More Efficient Digital Signatures with Tight Multi-user Security

Denis Diemert ${ }^{(\boxtimes)}$, Kai Gellert, Tibor Jager, and Lin Lyu
Bergische Universität Wuppertal, Wuppertal, Germany
\{denis.diemert,kai.gellert,tibor.jager,lin.lyu\}@uni-wuppertal.de

Abstract

We construct the currently most efficient signature schemes with tight multi-user security against adaptive corruptions. It is the first generic construction of such schemes, based on lossy identification schemes (Abdalla et al.; JoC 2016), and the first to achieve strong existential unforgeability. It also has significantly more compact signatures than the previously most efficient construction by Gjøsteen and Jager (CRYPTO 2018). When instantiated based on the decisional DiffieHellman assumption, a signature consists of only three exponents.

We propose a new variant of the generic construction of signatures from sequential OR-proofs by Abe, Ohkubo, and Suzuki (ASIACRYPT 2002) and Fischlin, Harasser, and Janson (EUROCRYPT 2020). In comparison to Fischlin et al., who focus on constructing signatures in the non-programmable random oracle model (NPROM), we aim to achieve tight security against adaptive corruptions, maximize efficiency, and to directly achieve strong existential unforgeability (also in the NPROM). This yields a slightly different construction and we use slightly different and additional properties of the lossy identification scheme.

Signatures with tight multi-user security against adaptive corruptions are a commonly-used standard building block for tightly-secure authenticated key exchange protocols. We also show how our construction improves the efficiency of all existing tightly-secure AKE protocols.

1 Introduction

The commonly accepted standard security goal for digital signatures is existential unforgeability under adaptive chosen message attacks (EUF-CMA). This security model considers a single-user setting, in the sense that the adversary has access to a single public key and its goal is to forge a signature with respect to this key. A stronger security notion is EUF-CMA-security in the multi-user setting with adaptive corruptions (MU-EUF-CMA ${ }^{\text {corr }}$). In this security model, the adversary has access to multiple public keys, and it is allowed to adaptively corrupt certain users, and thus obtain their secret keys. The goal of the adversary is to forge a signature with respect to the public key of an uncorrupted user.

[^0]A straightforward argument, which essentially guesses the user for which the adversary creates a forgery at the beginning of the security experiment, shows that EUF-CMA security implies MU-EUF-CMA ${ }^{\text {corr }}$ security. However, this guessing incurs a linear security loss in the number of users, and thus cannot achieve tight MU-EUF-CMA ${ }^{\text {corr }}$ security.

The question how tightly MU-EUF-CMA ${ }^{\text {corr }}$-secure signatures can be constructed, and how efficient these constructions can be, is interesting for different reasons. Most importantly, MU-EUF-CMA ${ }^{\text {corr }}$ security seems to reflect the security requirements of many applications that use digital signatures as building blocks more directly than EUF-CMA security. This holds in particular for many constructions of authenticated key exchange protocols (AKE) that use signing keys as long-term keys to authenticate protocol messages. Standard AKE security models, such as the well-known Bellare-Rogaway [8] or the CanettiKrawczyk [10] model and their countless variants and refinements, allow for adaptive corruption of users, which then translates to adaptive corruptions of secret keys. Therefore Bader et al. [5] introduced the notion of MU-EUF-CMA ${ }^{\text {corr }}$ as a building block to construct the first tightly-secure AKE protocol. This security model was subsequently used to construct more efficient tightly-secure AKE protocols [23,28,34], or to prove tight security of real-world protocols [14, 15]. Note that tight security is particularly interesting for AKE, due to the pervasive and large-scale use of such protocols in practice (e.g., the TLS Handshake is an AKE protocol). Furthermore, we consider the goal of understanding if, how, and how efficiently strong security notions for digital signatures such as MU-EUF-CMA ${ }^{\text {corr }}$ can be achieved with tight security proofs also as a general and foundational research question in cryptography.

The Difficulty of Constructing Tightly MU-EUF-CMA ${ }^{\text {corr }}$-Secure Signatures. The already mentioned straightforward reduction showing that EUF-CMA security implies MU-EUF-CMA ${ }^{\text {corr }}$ security guesses the user for which the adversary creates a forgery. Note that this user must not be corrupted by a successful adversary. Hence, the reduction can define this user's public key as the public key obtained from the EUF-CMA experiment. The keys of all users are generated by the reduction itself, such that it knows all corresponding secret keys. On the one hand, this enables the reduction to respond to all corruption queries made by the adversary, provided that it has guessed correctly. On the other hand, this makes the reduction lossy, since it may fail if the reduction did not guess correctly.

A reduction proving MU-EUF-CMA ${ }^{\text {corr }}$ security tightly (under some complexity assumption) has to avoid such a guessing argument. However, note that this implies that the reduction must satisfy the following two properties simultaneously:

1. It has to know the secret keys of all users, in order to be able to respond to a corruption query for any user, without the need to guess uncorrupted users.
2. At the same time, the reduction has to be able to extract a solution to the underlying assumed-to-be-hard computational problem, while knowing the secret key of the corresponding instance of the signature scheme.

Since these two properties seem to contradict each other, one might think that tight MU-EUF-CMA ${ }^{\text {corr }}$ security is impossible to achieve. Indeed, one can even prove formally that MU-EUF-CMA ${ }^{\text {corr }}$ security is not tightly achievable [6] (under non-interactive assumptions ${ }^{1}$), however, this impossibility result holds only for signature schemes satisfying certain properties. While most schemes indeed satisfy these properties, and thus seem not able to achieve tight MU-EUF-CMA ${ }^{\text {corr }}$ security, there are some constructions that circumvent this impossibility result.

Known Constructions of Tightly MU-EUF-CMA ${ }^{\text {corr }}$-Secure Signatures. To our best knowledge, there are only a few schemes with tight MU-EUF-CMA ${ }^{\text {corr }}$ security under non-interactive hardness assumptions (cf. Table 1). Bader et al. (BHJKL) [5] describe a scheme with constant security loss ("fully-tight"), but it uses the tree-based scheme from [27] as a building block and therefore has rather large signatures. The scheme is proven secure in the standard model, using pairings. Bader et al. also describe a second scheme with constant-size signatures, which is also based on pairings and in the standard model, but which has a linear security loss in the security parameter ("almost-tight") and has linear-sized public keys. The currently most efficient tightly MU-EUF-CMA ${ }^{\text {corr }}$-secure scheme is due to Gjøsteen and Jager (GJ) [23]. It has constant-size signatures and keys, as well as a constant security loss, in the random oracle model. The security proof requires "programming" of the random oracle in the sense of [19].

Strong Existential Unforgeability. Currently there exists no signature scheme with tight multi-user security under adaptive corruptions that achieves strong existential unforgeability. Here "strong" unforgeability refers to a security model where the adversary is considered to successfully break the security of a signature scheme, even if it outputs a new signature for a message for which it has already received a signature in the security experiment. Hence, strong unforgeability essentially guarantees that signatures additionally are "non-malleable", in the sense that an adversary is not able to efficiently derive a new valid signature σ^{*} for a message m when it is already given another valid signature σ for m, where $\sigma \neq \sigma^{*}$.

Strong unforgeability is particularly useful for the construction of authenticated key exchange protocols where partnering is defined over "matching conversations", as introduced by Bellare and Rogaway [8]. Intuitively, matching conversations formalize "authentication" for AKE protocols, by requiring that a communicating party must "accept" a protocol session (and thus derive a key for use in a higher-layer application protocol) only if there exists a unique partner oracle to which it has a matching conversation, that is, which has sent and received exactly the same sequence of messages that the accepting oracle has received and sent.

Consider for instance the "signed Diffie-Hellman" AKE protocol. Standard existential unforgeability of the signature scheme is not sufficient to achieve security in the sense of matching conversations, because this security notion does

[^1]Table 1. Comparison of existing tightly-secure signature schemes in the multi-user setting with adaptive corruptions. "BHJKL 1" refers to the generic construction from [5] instantiated with the scheme from [27], "BHJKL 2" is the new scheme constructed in [5]. $|\sigma|$ indicates the size of a signature and $|p k|$ the size of public keys, where $|\mathbb{G}|$ is the size of an element of the underlying group $\mathbb{G},|q|$ is the size of the binary representation of an integer in the discrete interval $[0, q-1]$, where q is order of \mathbb{G}, and λ is the security parameter. The column "Setting" indicates whether pairings/the Programmable Random Oracle (PRO) model/the Non-Programmable Random Oracle (NPRO) model is used. The column "sEUF" refers to whether the scheme is proven strongly existentially unforgeable.

