diffie–Hellman

The well-known DDH-based lossy identification scheme uses the standard Sigma
protocol to prove equality of discrete logarithms by Chaum et al. [11] (cf. Fig. 1)
as foundation, which was used by Katz and Wang [29] to build tightly-secure
signatures (in the single-user setting without corruptions).

Prover: sk = x Verifier: pk = (g, h, u, v)

r $←− Zq

cmt := (e, f) = (gr, hr) cmt

ch ch $←− Zq

resp := r − ch · x resp accept if e = gresp · uch

and f = hresp · vch

Fig. 1. The DDH-based identification scheme [11].

20 D. Diemert et al.

The DDH Problem. Let (G, g, q) be a cyclic group of prime order q and generator
g. Further, let h ∈ G. We denote the set of DDH tuples in G with respect to g
and h as

DDH(G, g, h) := {(u, v) ∈ G
2 : logg u = logh v}

and the set of “non-DDH tuples” as

DDH(G, g, h) := G
2 \ DDH(G, g, h).

Definition 18. Let (G, g, q) be a cyclic group of prime order q and generator g.
Further, let h $←− G. We define the advantage of an algorithm B in solving the
DDH problem in G with respect to (g, h) as

AdvDDH
G,g,h(B) := |Pr [B(G, g, h, u, v) = 1] − Pr [B(G, g, h, u, v) = 1]|

where (u, v) $←− DDH(G, g, h) and (u, v) $←− DDH(G, g, h) are chosen uniformly
random.

A DDH-Based LID Scheme. Let (G, g, q) be a cyclic group of prime order
q and generator g and let h ∈ G. We define the lossy identification scheme
LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the proto-
col presented above as follows:

Key generation. The algorithm LID.Gen chooses a value x $←− Zq uniformly
at random. It sets pk := (g, h, u, v) = (g, h, gx, hx) and sk := x, and outputs
(pk , sk).

Lossy key generation. The algorithm LID.LossyGen chooses two group ele-
ments u, v $←− G uniformly and independently at random. It outputs pk :=
(g, h, u, v).

Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = x, chooses

a random value r $←− Zq, and computes a commitment cmt := (e, f) =
(gr, hr), where g, h are the value of the pk corresponding to sk . It outputs
(cmt, st) with st := r.

2. The algorithm LID.Prove2 takes as input a secret key sk = x, a commit-
ment cmt = (e, f), a challenge ch ∈ Zq, a state st = r, and outputs a
response resp := r − ch · x.

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (g, h, u, v), a commitment cmt = (e, f), a challenge ch ∈ Zq, and a
response resp ∈ Zq. It outputs 1 if and only if e = gresp ·uch and f = hresp ·vch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(g, h, u, v), a challenge ch ∈ Zq, and a response resp ∈ Zq. It outputs a
commitment cmt = (e, f) = (gresp · uch, hresp · vch).

Remark 19. Note that an honest public key generated with LID.Gen is of the
form pk = (g, h, u, v) such that (u, v) ∈ DDH(G, g, h), whereas a lossy public key
generated with LID.LossyGen is of the form pk = (g, h, u, v) such that (u, v) �∈
DDH(G, g, h) with high probability.

More Efficient Digital Signatures with Tight Multi-user Security 21

Theorem 20. The scheme LID defined above is lossy with

ρ = 1, εs = 0, ε� ≤ 1/q,

and from any efficient adversary A we can construct an efficient adversary B
such that

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., εu = 0), LID
has α-bit min-entropy with α = log2(q), LID is commitment-recoverable, and LID
has an injective simulator.

The proof of this theorem is rather standard and implicitly contained in
the aforementioned prior works. For completeness, we provide a sketch in
Appendix A.

Concrete Instantiation. We can now use the DDH-based lossy identification
scheme to describe an explicit instantiation of our signature scheme based on
the DDH assumption, in order to assess its concrete performance. Let G be a
group of prime order p with generator g, let h $←− G be a random generator and
let H : {0, 1}∗ → Zp be a hash function. We construct a digital signature scheme
Sig = (Gen,Sign,Vrfy) as follows.