Scheme	$\|\sigma\|$	$\|p k\|$	Loss	Assumption	Setting	sEUF
BHJKL 1 [5,27]	$\mathcal{O}(\lambda)\|\mathbb{G}\|$	$\mathcal{O}(1)\|\mathbb{G}\|$	$\mathcal{O}(1)$	DLIN	Pairings	-
BHJKL 2 [5]	$3\|\mathbb{G}\|$	$\mathcal{O}(\lambda)\|\mathbb{G}\|$	$\mathcal{O}(\lambda)$	SXDH	Pairings	-
GJ [23]	$2\|\mathbb{G}\|+2 \lambda+4\|q\|$	$2\|\mathbb{G}\|$	$\mathcal{O}(1)$	DDH	PRO	-
Ours	$3\|q\|$	$4\|\mathbb{G}\|$	$\mathcal{O}(1)$	Lossy ID	NPRO	\checkmark

not guarantee that signatures are non-malleable. Hence, an adversary might, for instance, be able to efficiently re-randomize probabilistic signatures, and thus always be able to break matching conversations efficiently. This is a commonly overlooked mistake in many security proofs for AKE protocols [33]. Therefore Bader et al. [5] need to construct a more complex protocol that additionally requires strongly-unforgeable one-time signatures to achieve security in the sense of matching conversations. Gjøsteen and Jager [23] had to rely on the weaker partnering notion defined by Li and Schäge [33] in order to deal with potential malleability of signatures.

Hence, strongly-unforgeable digital signatures are particularly desirable in the context of AKE protocols, in order to achieve the strong notion of "matching conversation" security from [8].

Our Contributions. We construct strongly MU-EUF-CMA ${ }^{\text {corr }}$-secure digital signature schemes, based on lossy identification schemes as defined by Abdalla et al. $[2,3]$ and sequential OR-proofs as considered by Abe et al. [4] and Fischlin et al. [18]. This construction provides the following properties:

- It is the first generic construction of MU-EUF-CMA ${ }^{\text {corr }}$-secure digital signatures, which can be instantiated from any concrete hardness assumption that gives rise to suitable lossy identification schemes. This includes instantiations from the decisional Diffie-Hellman (DDH) assumption, and the ϕ-Hiding assumption.
- It is the first construction of MU-EUF-CMA ${ }^{\text {corr }}$-secure digital signatures that achieves strong existential unforgeability. Here we use "uniqueness" of the lossy identification scheme in the sense of $[2,3]$.
- When instantiated under the DDH assumption, a signature consists of only three elements of \mathbb{Z}_{q}, where q is the order of the underlying algebraic group.

For comparison, Schnorr signatures [36] and ECDSA [16], for instance, have signatures consisting of two elements of \mathbb{Z}_{q}, but do not enjoy tight security proofs (not even in the single-user setting) [17, 20-22, 35, 37]. In case of Schnorr signatures [36], security can be based on the weaker discrete logarithm assumption, though. Katz-Wang signatures [29] also consist of two \mathbb{Z}_{q}-elements and have tight security in the single-user setting, but not in the multi-user setting with adaptive corruptions.

- Similar to the work by Fischlin et al. [18], the proof does not rely on programming a random oracle, but holds in the non-programmable random oracle model [19]. This yields the first efficient and tightly multi-user secure signature scheme that does not require a programmable random oracle.

Our construction is almost identical to the construction based on sequential OR-proofs (as opposed to "parallel" OR-proofs in the sense of [13]), which was originally described by Abe et al. [4]. Fischlin, Harasser, and Janson [18] formally analyzed this construction and showed that it implies EUF-CMA-secure digital signatures based on lossy identification schemes. Their main focus is to achieve security in the non-programmable random oracle model [19], since the classical construction of signatures from lossy identification schemes $[2,3]$ requires a programmable random oracle.

We observe that this approach also gives rise to tightly-secure signatures in a multi-user model with adaptive corruptions, by slightly modifying the construction. Due to the fact that the reduction is always in possession of a correctly distributed secret key for all users, it can both (i) respond to singing-queries and (ii) respond to corruption-queries without the need to guess in the MU-EUF-CMA ${ }^{\text {corr }}$ security experiment.

Also, our security proof is based on slightly different and additional properties of the lossy identification scheme. We use that a sequential OR-proof is perfectly witness indistinguishable when both instances of the lossy identification scheme are in non-lossy mode. This enables us to argue that the adversary receives no information about the random bit b chosen by the key generation algorithm of one user, such that the probability that the adversary creates a forgery with respect to $s k_{1-b}$ is $1 / 2$. This enables us then to construct a distinguisher for the lossy identification scheme with only constant security loss.

Another difference to the proof by Fischlin et al. [18] is that we directly achieve strong unforgeability by leveraging uniqueness of lossy identification schemes, as defined by Abdalla et al. [2,3]. Also, their construction does not yet leverage "commitment-recoverability" of a lossy identification scheme, such that their DDH-based instantiation consists of four elements of \mathbb{Z}_{q}.

In particular, Table 2 shows that our scheme does not only improve the overall performance of all the presented protocols, but it also enables the protocols by GJ and LLGW to catch up to the communication complexity of JKRS. This means that when instantiated with our signature scheme, the constructions by GJ, LLGW, and JKRS achieve the same communication complexity. This observation suggests that especially constructions that exchange two or more signatures will benefit from an instantiation with our new signature scheme.

Table 2. Comparison of existing tightly-secure AKE protocols when instantiated with parameters for " 128 -bit security" (i.e., $\lambda=128$). The columns Comm. count the values exchanged during execution of the protocol with an abstract signature scheme, when instantiated with the GJ signature scheme [23], and when instantiated with our DDHbased signature scheme respectively. \mathbb{G} is the number of group elements, H the number of hashes or MACs, Sig. the number of signatures, \mathbb{Z}_{q} the number of exponents, and "other" the amount of additional data in bits (nonces are 2λ-bit strings). The columns Bytes contain the total amount of data in bytes when instantiating \mathbb{G} with the NIST P256 curve.

Protocol	Comm. $(\mathbb{G}, H$, Sig., other $)$	With GJ Sigs.		With our scheme	
	Comm. $\left(\mathbb{G}, H, \mathbb{Z}_{q}\right.$, other $)$	Bytes	Comm. $\left(\mathbb{G}, H, \mathbb{Z}_{q}\right.$, other $)$	Bytes	
GJ [23]	$(2,1,2,0)$	$(6,1,8,4 \lambda)$	544	$(2,1,6,0)$	288
TLS 1.3 [14,15]	$(2,2,2,512)$	$(6,2,8,4 \lambda+512)$	640	$(2,2,6,512)$	384
SIGMA-I $[14,32]$	$(2,2,2,512)$	$(6,2,8,4 \lambda+512)$	640	$(2,2,6,512)$	384
LLGW [34]	$(3,0,2,0)$	$(7,0,8,4 \lambda)$	544	$(3,0,6,0)$	288
JKRS [28]	$(5,1,1,0)$	$(7,1,4,2 \lambda)$	416	$(5,1,3,0)$	288

Applications to Tightly-Secure AKE Protocols. Since tightly MU-EUF-CMA ${ }^{\text {corr_ }}$ secure signatures are commonly used to construct tightly-secure AKE protocols, let us consider the impact of our scheme on the performance of known protocols. Since the performance gain obtained by the signature scheme has already been discussed, we focus here only on the communication complexity of the considered protocols, that is, the number of bits exchanged when running the protocol. Table 2 shows the impact of our signature schemes on known AKE protocols with tight security proofs. We compare instantiations with the signature scheme by Gjøsteen and Jager [23] to instantiations with our signature scheme. Note that the Gjøsteen-Jager scheme is also based on the DDH assumption, and so are the considered protocols (except for TLS 1.3 and Sigma, which are based on the strong Diffie-Hellman assumption).

We omit the protocol by Bader et al. [5], since it is more of a standard-model feasibility result, which does not aim for maximal efficiency. Their protocol has a communication complexity of $O(\lambda)$ group elements when instantiated with constant security loss, and 14 group elements plus 4 exponents when instantiated with their "almost-tight" signature scheme with a security loss of $O(\lambda)$. CohnGordon et al. [12] construct a protocol which entirely avoids signatures and aims to achieve tightness, however, they achieve only a linear security loss and also show that this is optimal for the class of protocols they consider.

Outline. The remainder of this work is organized as follows. In the next section, we introduce standard definitions for signatures and their security. In Sect. 3, we recall lossy identification schemes and their security properties. The generic construction of our signature scheme from any lossy identification scheme alongside
a security proof is presented in Sect.4. We conclude our work with a detailed discussion on possible instantiations of our scheme in Sect. 5 .

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by $a \| b$. For an integer $n \in \mathbb{N}$, we denote the set of integers ranging from 1 to n by $[n]:=$ $\{1, \ldots, n\}$. For a set $X=\left\{x_{1}, x_{2}, \ldots\right\}$, we use $\left(v_{i}\right)_{i \in X}$ as a shorthand for the tuple ($v_{x_{1}}, v_{x_{2}}, \ldots$). We denote the operation of assigning a value y to a variable x by $x:=y$. If S is a finite set, we denote by $x \stackrel{\&}{\leftarrow} S$ the operation of sampling a value uniformly at random from set S and assigning it to variable x.

2.1 Digital Signatures

We recall the standard definition of a digital signature scheme by Goldwasser, Micali, and Rivest [24] and its standard security notion.

Definition 1. A digital signature scheme is a triple of algorithms $\operatorname{Sig}=($ Gen, Sign, Vrfy) such that

1. Gen is the randomized key generation algorithm generating a public (verification) key $p k$ and a secret (signing) key sk.
2. $\operatorname{Sign}(s k, m)$ is the randomized signing algorithm outputting a signature σ on input of a message $m \in M$ and a signing key sk.
3. $\operatorname{Vrfy}(p k, m, \sigma)$ is the deterministic verification algorithm outputting either 0 or 1.