Key generation. The key generation Gen algorithm samples x0, x1
$←− Zp,

b $←− {0, 1}. Then it sets

pk := (u0, v0, u1, v1) = (gx0 , hx0 , gx1 , hx1) and sk := (b, xb).

Signing. The signing algorithm Sign takes as input sk = (b, xb) and a message
m ∈ {0, 1}∗. Then it proceeds as follows.
1. It first chooses a random value r $←− Zp, and sets (eb, fb) := (gr, hr) and

ch1−b := H(m, eb, fb).

2. Then it samples a value resp1−b
$←− Zp and computes

e1−b = gresp1−bu
ch1−b

1−b and f1−b = hresp1−bv
ch1−b

1−b .

3. Finally, it computes

chb := H(m, e1−b, f1−b) and respb := r − chb · xb

and outputs the signature σ := (ch0, resp0, resp1) ∈ Z
3
p.

Verification. The verification algorithm takes as input a public key pk :=
(u0, v0, u1, v1), a message m ∈ {0, 1}∗, and a signature σ = (ch0, resp0, resp1).
If first computes

e0 = gresp0uch0
0 and f0 = hresp0vch0

0 .

22 D. Diemert et al.

From (e0, f0) it is then able to compute

ch1 := H(m, e0, f0)

and then
e1 = gresp1 · uch1

1 and f1 = hresp1 · vch1
1 .

Finally, the algorithm outputs 1 if and only if

ch0 = H(m, e1, f1).

Note that public keys are pk ∈ G
4, secret keys are sk ∈ {0, 1} × Zp, and

signatures are σ ∈ Z
3
p.

5.2 Instantiation from the φ-Hiding Assumption

Another possible instantiation is based on the Guillou–Quisquater (GQ) iden-
tification scheme [25], which proves that an element U = Se mod N is an e-th
residue (cf. Fig. 2). Abdalla et al. [1] describe a lossy version of the GQ scheme,
based on the φ-hiding assumption. We observe that we can build a lossy identi-
fication scheme on a weaker assumption, which is implied by φ-hiding.

In order to achieve tightness in a multi-user setting, we will need a common
setup, which is shared across all users. This setup consists of a public tuple (N, e)
where N = p · q is the product of two large random primes and e a uniformly
random prime of length 	e ≤ λ/4 that divides p− 1. The factors p and q need to
remain secret, so we assume that (N, e) either was generated by a trusted party,
or by running a secure multi-party computation protocol with multiple parties.

The Guillou–Quisquater LID Scheme. We define the lossy identification
scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the
protocol presented above as follows:

Common setup. The common system parameters are a tuple (N, e) where
N = p · q is the product of two distinct primes p, q of length λ/2 and e is
random prime of length 	e ≤ λ/4 such that e divides p − 1.
Note that the parameters (N, e) are always in “lossy mode”, and not switched
from an “injective” pair (N, e) where e is coprime to φ(N) = (p − 1)(q − 1)
to “lossy” in the security proof, as common in other works.

Key generation. The algorithm LID.Gen samples S $←− Z
∗
N and computes U =

Se. It sets pk = (N, e, U) and sk = (N, e, S), where (N, e) are from the
common parameters.

Lossy key generation. The lossy key generation algorithm LID.LossyGen sam-
ples U uniformly at random from the e-th non-residues modulo N .3

3 This is indeed efficiently possible as U $←− Z
∗
N is a not an e-th residue with probability

1 − 1/e and we can efficiently check whether a given U is an e-th residue when the
factorization of N is known [1].

More Efficient Digital Signatures with Tight Multi-user Security 23

Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = (N, e, S),

chooses a random value r $←− Z
∗
N , and computes a commitment cmt :=

re mod N . It outputs (cmt, st) with st := r.
2. The algorithm LID.Prove2 takes as input a secret key sk = (N, e, S), a

commitment cmt, a challenge ch ∈ {0, . . . , 2�e − 1}, a state st = r, and
outputs a response resp := r · Sch mod N .

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (N, e, U), a commitment cmt, a challenge ch, and a response resp. It
outputs 1 if and only if resp �= 0 mod N and respe = cmt · U ch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(N, e, U), a challenge ch, and a response resp. It outputs a commitment cmt =
respe/U ch.

Prover: sk = (N, e, S) Verifier: pk = (N, e, U)

r $←− Z
∗
N

cmt := re mod N cmt

ch ch $←− {0, . . . , 2 e − 1}

resp := r · Sch resp accept if resp = 0 mod N

and respe = cmt · U ch

Fig. 2. The Guillou–Quisquater identification scheme [25].

Theorem 21. The scheme LID defined above is lossy with

ρ = 1, εs = 0, ε� ≤ 1/2�e ,

and from any efficient adversary A we can construct an efficient adversary B
such that

AdvMU-IND-KEY
LID,n (A) ≤ Advn-HR(B).

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., εu = 0), LID
has α-bit min-entropy with α ≥ λ − 2, LID is commitment-recoverable, and LID
has an injective simulator.

The above theorem has been proven in [1] for most of its statements. What
is left is a proof for n-key-indistinguishability, which we provide in Appendix B.

24 D. Diemert et al.

5.3 On Instantiations of Lossy ID Schemes from Other Assumptions

There also exist lossy identification schemes based on the decisional short discrete
logarithm problem, the ring LWE problem, and the subset sum problem (all due
to Abdalla et al. [2,3]). However, they do not directly translate to a tight multi-
user signature scheme that is existentially unforgeable with adaptive corruptions.

Our security proof requires tight multi-instance security of the underlying
hardness assumption. While, for example, the DDH-based scheme satisfies this
via its self-reducibility property, it is not obvious how schemes based on, for
example, lattices or subset sum achieve this notion in a tight manner.

A Proof of Theorem 20

Random Self-reducibility of DDH. It is well-known that the DDH problem is
random self-reducible, which we summarize in the following lemma. See [7,
Lemma 5.2] for a proof.

Lemma 22. There exists an efficient algorithm ReRand that takes as input
(g, h) and a DDH instance (u, v) ∈ G

2 and an integer N , and outputs N new
DDH instances (u(i), v(i)) such that

(u, v) ∈ DDH(G, g, h) ⇐⇒ (u(i), v(i)) ∈ DDH(G, g, h)

for all i ∈ [N]. The running time of this algorithm mainly consists of O(N)
exponentiations in G.

Proof. To show that LID is lossy, we need to show that it satisfies all properties
presented in Definition 4.

Completeness of normal keys. We claim that the above scheme is perfectly-
complete. To prove this, we show that for any honest transcript it holds
that LID.Vrfy(pk , cmt, ch, resp) = 1. Let (pk , sk) $←− LID.Gen be an (honest)
key pair and let (cmt, ch, resp) be an honest transcript, that is, ch $←− CSet,
(cmt, st) $←− LID.Prove1(sk) and resp := LID.Prove2(sk , cmt, ch, st). By defi-
nition of the scheme, we have pk = (g, h, u, v) with (u, v) ∈ DDH(G, g, h)
and sk = x and cmt = (e, f) = (gr, hr) and resp = r − ch · x. Further,
LID.Vrfy(pk , cmt, ch, resp) = 1 if and only if e = gresp · uch and f = hresp · vch.
Observe that

gresp · uch = gr−ch·x · gch·x = gr = e.

An analogous equation holds for f if g is replaced by h. Hence, LID.Vrfy
outputs 1 for every honest transcript.

Simulatability of transcripts. We claim that the above scheme is perfectly
simulatable. To show this, we need to argue that the two distributions

⎧
⎨
⎩(cmt, ch, resp) :

(cmt, st) $←− LID.Prove1(sk)
ch $←− Zq

resp := LID.Prove2(sk , ch, cmt, st)

⎫
⎬
⎭

More Efficient Digital Signatures with Tight Multi-user Security 25

and
⎧
⎨
⎩(cmt, ch, resp) :

ch $←− Zq

resp $←− Zq

cmt := LID.Sim(pk , ch, resp)

⎫
⎬
⎭

are identical. Recall that we have pk = (g, h, u, v) with (u, v) ∈ DDH(G, g, h),
sk = x, cmt = (e, f) = (gr, hr) with st = r $←− Zq, and resp = r − ch · x
for an honest transcript (i.e., in the former distribution). Thus, we have that
cmt = (e, f) is uniformly distributed over G