We say that a digital signature scheme Sig is ρ-correct if for $(p k, s k) \stackrel{\leftrightarrow}{\leftrightarrows}$ Gen, and any $m \in M$, it holds that

$$
\operatorname{Pr}[\operatorname{Vrfy}(p k, m, \operatorname{Sign}(s k, m))=1] \geq \rho .
$$

And we say Sig is perfectly correct if it is 1-correct.
Definition 2. Let $\operatorname{Sig}=(\mathrm{Gen}, \operatorname{Sign}, \mathrm{Vrfy})$ be a signature scheme and let $N \in \mathbb{N}$ be the number of users. Consider the following experiment $\operatorname{Exp}_{\mathrm{Sig}, N}^{\mathrm{MU} \text {-sEUF-CMA }}{ }^{\text {corr }}(\mathcal{A})$ played between a challenger and an adversary \mathcal{A} :

1. The challenger generates a key pair $\left(p k^{(i)}, s k^{(i)}\right) \stackrel{\&}{\leftrightarrows}$ Gen for each user $i \in[N]$, initializes the set of corrupted users $\mathcal{Q}^{\text {corr }}:=\emptyset$, and N sets of chosen-message queries $\mathcal{Q}^{(1)}, \ldots, \mathcal{Q}^{(N)}:=\emptyset$ issued by the adversary. Subsequently, it hands $\left(p k^{(i)}\right)_{i \in[N]}$ to \mathcal{A} as input.
2. The adversary may adaptively issue signature queries $(i, m) \in[N] \times M$ to the challenger. The challenger replies to each query with a signature $\sigma \stackrel{\&}{\leftrightarrows} \operatorname{Sign}\left(s k^{(i)}, m\right)$ and adds (m, σ) to $\mathcal{Q}^{(i)}$. Moreover, the adversary may adaptively issue corrupt queries $\operatorname{Corrupt}(i)$ for some $i \in[N]$. In this case, the challenger adds i to $\mathcal{Q}^{\text {corr }}$ and forwards sk ${ }^{(i)}$ to the adversary. We call each user $i \in \mathcal{Q}^{\text {corr }}$ corrupted.
3. Finally, the adversary outputs a tuple $\left(i^{*}, m^{*}, \sigma^{*}\right)$. The challenger checks whether $\operatorname{Vrfy}\left(p k^{\left(i^{*}\right)}, m^{*}, \sigma^{*}\right)=1, i^{*} \notin \mathcal{Q}^{\text {corr }}$ and $\left(m^{*}, \sigma^{*}\right) \notin \mathcal{Q}^{\left(i^{*}\right)}$. If all of these conditions hold, the experiment outputs 1 and 0 otherwise.

We denote the advantage of an adversary \mathcal{A} in breaking the strong existential unforgeability under an adaptive chosen-message attack in the multi-user setting with adaptive corruptions (MU-sEUF-CMA ${ }^{\text {corr }}$) for Sig by

$$
\operatorname{Adv}_{\mathrm{Sig}, N}^{\text {MU-sEUF-CMA }}{ }^{\text {corr }}(\mathcal{A}):=\operatorname{Pr}\left[\operatorname{Exp}_{\mathrm{Sig}, N}^{\text {MU-sEUF-CMA }}{ }^{\text {corr }}(\mathcal{A})=1\right]
$$

where $\operatorname{Exp}_{\mathrm{Sig}, N}^{\mathrm{MU}-\mathrm{sEUF}-\mathrm{CMA}^{\text {corr }}}(\mathcal{A})$ is as defined as above.

3 Lossy Identification Schemes

We adapt the definitions of a lossy identification scheme $[2,3,30]$.
Definition 3. A lossy identification scheme is a five-tuple LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) of probabilistic polynomial-time algorithms with the following properties.

- LID.Gen is the normal key generation algorithm. It outputs a public verification key $p k$ and a secret key sk.
- LID.LossyGen is a lossy key generation algorithm that takes the security parameter and outputs a lossy verification key pk.
- LID.Prove is the prover algorithm that is split into two algorithms:
 the secret key and returns a commitment cmt and a state st.
- resp $\leftarrow{\operatorname{LID} . \operatorname{Prove}_{2}(s k, \mathrm{cmt}, \mathrm{ch}, \mathrm{st}) \text { is a deterministic algorithm }}^{2}$ that takes as input a secret key sk, a commitment cmt, a challenge ch, a state st, and returns a response resp.
- LID.Vrfy $(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp})$ is a deterministic verification algorithm that takes a public key, and a conversation transcript (i.e., a commitment, a challenge, and a response) as input and outputs a bit, where 1 indicates that the proof is "accepted" and 0 that it is "rejected".
- cmt \leftarrow LID. $\operatorname{Sim}(p k, \mathrm{ch}$, resp) is a deterministic algorithm that takes a public key $p k$, a challenge ch, and a response resp as inputs and outputs a commitment cmt.

We assume that a public key pk implicitly defines two sets, the set of challenges CSet and the set of responses RSet.

[^2]Definition 4. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be defined as above. We call LID lossy when the following properties hold:

- Completeness of normal keys. We call LID ρ-complete, if

We call LID perfectly-complete, if it is 1-complete.
- Simulatability of transcripts. We call LID ε_{s}-simulatable if for $(p k, s k) \stackrel{\leftrightarrow}{\leftarrow}$ LID.Gen, (ch, resp) \leftarrow CSet \times RSet, the distribution of the transcript (cmt, ch, resp) where $\mathrm{cmt} \leftarrow \operatorname{LID} . \operatorname{Sim}(p k, \mathrm{ch}$, resp) is statistically indistinguishable from honestly generated transcript (with a statistical distance up to ε_{s}) and we have that LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp})=1$. If $\varepsilon_{s}=0$, we call LID perfectly simulatable.
Note that this simulatability property is different from the original definition in [2] where the simulator simulates the whole transcript.
- Indistinguishability of keys. This definition is a generalization of the standard key indistinguishability definition of a lossy identification scheme extended to N instances. For any integer $N>0$, we define the advantage of an adversary \mathcal{A} breaking the N-key-indistinguishability of LID as $\operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\operatorname{IND}-\mathrm{KEY}}(\mathcal{A}):=$

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(p k^{(1)}, \cdots, p k^{(N)}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(p k^{\prime(1)}, \cdots, p k^{\prime(N)}\right)=1\right]\right|
$$

where $\left(p k^{(i)}, s k^{(i)}\right) \stackrel{\oplus}{\leftrightarrows}$ LID. Gen and $p k^{\prime(i)} \leftrightarrows$ LID.LossyGen for all $i \in[N]$.

- Lossiness. Consider the following security experiment $\operatorname{Exp}_{\text {LID }}^{\text {IMPRSONATE }}(\mathcal{A})$ described below, played between a challenger and an adversary \mathcal{A} :

1. The challenger generates a lossy verification key $p k \stackrel{\oplus}{\leftarrow}$ LID.LossyGen and sends it to the adversary \mathcal{A}.
2. The adversary \mathcal{A} may now compute a commitment cmt and send it to the challenger. The challenger responds with a random challenge ch \leftarrow CSet.
3. Eventually, the adversary \mathcal{A} outputs a response resp. The challenger outputs LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}$, ch, resp).
We call LID ε_{ℓ}-lossy if no computationally unrestricted adversary \mathcal{A} wins the above security game with probability

$$
\operatorname{Pr}[\operatorname{Exp} \underset{\mathrm{LID}}{\operatorname{IMPERSONATE}}(\mathcal{A})=1] \geq \varepsilon_{\ell} .
$$

Below are two more properties for lossy identification schemes defined in [2,3].

Definition 5. Let $p k \stackrel{\&}{\leftarrow}$ LID.LossyGen be a lossy public key and let (cmt, ch, resp) be any transcript which makes LID.Vrfy $(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp})=1$. We say LID is ε_{u}-unique with respect to lossy keys if the probability that there exists $\operatorname{resp}^{\prime} \neq$ resp such that $\operatorname{LID} . \operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}\right.$, resp $\left.^{\prime}\right)=1$ is at most ε_{u}, and perfectly unique with respect to lossy keys if $\varepsilon_{u}=0$.

Definition 6. Let $(p k, s k) \stackrel{\&}{\leftarrow}$ LID.Gen be any honestly generated key pair and $\mathcal{C}(s k):=\left\{\operatorname{LID}^{2} \operatorname{Prove}_{1}(s k)\right\}$ be the set of commitments associated to sk. We define the min-entropy with respect to LID as

$$
\alpha:=-\log _{2}\left(\operatorname { m a x } _ { s k , \mathrm { cmt } \in \mathcal { C } (s k) } \operatorname { P r } \left[{\left.\left.\operatorname{LID} . \operatorname{Prove}_{1}(s k)=\mathrm{cmt}\right]\right)}\right.\right.
$$

Below is another property for lossy identification schemes defined in [30].
Definition 7. A lossy identification scheme LID is commitment-recoverable if the algorithm LID. $\operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}\right.$, resp) first recomputes a commitment $\mathrm{cmt}^{\prime}=$ LID. $\operatorname{Sim}(p k, \mathrm{ch}, \mathrm{resp})$ and then outputs 1 if and only if $\mathrm{cmt}^{\prime}=\mathrm{cmt}$.