2. Consequently, since r $←− Zq

and ch $←− Zq, we also have that the response resp is distributed uniformly
and independently (of cmt and ch) over Zq.
We will now take a look at the later distribution. Note that ch and resp are
both uniformly random elements over Zp. It remains to show that cmt in the
simulated transcript is distributed uniformly over G

2.
Recall that cmt := LID.Sim(pk , ch, resp) is defined as cmt := (e, f) = (gresp ·
uch, hresp · vch). Observe that logg(e) = resp + ch · x and logg(f) = logg(h) ·
(resp + ch · x). Since ch $←− Zq and resp $←− Zq, we have that both logg(e)
and logg(f) are distributed uniformly and independently (of ch and resp)
over Zq and thus (e, f) is distributed uniformly over G

2. Note that e, f are
not distributed independently of each other (as it is the case in the honest
transcript).

Indistinguishability of keys. As already remarked above, honest keys contain
a DDH tuple, whereas lossy keys contain a non-DDH tuple. Therefore, we
claim that for every adversary A trying to distinguish honest from lossy keys
of LID, we can construct an adversary B such that

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

To prove this claim, we give a construction of B running A as a subrou-
tine. The adversary B receives a tuple (g, h, u, v) such that (u, v) either is
a DDH tuple (i.e., (u, v) ∈ DDH(G, g, h)) or not. Then, it uses the algo-
rithm of Lemma 22 to re-randomize (u, v) into N tuples (u(i), v(i))i∈[N]

$←−
ReRand(g, h, u, v,N) such that

(u, v) ∈ DDH(G, g, h) ⇐⇒ ∀i ∈ [N] : (u(i), v(i)) ∈ DDH(G, g, h)

and hands (pk i = (g, h, u(i), v(i)))i∈[N] to A as input. When A halts and
outputs a bit b, B halts and outputs b as well.
Observe that by Lemma 22, we have

Pr[B(g, h, u, v) = 1] ≥ Pr[A(pk (1), . . . , pk (N))]

with (u, v) $←− DDH(G, g, h), (u(i), v(i))i∈[N]
$←− ReRand(g, h, u, v,N), and

pk (i) := (g, h, u(i), v(i)). Further, we have

Pr[B(g, h, ū, v̄) = 1] ≥ Pr[A(pk ′(1), . . . , pk ′(N))]

26 D. Diemert et al.

with (ū, v̄) $←− DDH(G, g, h), (ū(i), v̄(i)) $←− ReRand(g, h, ū, v̄) for every i ∈ [N],
and pk ′(i) := (g, h, ū(i), v̄(i)). In conclusion, we have

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

Lossiness. We claim that the above scheme LID is 1/q-lossy. To show this, we
first recall a classical result showing the soundness of the protocol to “prove
DDH tuples” by Chaum et al. presented above. Namely, we claim that if
logg(u) �= logh(v) holds for the public key pk = (g, h, u, v) (i.e., pk is a lossy
key and (u, v) �∈ DDH(G, g, h)), for any commitment cmt there can only be
at most one challenge ch such that the transcript is valid. We prove this
statement by contradiction.
Let A be an unbounded adversary that on input of a lossy public key pk $←−
LID.LossyGen, outputs commitment cmt = (e, f). We now show that A can
only output a correct resp for one ch such that LID.Vrfy(pk , cmt, ch, resp) = 1.
Suppose that A was able to come up with two responses resp1 and resp2 for
two different challenge ch1 �= ch2 such that LID.Vrfy(pk , cmt, ch1, resp1) = 1
and LID.Vrfy(pk , cmt, ch2, resp2) = 1 holds. This implies by the definition of
LID.Vrfy that

e = gresp1uch1 = gresp2uch2 and f = hresp1vch1 = hresp2vch2 .

Equivalently, we get by using the assumption that ch1 �= ch2:

logg(u) =
(resp1 − resp2)

ch2 − ch1
and logh(v) =

(resp1 − resp2)
ch2 − ch1

.

However, this is a contraction to the assumption that logg(u) �= logh(v). Thus,
pk must be a lossy key.
Using this, we have that for every commitment A outputs, there can only be
at most one challenge ch such that the adversary generated a valid transcript.
Note that we have an unbounded adversary and based on cmt and ch it can
compute a response. As there is only one challenge for cmt output by A and
the challenge is chosen uniformly at random, the adversary can only win with
a probability of at most 1/q.