Below, we define a new property for lossy identification schemes which requires that the LID.Sim algorithm is injective with respect to the input challenge.

Definition 8. A lossy identification scheme LID has an injective simulator if for any $(p k, s k) \stackrel{\&}{\leftarrow}$ LID.Gen, any response resp \in RSet, any $\mathrm{ch} \neq \mathrm{ch}^{\prime}$, it holds that LID. $\operatorname{Sim}(p k, \mathrm{ch}$, resp $) \neq \operatorname{LID} \cdot \operatorname{Sim}\left(p k, \mathrm{ch}^{\prime}\right.$, resp $)$.

In Sect. 5 we give a detailed discussion which of the existing lossy identification schemes [$1-3,26,29$] satisfy which of the above properties.

4 Construction and Security of Our Signature Scheme

Let LID $=$ (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be a lossy identification scheme and let $\mathrm{H}:\{0,1\}^{*} \rightarrow$ CSet be a hash function mapping finitelength bitstrings to the set of challenges CSet. Consider the following digital signature scheme $\operatorname{Sig}=($ Gen, Sign, Vrfy $)$.

Key generation. The key generation algorithm Gen samples a bit $b \leftarrow\{0,1\}$ and two independent key pairs $\left(p k_{0}, s k_{0}\right) \stackrel{\&}{\leftarrow}$ LID.Gen and $\left(p k_{1}, s k_{1}\right) \stackrel{\&}{\leftarrow}$ LID.Gen. Then it sets

$$
p k:=\left(p k_{0}, p k_{1}\right) \quad \text { and } \quad s k:=\left(b, s k_{b}\right)
$$

Note that the secret key consists only of $s k_{b}$ and the other key $s k_{1-b}$ is discarded.
Signing. The signing algorithm Sign takes as input $s k=\left(b, s k_{b}\right)$ and a message $m \in\{0,1\}^{*}$. Then it proceeds as follows.

1. It first computes $\left(\mathrm{cmt}_{b}, \mathrm{st}_{b}\right) \stackrel{\oplus}{\leftarrow}$ LID. $\operatorname{Prove}_{1}\left(s k_{b}\right)$ and sets

$$
\mathrm{ch}_{1-b}:=\mathrm{H}\left(m, \mathrm{cmt}_{b}\right)
$$

Note that the ch_{1-b} is derived from cmt_{b} and m.
2. It generates the simulated transcript by choosing resp 1-b $^{\leftarrow}$ RSet and

$$
\mathrm{cmt}_{1-b}:=\operatorname{LID} \cdot \operatorname{Sim}\left(p k_{1-b}, \mathrm{ch}_{1-b}, \operatorname{resp}_{1-b}\right)
$$

using the simulator.
3. Finally, it computes

$$
\mathrm{ch}_{b}:=\mathrm{H}\left(m, \mathrm{cmt}_{1-b}\right) \quad \text { and } \quad \operatorname{resp}_{b}:=\operatorname{LID.}^{-\operatorname{Prove}_{2}\left(s k_{b}, \mathrm{ch}_{b}, \mathrm{cmt}_{b}, \mathrm{st}_{b}\right)}
$$

and outputs the signature $\sigma:=\left(\operatorname{ch}_{0}, \operatorname{resp}_{0}, \operatorname{resp}_{1}\right)$. Note that ch_{1} is not included in the signature.
Verification. The verification algorithm Vrfy takes as input a public key $p k=$ $\left(p k_{0}, p k_{1}\right)$, a message $m \in\{0,1\}^{*}$, and a signature $\sigma=\left(\operatorname{ch}_{0}, \operatorname{resp}_{0}\right.$, resp $\left._{1}\right)$. It first recovers

$$
\mathrm{cmt}_{0}:=\operatorname{LID} . \operatorname{Sim}\left(p k_{0}, \mathrm{ch}_{0}, \text { resp }_{0}\right)
$$

From cmt_{0} it can then compute

$$
\mathrm{ch}_{1}:=\mathrm{H}\left(m, \mathrm{cmt}_{0}\right)
$$

and then recover

$$
\mathrm{cmt}_{1}:=\operatorname{LID} . \operatorname{Sim}\left(p k_{1}, \mathrm{ch}_{1}, \mathrm{resp}_{1}\right)
$$

Finally, the reduction outputs 1 if and only if $\mathrm{ch}_{0}=\mathrm{H}\left(m, \mathrm{cmt}_{1}\right)$.
One can easily verify that the above construction Sig is perfectly correct if LID is commitment-recoverable and perfectly complete. Also, note that, even though algorithm LID. Vrfy is not used in algorithm Vrfy, we have that $\operatorname{Vrfy}(p k, m, \sigma)=1$ implies that LID. $\operatorname{Vrfy}\left(p k_{j}, \mathrm{cmt}_{j}, \mathrm{ch}_{j}, \operatorname{resp}_{j}\right)=1$ for both $j \in\{0,1\}$. This is directly implied by our definition of the lossy identification scheme's simulatability of transcripts.
Theorem 9. If H is modeled as a random oracle and LID is commitmentrecoverable, perfectly simulatable, ε_{ℓ}-lossy, ε_{u}-unique, has α-bit min-entropy and has an injective simulator, then for each adversary \mathcal{A} with running time $t_{\mathcal{A}}$ breaking the MU-sEUF-CMA ${ }^{\text {corr }}$ security of the above signature scheme Sig , we can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that
$\operatorname{Adv}_{\mathrm{Sig}, N}^{\mathrm{MU}, \text { seUF-CMA }}{ }^{\text {corr }}(\mathcal{A}) \leq 4 \cdot \operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\mathrm{IND}-\mathrm{KEY}}(\mathcal{B})+\frac{2 q_{\mathrm{S}} q_{\mathrm{H}}}{2^{\alpha}}+\frac{2}{|\mathrm{CSet}|}+2 \varepsilon_{u}+2 N q_{\mathrm{H}}^{2} \varepsilon_{\ell}$, where q_{S} is the number of signing queries and q_{H} is the number of hash queries.

Proof. We prove Theorem 9 through a sequence of games. See Table 3 for an intuitive overview of our proof. In the sequel, let X_{i} denote the event that the experiment outputs 1 in Game i.
Game 0. This is the original security experiment $\operatorname{Exp}_{\mathrm{Sig}, N}^{\mathrm{MU} \text {-sEUF-CMA }}{ }^{\text {corr }}(\mathcal{A})$. In this experiment, adversary \mathcal{A} is provided with oracles Sign and Corrupt from the security experiment, as well as a hash oracle H since we are working in the random oracle model. In the following, it will be useful to specify the implementation of this game explicitly:

Table 3. Overview of the sequence of games used in the proof of Theorem 9.

Game \#	Changes	Remark
0	-	The MU-sEUF-CMA ${ }^{\text {corr }}$ game
1	We rule out repeating commitments cmt	This ensures that every signing query makes fresh hash queries
2	We ensure the two hash queries in the final verification have been made before.	We will need this in Game 4
3	We exclude the case where $\left(\right.$ cmt $_{0}^{*}$, cmt $\left._{1}^{*}\right)$ is re-used from a signing query	The adversary does not use "implicit" knowledge of the secret bit $b^{\left(i^{*}\right)}$
4	The adversary can only win if hash query " $\left(1-b^{\left(i^{*}\right)}\right) "$ is made first	$b^{\left(i^{*}\right)}$ is perfectly hidden, prepa- ration to achieve statistically small winning probability
5	We make all " $\left(1-b^{(i)}\right)$ " public keys lossy	This game has statistically small winning probability for any adversary

- The game initializes the chosen-message sets $\mathcal{Q}^{(1)}, \ldots, \mathcal{Q}^{(N)}:=\emptyset$, the set of corrupted users $\mathcal{Q}^{\text {corr }}:=\emptyset$ and an implementation of the random oracle $\mathcal{L}:=\emptyset$. It then runs the signature key generation algorithm Gen N times to get the key pair $\left(p k^{(i)}, s k^{(i)}\right)$ for each $i \in[N]$. More precisely, the game samples a bit $b^{(i)} \longleftarrow\{0,1\}$ and two independent key pairs $\left(p k_{0}^{(i)}, s k_{0}^{(i)}\right) \stackrel{\&}{\leftarrow}$ LID.Gen and $\left(p k_{1}^{(i)}, s k_{1}^{(i)}\right) \stackrel{\oplus}{\leftrightarrows}$ LID.Gen. Then it sets $p k^{(i)}:=\left(p k_{0}^{(i)}, p k_{1}^{(i)}\right)$ and stores $\left(p k^{(i)}, b^{(i)}, s k_{0}^{(i)}, s k_{1}^{(i)}\right)$. Finally, it runs adversary \mathcal{A} with input $\left(p k^{(i)}\right)_{i \in[N]}$. In the following proof, to simplify the notation, we will use $p k_{b}^{(i)}, p k_{1-b}^{(i)}, s k_{b}^{(i)}, s k_{1-b}^{(i)}$ to denote $p k_{b^{(i)}}^{(i)}, p k_{1-b^{(i)}}^{(i)}, s k_{b^{(i)}}^{(i)}, s k_{1-b^{(i)}}^{(i)}$ respectively.
- $\mathrm{H}(x)$. When the adversary or the simulation of the experiment make a hash oracle query for some $x \in\{0,1\}^{*}$, the game checks whether $(x, y) \in \mathcal{L}$ for some $y \in$ CSet. If it does, the game returns y. Otherwise the game selects $y \stackrel{\leftrightarrow}{\hookleftarrow}$ Cet, logs (x, y) into set \mathcal{L} and returns y.
- $\operatorname{Sign}(i, m)$. When the adversary queries the signing oracle with user i and message m, the game first sets $b:=b^{(i)}$, then computes

$$
\left(\mathrm{cmt}_{b}, \mathrm{st}_{b}\right) \stackrel{\&}{\operatorname{LID.Prove}_{1}\left(s k_{b}^{(i)}\right)}
$$

and sets $\mathrm{ch}_{1-b}:=\mathrm{H}\left(m, \mathrm{cmt}_{b}\right)$ by making a hash query. Then, the game chooses $\operatorname{resp}_{1-b} \stackrel{\leftrightarrow}{\leftarrow}$ RSet and uses the simulator to compute $\mathrm{cmt}_{1-b}:=$ LID. $\operatorname{Sim}\left(p k_{1-b}^{(i)}, \mathrm{ch}_{1-b}, \operatorname{resp}_{1-b}\right)$. Finally, the game queries hash oracle to get $\mathrm{ch}_{b}:=\mathrm{H}\left(m, \mathrm{cmt}_{1-b}\right)$ and then uses LID.Prove ${ }_{2}$ to compute

$$
\operatorname{resp}_{b}:=\operatorname{LID}^{2} \operatorname{Prove}_{2}\left(s k_{b}^{(i)}, \mathrm{ch}_{b}, \mathrm{cmt}_{b}, \mathrm{st}_{b}\right) .
$$

The game outputs signature $\sigma:=\left(\operatorname{ch}_{0}, \operatorname{resp}_{0}, \operatorname{resp}_{1}\right)$ to \mathcal{A} and logs the pair (m, σ) in set $\mathcal{Q}^{(i)}$.

- Corrupt (i). When the adversary \mathcal{A} queries the Corrupt oracle for the secret key of user i, the game returns $s k^{(i)}:=\left(b^{(i)}, s k_{b}^{(i)}\right)$ to the adversary and logs i in the set $\mathcal{Q}^{\text {corr }}$.
- Finally, when adversary \mathcal{A} outputs a forgery attempt $\left(i^{*}, m^{*}, \sigma^{*}\right)$, the game outputs 1 if and only if $\operatorname{Vrfy}\left(p k^{\left(i^{*}\right)}, m^{*}, \sigma^{*}\right)=1, i^{*} \notin \mathcal{Q}^{\text {corr }}$, and $\left(m^{*}, \sigma^{*}\right) \notin$ $\mathcal{Q}^{\left(i^{*}\right)}$ hold. More precisely, for $\sigma^{*}=\left(\mathrm{ch}_{0}^{*}\right.$, resp $_{0}^{*}$, resp $\left.{ }_{1}^{*}\right)$, the game recovers $\mathrm{cmt}_{0}^{*}:=\operatorname{LID} \cdot \operatorname{Sim}\left(p k_{0}^{\left(i^{*}\right)}, \mathrm{ch}_{0}^{*}, \operatorname{resp}_{0}^{*}\right)$ and queries the hash oracle to get $\mathrm{ch}_{1}^{*}:=$ $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}^{*}\right)$. Then it recovers $\mathrm{cmt}_{1}^{*}:=\operatorname{LID} \cdot \operatorname{Sim}\left(p k_{1}^{\left(i^{*}\right)}, \mathrm{ch}_{1}^{*}\right.$, resp $\left.{ }_{1}^{*}\right)$ and queries the hash oracle to get $\mathrm{ch}^{*}:=\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)$. Finally, the game outputs 1 if and only if $\mathrm{ch}_{0}^{*}=\mathrm{ch}^{*}, i^{*} \notin \mathcal{Q}^{\text {corr }}$ and $\left(m^{*}, \sigma^{*}\right) \notin \mathcal{Q}^{\left(i^{*}\right)}$.
It is clear that $\operatorname{Pr}\left[X_{0}\right]=\operatorname{Adv}_{\text {Sig }, N}^{\mathrm{MU} \text {-sEUF-CMA }}{ }^{\text {corr }}(\mathcal{A})$.
Game 1. Game 1 is the same with Game 0 except with one change. Denote with cmtColl the event that there exists a signing query $\operatorname{Sign}(i, m)$ such that at least one of the two hash queries $\mathrm{H}\left(m, \mathrm{cmt}_{b^{(i)}}\right)$ and $\mathrm{H}\left(m, \mathrm{cmt}_{1-b^{(i)}}\right)$ made in this signing query has been made before.

Game 1 outputs 0 when cmtColl happens. In other words, X_{1} happens if and only if $X_{0} \wedge \neg \mathrm{cmtColl}$ happens. We can prove the following lemma.

Lemma 10.

$$
\operatorname{Pr}\left[X_{1}\right] \geq \operatorname{Pr}\left[X_{0}\right]-\frac{2 q_{\mathrm{s}} q_{\mathrm{H}}}{2^{\alpha}}
$$

where q_{S} is the number of signing queries made by \mathcal{A} and q_{H} is the number of hash queries made in Game 0.

Proof. To prove Lemma 10, we divide the event cmtColl into two subevents.

- There exists a signing query $\operatorname{Sign}(i, m)$ such that $\mathrm{H}\left(m, \mathrm{cmt}_{b^{(i)}}\right)$ has been made before. If this happens, then $\mathrm{cmt}_{b^{(i)}}$ is the output of $\operatorname{LID.Prove} 1\left(s k^{(i)}\right)$ for any signing query. Since LID has α-bit min-entropy (cf. Definition 6), the probability that this happens is at most $q_{\mathrm{S}} q_{\mathrm{H}} / 2^{\alpha}$ by a union bound.
- There exists a signing query $\operatorname{Sign}(i, m)$ such that $\mathrm{H}\left(m, \mathrm{cmt}_{1-b^{(i)}}\right)$ has been made before. Note that $\mathrm{cmt}_{1-b^{(i)}}$ is the output of

$$
\operatorname{LID} . \operatorname{Sim}\left(p k_{1-b}^{(i)}, \mathrm{ch}_{1-b^{(i)}}, \operatorname{resp}_{1-b^{(i)}}\right)
$$

where $\mathrm{ch}_{1-b^{(i)}}=\mathrm{H}\left(m, \mathrm{cmt}_{b^{(i)}}\right)$. Since LID.Sim is deterministic, we know that $\mathrm{cmt}_{1-b^{(i)}}$ is determined by $p k_{1-b}^{(i)}, m, \mathrm{cmt}_{b^{(i)}}$ and $\operatorname{resp}_{1-b^{(i)}}$. Furthermore, since LID.Sim is injective with respect to challenges (cf. Definition 8), we know that the entropy of $\mathrm{cmt}_{1-b^{(i)}}$ in any fixed signing query is at least the entropy of $\mathrm{cmt}_{b^{(i)}}$ in that query. Thus, we obtain that the probability that this subevent happens is at most $q_{\mathrm{S}} q_{\mathrm{H}} / 2^{\alpha}$.

Thus, we have that $\operatorname{Pr}[\mathrm{cmtColl}] \leq 2 q_{\mathrm{S}} q_{\mathrm{H}} / 2^{\alpha}$ and Lemma 10 follows.

Remark 11. Note that, from Game 1 on, the hash queries $\mathbf{H}\left(m, \mathrm{cmt}_{b^{(i)}}\right)$ and $\mathrm{H}\left(m, \mathrm{cmt}_{1-b^{(i)}}\right)$ are not made before any signing query $\operatorname{Sign}(i, m)$ if the game finally outputs 1 . This implies that each signing query uses independent and uniformly random $\mathrm{ch}_{1-b^{(i)}}$ and $\mathrm{ch}_{b^{(i)}}$, and they are not known to the adversary at that time.

Game 2. Game 2 differs from Game 1 only in the way the game checks the winning condition. More precisely, Game 1 issues two hash queries $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}^{*}\right)$ and $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)$ to check the validity of a forgery attempt $\left(i^{*}, m^{*}, \sigma^{*}\right)$. In the following, we call the former $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}^{*}\right)$ a "0-query" and the latter $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)$ a "1-query". Let Both denote the event that both a 0 -query and a 1 -query have been made by the signing oracle or by the adversary before submitting the forgery attempt $\left(i^{*}, m^{*}, \sigma^{*}\right)$.

Game 2 outputs 0 if event Both does not happen. In other words, X_{2} happens if and only if $X_{1} \wedge$ Both happens. We can prove the following lemma.