Uniqueness with respect to lossy keys. Let pk = (g, h, u, v) with (u, v) �∈
DDH(G, g, h) and (cmt, ch, resp) with LID.Vrfy(pk , cmt, ch, resp) = 1. Suppose
that there is a resp′ �= resp such that LID.Vrfy(pk , cmt, ch, resp′) = 1. In this
case, we have for cmt = (e, f) that

e = grespuch = gresp
′
uch and f = hrespvch = hresp′

vch.

However, this implies that

gresp = gresp
′

and hresp = hresp′
,

which implies that resp = resp′, contradicting the initial assumption.

More Efficient Digital Signatures with Tight Multi-user Security 27

Min-entropy. For any secret key sk , the commitment cmt $←− LID.Prove1(sk)
equals (gr, hr) for r $←− Zq, which is independent of sk . So the min-entropy of
cmt is α = log2(q).

Commitment-recoverable. The verification algorithm of LID first recovers
a commitment using the simulator and then compares the result with the
commitment in the transcript. So LID is commitment-recoverable.

Injective simulator. For any normal public key pk = (g, h, u, v), any response
resp and any challenge ch �= ch′, we have that

LID.Sim(pk , ch, resp) = (grespuch, hrespvch),

LID.Sim(pk , ch′, resp) = (grespuch′
, hrespvch′

).

Thus, if the above two pairs are equal, we must have that (uch, vch) =
(uch′

, vch′
). That implies ch = ch′.

�

B Proof of Theorem 21

The following definition is from [1].

Definition 23 (RSA modulus generation algorithm). Let 	N be a positive
integer and let RSA�N be the set of all tuples (N, p1, p2) such that N = p1p2 is
a 	N -bit number and p1, p2 are two distinct primes in the set of 	N/2-bit primes
P�N/2. Let R be any relation on p1 and p2, define RSA�N [R] := {(N, p1, p2) ∈
RSA�N | R(p1, p2) = 1}.

We can use it to define the n-fold higher residuosity assumption as well as
the φ-hiding assumption [1,9,31].

Definition 24 (n-fold higher residuosity assumption). Let e be a random
prime of length 	e ≤ 	N/4 and

(N, p1, p2) $←− RSA�N [p1 = 1 mod e]

and let HRN [e] := {ge mod N | g ∈ Z
∗
N} be the set of e-th residues modulo N .

We define the advantage of any A in solving the higher residuosity problem as

Advn-HR(A) := |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N, e, y′
1, . . . , y

′
n) = 1]| ,

where y1, . . . , yn
$←− HRN [e] and y′

1, . . . , y
′
n

$←− Z
∗
N \ HRN [e]. The e-residuosity

problem is (t, ε)-hard if for any A with running time at most t, Advn-HR(A) is
at most ε.

We prove the following lemma.

Lemma 25. For any adversary A with running time tA against the n-key-
indistinguishability of LID in Fig. 2, we can construct an adversary B with run-
ning time tB ≈ tA such that

AdvMU-IND-KEY
LID,n (A) ≤ Advn-HR(B).

28 D. Diemert et al.

Proof. The proof is a straightforward reduction. B receives (N, e, y1, . . . , yn) as
input and defines the common parameters as (N, e) and

(
pk (1), · · · , pk (n)

)
= (y1, . . . , yn) .

Note that this defines real keys if the yi are e-th residues, and lossy keys if the
yi are e-th non-residues. �

Finally, we can show that the n-fold higher residuosity assumption is tightly
implied by the φ-hiding assumption, for any polynomially-bounded n.

Definition 26 (φ-hiding assumption [1,9,31]). Let c ≤ 1/4 be a constant.
For any adversary A, define the advantage of A in solving the φ-hiding problem
to be

AdvφH(A) := |Pr[A(N, e) = 1] − Pr[A(N ′, e) = 1]| ,
where e $←− Pc�N , (N, p1, p2) $←− RSA�N [gcd(e, φ(N)) = 1] and (N ′, p′

1, p
′
2)

$←−
RSA�N [p′

1 = 1 mod e]. The φ-hiding problem is (t, ε)-hard if for any A with
running time at most t, AdvφH(A) is at most ε.