Lemma 12. $\operatorname{Pr}\left[X_{2}\right] \geq \operatorname{Pr}\left[X_{1}\right]-2 / \mid$ CSet \mid.
Proof. We know that $\operatorname{Pr}\left[X_{1}\right]=\operatorname{Pr}\left[X_{1} \wedge \neg\right.$ Both $]+\operatorname{Pr}\left[X_{2}\right]$. We will prove that $\operatorname{Pr}\left[X_{1} \wedge \neg\right.$ Both $] \leq 2 / \mid$ CSet \mid and the lemma follows. Note that
$\operatorname{Pr}\left[X_{1} \wedge \neg \operatorname{Both}\right] \leq \operatorname{Pr}\left[X_{1} \wedge 1\right.$-query is never made $]+\operatorname{Pr}\left[X_{1} \wedge 0\right.$-query is never made $]$

- $X_{1} \wedge 1$-query is never made: Event X_{1} implies that $\operatorname{Vrfy}\left(p k^{\left(i^{*}\right)}, m^{*}, \sigma^{*}\right)=1$. This further implies that the value ch_{0}^{*} (chosen by the adversary) equals the 1-query hash result ch ${ }^{*}=\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)$, which is a random element in CSet. Since the 1-query is never made at this time, the adversary has no knowledge about this value, which yields

$$
\operatorname{Pr}\left[X_{1} \wedge 1 \text {-query is never made }\right] \leq \frac{1}{|\mathrm{CSet}|}
$$

- $X_{1} \wedge 0$-query is never made: The 0-query value $\mathrm{ch}_{1}^{*}=\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}^{*}\right)$ is used to recover $\mathrm{cmt}_{1}^{*}=\operatorname{LID} \cdot \operatorname{Sim}\left(p k_{1}^{\left(i^{*}\right)}, \mathrm{ch}_{1}^{*}\right.$, resp $\left._{1}^{*}\right)$. Since the 0 -query is not made at that time, the adversary has no knowledge about ch 1_{1}^{*} except that it is a random element in CSet. Together with the fact that algorithm LID.Sim is injective (cf. Definition 8), the adversary only knows that cmt* is uniformly distributed over a set of size |CSet|. To make the verification pass, the adversary would need to select ch_{0}^{*} which equals to $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)$. However, there are |CSet| possible values for cmt_{1}^{*} so that this can happen with probability at most $1 /|\mathrm{CSet}|$. Thus,

$$
\operatorname{Pr}\left[X_{1} \wedge 0 \text {-query is never made }\right] \leq \frac{1}{|\operatorname{CSet}|}
$$

Putting both together, we have $\operatorname{Pr}\left[X_{1} \wedge \neg\right.$ Both $] \leq 2 / \mid$ CSet \mid.

Game 3. Game 3 is exactly the same as Game 2, except for one change. We denote by ImplicitUsage the event that the first 0 -query and the first 1-query are made in a signing query $\operatorname{Sign}\left(i^{*}, m^{*}\right)$, and the pair $\left(\mathrm{cmt}_{0}^{*}, \mathrm{cmt}_{1}^{*}\right)$ equals to the pair $\left(\mathrm{cmt}_{0}, \mathrm{cmt}_{1}\right)$, which is generated in this signing query. Game 3 outputs 0 if event ImplicitUsage happens.

Hence, X_{3} happens if and only if $X_{2} \wedge \neg$ ImplicitUsage happens. We prove the following lemma.

Lemma 13. We can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\operatorname{Pr}\left[X_{3}\right] \geq \operatorname{Pr}\left[X_{2}\right]-2 \cdot \operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\mathrm{ND}-\operatorname{KEY}}(\mathcal{B})-2 \varepsilon_{u} .
$$

Remark 14. Note that this proof can be potentially simplified if we define the uniqueness property of LID with respect to normal public keys. However, this would introduce a non-standard LID property compared to the standard LID definition by Abdalla et al. [2,3].

Proof. We know that $\operatorname{Pr}\left[X_{2}\right]=\operatorname{Pr}\left[X_{2} \wedge \operatorname{ImplicitUsage}\right]+\operatorname{Pr}\left[X_{3}\right]$. We will prove that $\operatorname{Pr}\left[X_{2} \wedge\right.$ ImplicitUsage $] \leq 2 \operatorname{Adv}_{\text {LID }, N}^{\text {MU-IND-KEY }}(\mathcal{B})+2 \varepsilon_{u}$ such that the above lemma follows.

Note that ImplicitUsage implies that

$$
\mathrm{ch}_{j}=\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1-j}\right)=\mathrm{H}\left(m^{*}, \mathrm{cmt}_{1-j}^{*}\right)=\mathrm{ch}_{j}^{*}
$$

for $j \in\{0,1\}$. Together with the fact that $\left(m^{*}, \sigma^{*}\right) \notin \mathcal{Q}^{\left(i^{*}\right)}$, we must have that $\left(\right.$ resp $_{0}^{*}$, resp $\left._{1}^{*}\right) \neq\left(\right.$ resp $_{0}$, resp $\left._{1}\right)$. Then two subcases are possible.
$-X_{2} \wedge$ ImplicitUsage $\wedge\left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}=\operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right) \wedge\left(\operatorname{resp}_{b^{\left(i^{*}\right)}}^{*} \neq \operatorname{resp}_{b^{\left(i^{*}\right)}}\right)$. This subcase intuitively implies that the adversary successfully guesses the bit $b^{\left(i^{*}\right)}$, since the adversary has to choose resp ${ }_{0}^{*}$, resp 1_{1}^{*} such that resp ${ }_{1-b^{\left(i^{*}\right)}}^{*}$ is equal and resp $_{b^{\left(i^{*}\right)}}^{*}$ is unequal. However, in Game 2, the secret bit $b^{\left(i^{*}\right)}$ is perfectly hidden to the adversary due to the following facts.

- The public key $p k^{\left(i^{*}\right)}$ is independent of $b^{\left(i^{*}\right)}$.
- User i^{*} is not corrupted (or otherwise the forgery is invalid, anyway), so the bit $b^{\left(i^{*}\right)}$ is not leaked through corruptions.
- The signature σ returned by oracle $\operatorname{Sign}\left(i^{*}, m\right)$ is independent of bit $b^{\left(i^{*}\right)}$. The reason is that X_{2} implies that cmtColl does not happen. As shown in Remark 11, each $\operatorname{Sign}\left(i^{*}, m\right)$ query will use uniformly random $\mathrm{ch}_{1-b^{\left(i^{*}\right)}}$ and $\mathrm{ch}_{b^{\left(i^{*}\right)}}$. Thus, the signature essentially contains the two transcripts

$$
\left(\mathrm{cmt}_{b\left(i^{*}\right)}, \mathrm{ch}_{b\left(i^{*}\right)}, \operatorname{resp}_{b^{\left(i^{*}\right)}}\right) \quad \text { and } \quad\left(\mathrm{cmt}_{1-b^{\left(i^{*}\right)}}, \mathrm{ch}_{1-b\left(^{\left(i^{*}\right)}\right.}, \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)
$$

Note that the $b^{\left(i^{*}\right)}$ transcript is an "honestly generated" transcript and the $\left(1-b^{\left(i^{*}\right)}\right)$ transcript is a "simulated" transcript with uniformly random $\mathrm{ch}_{1-b^{\left(i^{*}\right)}}$ and $\operatorname{resp}_{1-b^{\left(i^{*}\right)}}$. Due to the perfect simulatability of LID, we know that these two transcripts are perfectly identically distributed. Thus, \mathcal{A} gains no information about $b^{\left(i^{*}\right)}$ through signatures.

In summary, we conclude that this subcase happens with probability

$$
\frac{1}{2} \operatorname{Pr}\left[X_{2} \wedge \text { ImplicitUsage }\right] .
$$

$-X_{2} \wedge$ ImplicitUsage $\wedge\left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*} \neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)$. For this subcase, we can prove the following claim.

Claim. We can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\operatorname{Pr}\left[X_{2} \wedge \operatorname{ImplicitUsage} \wedge\left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*} \neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)\right] \leq \operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\operatorname{IND-KEY}}(\mathcal{B})+\varepsilon_{u}
$$

Proof. To prove this claim, we define a new intermediate game Game 2^{\prime}, which is exactly the same as Game 2, except that we choose a lossy public key $p k_{1-b}^{(i)}{ }_{\leftarrow}^{\&}$ LID.LossyGen for every user $i \in[N]$ in Game 2^{\prime}. We can build an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\left|\begin{array}{rl}
\operatorname{Pr}\left[X _ { 2 } \wedge \text { ImplicitUsage } \wedge \left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}\right.\right. & \left.\left.\neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)\right] \tag{1}\\
-\operatorname{Pr}\left[X _ { 2 ^ { \prime } } \wedge \operatorname { I m p l i c i t U s a g e } \wedge \left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}\right.\right. & \left.\left.\neq \operatorname{resp}_{\left.1-b^{\left(i^{*}\right)}\right)}\right)\right]
\end{array}\right| \leq \operatorname{Adv}_{\mathrm{LID}, N}^{\text {MU-IND-KEY }}(\mathcal{B})
$$

The construction of \mathcal{B} using \mathcal{A} is straightforward. It receives $\left(p k_{i}^{\prime}\right)_{i \in[N]}$, which is either generated by algorithm LID.Gen or by LID.LossyGen. Then, it simulates Game 2 for the adversary \mathcal{A} and sets $p k_{1-b}^{(i)}:=p k_{i}^{\prime}$ for all $i \in[N]$. Note that, in Game 2, the secret key $s k_{1-b}^{(i)}$ is not used for any user i. So \mathcal{B} is able to simulate the game perfectly. Finally, \mathcal{B} outputs 1 if and only if \mathcal{A} wins and ImplicitUsage $\wedge\left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*} \neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)$ happens. It is clear that \mathcal{B} perfectly simulates Game 2 if it receives normal public keys and \mathcal{B} perfectly simulates Game 2^{\prime} if it receives lossy public keys. Thus, Eq. (1) follows.

Now in Game 2^{\prime}, the key $p k_{1-b}^{\left(i^{*}\right)}$ is lossy. Since $X_{2^{\prime}}$ implies that σ^{*} is a valid signature with respect to m^{*}, we know that

$$
\operatorname{LID} . \operatorname{Vrfy}\left(p k_{1-b}^{\left(i^{*}\right)}, \mathrm{cmt}_{1-b^{\left(i^{*}\right)}}^{*}, \mathrm{ch}_{1-b^{\left(i^{*}\right)}}^{*}, \operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}\right)=1 .
$$

Since the signing oracle $\operatorname{Sign}\left(i^{*}, m^{*}\right)$ also outputs valid signature σ for m^{*}, we have that

$$
\operatorname{LID} . \operatorname{Vrfy}\left(p k_{1-b}^{\left(i^{*}\right)}, \mathrm{cmt}_{1-b^{\left(i^{*}\right)}}, \mathrm{ch}_{1-b^{\left(i^{*}\right)}}, \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)=1
$$

In this subcase, we have $\left(\mathrm{cmt}_{1-b^{\left(i^{*}\right)}}, \mathrm{ch}_{1-b^{\left(i^{*}\right)}}\right)=\left(\mathrm{cmt}_{1-b^{\left(i^{*}\right)}}^{*}, \mathrm{ch}_{1-b^{\left(i^{*}\right)}}^{*}\right)$ and $\operatorname{resp}_{1-b^{\left(i^{*}\right)}} \neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}$. Due to the uniqueness property of LID with respect to lossy public keys, we must have

$$
\operatorname{Pr}\left[X_{2^{\prime}} \wedge \text { ImplicitUsage } \wedge\left(\operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*} \neq \operatorname{resp}_{1-b^{\left(i^{*}\right)}}\right)\right] \leq \varepsilon_{u}
$$

Applying Eq. (1) to the obtained bounds, the claim follows.

Putting both subcases together, we obtain that

$$
\operatorname{Pr}\left[X_{2} \wedge \text { ImplicitUsage }\right] \leq \frac{1}{2} \operatorname{Pr}\left[X_{2} \wedge \operatorname{Implicit} \text { Usage }\right]+\operatorname{Adv}_{\mathrm{MUD}, N}^{\mathrm{MUD}-\mathrm{KEY}}(\mathcal{B})+\varepsilon_{u}
$$

which implies that $\operatorname{Pr}\left[X_{2} \wedge\right.$ ImplicitUsage $] \leq 2 \operatorname{Adv}_{\text {LID }, N}^{\text {MU-IND-KEY }}(\mathcal{B})+2 \varepsilon_{u}$.

Game 4. Game 4 further modifies the winning condition. We denote Before as the event that Both happens and the first $\left(1-b^{\left(i^{*}\right)}\right)$-query is made before the first $b^{\left(i^{*}\right)}$-query is made. Game 4 outputs 0 if event Before does not happen.

Hence, X_{4} happens if and only if $X_{3} \wedge$ Before happens. We can prove the following lemma.

Lemma 15. $\operatorname{Pr}\left[X_{4}\right] \geq 1 / 2 \cdot \operatorname{Pr}\left[X_{3}\right]$.
Proof. Since we know that event Both happens, we can divide X_{3} into three subcases.

- Both the first 0-query and the first 1-query are made in one and the same signing query $\operatorname{Sign}\left(i^{*}, m^{*}\right)$.
In this subcase, we have that two hash queries $\left\{\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}^{*}\right), \mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}^{*}\right)\right\}$ made by the final verification algorithm have the same input as the two hash queries $\left\{\mathrm{H}\left(m^{*}, \mathrm{cmt}_{0}\right), \mathrm{H}\left(m^{*}, \mathrm{cmt}_{1}\right)\right\}$ made by the signing oracle. We know that X_{3} implies that ImplicitUsage does not happen, so we must have that $\left(\mathrm{cmt}_{0}^{*}, \mathrm{cmt}_{1}^{*}\right)=\left(\mathrm{cmt}_{1}, \mathrm{cmt}_{0}\right)$. Since the signing algorithm always makes a $\mathrm{H}\left(m^{*}, \mathrm{cmt}_{b^{\left(i^{*}\right)}}\right)$ query before $\mathrm{H}\left(m, \mathrm{cmt}_{1-b^{\left(i^{*}\right)}}\right)$, we have that event Before always happens in this subcase.
- Both the first 0 -query and the first 1-query are made in one signing query $\operatorname{Sign}\left(i^{\prime}, m^{*}\right)$ for some $i^{\prime} \neq i^{*}$.
In this subcase, the $b^{\left(i^{\prime}\right)}$-query is made first and Before happens if and only if $b^{\left(i^{\prime}\right)}=1-b^{\left(i^{*}\right)}$.
- The first 0 -query and the first 1 -query are not made in exactly one signing query. In other words, they lie in different signing queries or at least one of them is made by the adversary.
In this subcase, the adversary \mathcal{A} actually has full control which one is queried first. Suppose the β-query is made first for some implicit bit $\beta \in\{0,1\}$ chosen by the adversary. Then, event Before happens if and only if $\beta=b^{\left(i^{*}\right)}$.

Similar to the proof of Lemma 13, we can show that the bit $b^{\left(i^{*}\right)}$ is perfectly hidden to the adversary. So if the second or the third subcase happens, the probability that Before happens is $1 / 2$. Together with the fact that Before always happen in the first subcase, Lemma 15 follows.

Game 5. In this game, we change the generation of the key $p k_{1-b}^{(i)}$. Namely, the key generation in Game 5 is exactly as in Game 4 except that we choose lossy public keys $p k_{1-b}^{(i)} \leftrightarrows$ LID.LossyGen for every user $i \in[N]$ in Game 5 .

Lemma 16. We can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\left|\operatorname{Pr}\left[X_{4}\right]-\operatorname{Pr}\left[X_{5}\right]\right| \leq \operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}, N \mathrm{IND-KEY}}(\mathcal{B})
$$

Proof. The proof of the lemma is straightforward. We can construct \mathcal{B} using \mathcal{A} as a subroutine. \mathcal{B} receives as input $\left(p k_{i}^{\prime}\right)_{i \in[N]}$, which is either generated by algorithm LID.Gen or by LID.LossyGen. Then, it simulates Game 5 for the adversary \mathcal{A} and set $p k_{1-b}^{(i)}:=p k_{i}^{\prime}$ for all $i \in[N]$.

Finally, we can prove the following lemma.

Lemma 17.

$$
\operatorname{Pr}\left[X_{5}\right] \leq N \cdot q_{\mathrm{H}}^{2} \cdot \varepsilon_{\ell}
$$

where q_{H} is the number of hash queries made in Game 5.
Note that the lossiness of LID guarantees that ε_{ℓ} is statistically negligible (even for computationally unbounded adversaries). Hence, the multiplicative term $N \cdot q_{\mathrm{H}}^{2}$ does not break the tightness of our signature scheme. It will convenient to prove this claim by reduction.

Proof. To prove this lemma, we build an adversary \mathcal{B} against the lossiness of LID. On getting a lossy public key $p k \stackrel{\&}{\leftarrow}$ LID.LossyGen, \mathcal{B} uniformly selects $i^{\prime} \stackrel{\leftrightarrow}{\leftarrow}[N], j_{1} \leftarrow\left[q_{\mathrm{H}}-1\right]$ and $j_{2} \leftarrow\left\{j_{1}+1, \cdots, q_{\mathrm{H}}\right\}$. Then \mathcal{B} generates all the public keys for \mathcal{A} according to Game 5 except that it sets $p k_{1-b}^{\left(i^{\prime}\right)}:=p k$. Then \mathcal{B} invokes \mathcal{A} and answers all the queries according to Game 5 with the following exceptions.

- In the j_{1}-th hash query $\mathrm{H}(m, \mathrm{cmt}), \mathcal{B}$ submits cmt to its own challenger and get back ch $\stackrel{\&}{\leftarrow}$ CSet.
- In the j_{2}-th hash query $\mathrm{H}\left(m, \mathrm{cmt}^{\prime}\right), \mathcal{B}$ returns ch as response and logs $\left(\left(m, \mathrm{cmt}^{\prime}\right), \mathrm{ch}\right)$ into the hash list \mathcal{L}.

After \mathcal{A} submits the forgery attempt $\left(i^{*}, m^{*}, \sigma^{*}=\left(\operatorname{ch}_{0}^{*}\right.\right.$, resp 0_{0}^{*}, resp $\left.\left.{ }_{1}^{*}\right)\right), \mathcal{B}$ checks whether all the following events happen:

- X_{5} happens,
- $i^{\prime}=i^{*}$,
- the first $\left(1-b^{\left(i^{*}\right)}\right)$-query is exactly the j_{1}-th hash query,
- the first $b^{\left(i^{*}\right)}$-query is exactly the j_{2}-th hash query.

If all of these events happen, \mathcal{B} outputs resp $1_{1-b^{\left(i^{*}\right)}}^{*}$ to its own challenger. Otherwise, \mathcal{B} halts and outputs nothing.