Lemma 27. For any adversary A with running time tA we can construct an
adversary B with running time tB ≈ tA such that

Advn-HR(A) ≤ 2 · AdvφH(B).

Proof. First, we have that

Advn-HR(A) = |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N, e, y′
1, . . . , y

′
n) = 1]|

≤ |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1]|

+ |Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1] − Pr[A(N, e, y′

1, . . . , y
′
n) = 1]| ,

where (N, p1, p2) $←− RSA�N [gcd(e, φ(N)) = 1] and (N ′, p′
1, p

′
2)

$←− RSA�N [p′
1 =

1 mod e]. We can prove the following claim.

Claim. |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1]| ≤ AdvφH(B).

The proof is again a very straightforward reduction. B receives as input
(N, e). It samples x1, . . . , xn

$←− ZN uniformly random and then defines yi :=
xe

i mod N for i ∈ {1, . . . , n}. Then it runs A on input (N, e, y1, . . . , yn) and
returns whatever A returns.

Note that if (N, e) is a “lossy” key, so that e | φ(N), then the yi are random
e-th residues. However, if gcd(e, φ(N)) = 1, then all yi are random e-th non-
residues, since the map x �→ xe mod N is a permutation.

Using a similar idea, we can prove that

Claim. |Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1] − Pr[A(N, e, y′

1, . . . , y
′
n) = 1]| ≤ AdvφH(B).

Putting the two claims together, we have that Advn-HR(A) ≤ 2AdvφH(B) and
Lemma 27 follows. �

More Efficient Digital Signatures with Tight Multi-user Security 29

References

1. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forward-
secure signature schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 292–311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36362-7 19

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

3. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly secure sig-
natures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016)

4. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

6. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 10

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

9. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

10. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

11. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 13

12. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11694, pp. 767–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 25

13. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

https://doi.org/10.1007/978-3-642-36362-7_19
https://doi.org/10.1007/978-3-642-36362-7_19
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19

30 D. Diemert et al.

14. Davis, H., Günther, F.: Tighter proofs for the sigma and TLS 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029 (2020). https://eprint.
iacr.org/2020/1029

15. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. Cryptology ePrint Archive, Report
2020/726; to appear in the Journal of Cryptology (2020). https://eprint.iacr.org/
2020/726

16. Digital Signature Standard (DSS). National Institute of Standards and Technology
(NIST), FIPS PUB 186-3, U.S. Department of Commerce (2009). http://csrc.nist.
gov/publications/fips/fips186-3/fips 186-3.pdf

17. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S
(eds.) ACM CCS 2016, pp. 1651–1662. ACM Press, October 2016

18. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp.
212–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 8

19. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

20. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 27

21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019)

22. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

23. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

26. Hasegawa, S., Isobe, S.: Lossy identification schemes from decisional RSA. In:
International Symposium on Information Theory and its Applications, ISITA 2014,
Melbourne, Australia, 26–29 October 2014, pp. 143–147. IEEE (2014)

27. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

28. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. Cryptology ePrint Archive, Report 2020/1279 (2020). https://
eprint.iacr.org/2020/1279

https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/726
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://doi.org/10.1007/978-3-030-45727-3_8
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/978-3-642-32009-5_35
https://eprint.iacr.org/2020/1279
https://eprint.iacr.org/2020/1279

More Efficient Digital Signatures with Tight Multi-user Security 31

29. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

30. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2

31. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 16

32. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

33. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, Octo-
ber/November 2017

34. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 27

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

36. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

37. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33

	More Efficient Digital Signatures with Tight Multi-user Security
	1 Introduction
	2 Preliminaries
	2.1 Digital Signatures

	3 Lossy Identification Schemes
	4 Construction and Security of Our Signature Scheme
	5 Instantiations of Our Scheme
	5.1 Instantiation Based on Decisional Diffie–Hellman
	5.2 Instantiation from the -Hiding Assumption
	5.3 On Instantiations of Lossy ID Schemes from Other Assumptions

	A Proof of Theorem 20
	B Proof of Theorem 21
	References