The probability that \mathcal{B} does not halt is at least $\operatorname{Pr}\left[X_{5}\right] /\left(N \cdot q_{\mathrm{H}}^{2}\right)$. We will show that in this case

$$
\operatorname{LID} . \operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}, \operatorname{resp}_{1-b\left(i^{*}\right)}^{*}\right)=1,
$$

and hence \mathcal{B} wins the lossiness game. This is implied by the following facts.
$-i^{\prime}=i^{*}$ indicates that $p k=p k_{1-b}^{\left(i^{*}\right)}$.

- The j_{1}-th hash query is the first $\left(1-b^{\left(i^{*}\right)}\right)$-query indicates that $\mathrm{cmt}=$ $\mathrm{cmt}_{1-b^{\left(i^{*}\right)}}$.
- The j_{2}-th hash query is the first $b^{\left(i^{*}\right)}$-query indicates that $\mathrm{ch}=\mathrm{ch}_{1-b^{\left(i^{*}\right)}}^{*}$.
- X_{3} happens indicates that $\operatorname{Vrfy}\left(p k^{\left(i^{*}\right)}, m^{*}, \sigma^{*}\right)=1$, which further indicates that

$$
\operatorname{LID} . \operatorname{Vrfy}\left(p k_{1-b}^{\left(i^{*}\right)}, \mathrm{cmt}_{1-b^{\left(i^{*}\right)}}^{*}, \mathrm{ch}_{1-b^{\left(i^{*}\right)}}^{*}, \operatorname{resp}_{1-b^{\left(i^{*}\right)}}^{*}\right)=1
$$

Thus, we have that $\operatorname{Pr}\left[X_{5}\right] /\left(N \cdot q_{\mathrm{H}}^{2}\right) \leq \operatorname{Pr}[\mathcal{B}$ wins $] \leq \varepsilon_{\ell}$ and Lemma 17 follows.

Theorem 9 now follows.

5 Instantiations of Our Scheme

In the previous section we identified the necessary properties of the underlying lossy identification scheme. We now continue to discuss how suitable schemes can be instantiated based on concrete hardness assumptions. The constructions described in this section are derived from [1-3,29] and are well-known. The purpose of this section is to argue and justify that these constructions indeed satisfy all properties required for our signature scheme.

5.1 Instantiation Based on Decisional Diffie-Hellman

The well-known DDH-based lossy identification scheme uses the standard Sigma protocol to prove equality of discrete logarithms by Chaum et al. [11] (cf. Fig. 1) as foundation, which was used by Katz and Wang [29] to build tightly-secure signatures (in the single-user setting without corruptions).

Prover: $s k=x$ $r \stackrel{\&}{\mathbb{Z}_{q}}$		Verifier: $p k=(g, h, u, v)$
cmt $:=(e, f)=\left(g^{r}, h^{r}\right)$	cmt	
	ch	ch $\stackrel{\&}{\mathbb{Z}_{q}}$
resp $:=r-\mathrm{ch} \cdot x$	resp	accept if $e=g^{\text {resp }} \cdot u^{\text {ch }}$
		and $f=h^{\text {resp }} \cdot v^{\text {ch }}$

Fig. 1. The DDH-based identification scheme [11].

The DDH Problem. Let (\mathbb{G}, g, q) be a cyclic group of prime order q and generator g. Further, let $h \in \mathbb{G}$. We denote the set of $D D H$ tuples in \mathbb{G} with respect to g and h as

$$
\mathrm{DDH}(\mathbb{G}, g, h):=\left\{(u, v) \in \mathbb{G}^{2}: \log _{g} u=\log _{h} v\right\}
$$

and the set of "non-DDH tuples" as

$$
\overline{\mathrm{DDH}(\mathbb{G}, g, h)}:=\mathbb{G}^{2} \backslash \mathrm{DDH}(\mathbb{G}, g, h) .
$$

Definition 18. Let (\mathbb{G}, g, q) be a cyclic group of prime order q and generator g. Further, let $h \leftarrow \mathbb{G}$. We define the advantage of an algorithm \mathcal{B} in solving the DDH problem in \mathbb{G} with respect to (g, h) as

$$
\operatorname{Adv}_{\mathbb{G}, g, h}^{\mathrm{DDH}}(\mathcal{B}):=|\operatorname{Pr}[\mathcal{B}(\mathbb{G}, g, h, u, v)=1]-\operatorname{Pr}[\mathcal{B}(\mathbb{G}, g, h, \bar{u}, \bar{v})=1]|
$$

where $(u, v) \stackrel{\oplus}{ } \mathbf{D D H}(\mathbb{G}, g, h)$ and $(\bar{u}, \bar{v}) \stackrel{\Phi}{\leftrightarrows} \overline{\mathrm{DDH}(\mathbb{G}, g, h)}$ are chosen uniformly random.

A DDH-Based LID Scheme. Let (\mathbb{G}, g, q) be a cyclic group of prime order q and generator g and let $h \in \mathbb{G}$. We define the lossy identification scheme LID $=$ (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the protocol presented above as follows:

Key generation. The algorithm LID.Gen chooses a value $x \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$ uniformly at random. It sets $p k:=(g, h, u, v)=\left(g, h, g^{x}, h^{x}\right)$ and $s k:=x$, and outputs ($p k, s k$).
Lossy key generation. The algorithm LID.LossyGen chooses two group elements $u, v \stackrel{₫}{\leftarrow}$ uniformly and independently at random. It outputs $p k:=$ (g, h, u, v).
Proving. The algorithm LID.Prove is split up into the following two algorithms:

1. The algorithm LID.Prove ${ }_{1}$ takes as input a secret key $s k=x$, chooses a random value $r \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{q}$, and computes a commitment $\mathrm{cmt}:=(e, f)=$ (g^{r}, h^{r}), where g, h are the value of the $p k$ corresponding to $s k$. It outputs (cmt, st) with st $:=r$.
2. The algorithm LID.Prove ${ }_{2}$ takes as input a secret key $s k=x$, a commitment $\mathrm{cmt}=(e, f)$, a challenge $\mathrm{ch} \in \mathbb{Z}_{q}$, a state $\mathrm{st}=r$, and outputs a response resp $:=r-\mathrm{ch} \cdot x$.
Verification. The verification algorithm LID.Vrfy takes as input a public key $p k=(g, h, u, v)$, a commitment $\mathrm{cmt}=(e, f)$, a challenge $\mathrm{ch} \in \mathbb{Z}_{q}$, and a response resp $\in \mathbb{Z}_{q}$. It outputs 1 if and only if $e=g^{\text {resp }} \cdot u^{\text {ch }}$ and $f=h^{\text {resp }} \cdot v^{\text {ch }}$.
Simulation. The simulation algorithm LID.Sim takes as input a public key $p k=$ (g, h, u, v), a challenge ch $\in \mathbb{Z}_{q}$, and a response resp $\in \mathbb{Z}_{q}$. It outputs a commitment cmt $=(e, f)=\left(g^{\text {resp }} \cdot u^{\text {ch }}, h^{\text {resp }} \cdot v^{\text {ch }}\right)$.

Remark 19. Note that an honest public key generated with LID.Gen is of the form $p k=(g, h, u, v)$ such that $(u, v) \in \operatorname{DDH}(\mathbb{G}, g, h)$, whereas a lossy public key generated with LID.LossyGen is of the form $p k=(g, h, u, v)$ such that $(u, v) \notin$ $\operatorname{DDH}(\mathbb{G}, g, h)$ with high probability.

Theorem 20. The scheme LID defined above is lossy with

$$
\rho=1, \quad \varepsilon_{s}=0, \quad \varepsilon_{\ell} \leq 1 / q
$$

and from any efficient adversary \mathcal{A} we can construct an efficient adversary \mathcal{B} such that

$$
\operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\operatorname{IND}-\operatorname{KEY}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathbb{G}, g}^{\mathrm{DDH}}(\mathcal{B})
$$

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., $\varepsilon_{u}=0$), LID has α-bit min-entropy with $\alpha=\log _{2}(q)$, LID is commitment-recoverable, and LID has an injective simulator.

The proof of this theorem is rather standard and implicitly contained in the aforementioned prior works. For completeness, we provide a sketch in Appendix A.

Concrete Instantiation. We can now use the DDH-based lossy identification scheme to describe an explicit instantiation of our signature scheme based on the DDH assumption, in order to assess its concrete performance. Let \mathbb{G} be a group of prime order p with generator g, let $h \stackrel{\leftrightarrow}{\leftarrow}$ be a random generator and let $\mathrm{H}:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$ be a hash function. We construct a digital signature scheme Sig $=($ Gen, Sign, Vrfy) as follows.

Key generation. The key generation Gen algorithm samples $x_{0}, x_{1} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$, $b \stackrel{\oplus}{\leftrightarrows}\{0,1\}$. Then it sets

$$
p k:=\left(u_{0}, v_{0}, u_{1}, v_{1}\right)=\left(g^{x_{0}}, h^{x_{0}}, g^{x_{1}}, h^{x_{1}}\right) \quad \text { and } \quad s k:=\left(b, x_{b}\right) .
$$

Signing. The signing algorithm Sign takes as input $s k=\left(b, x_{b}\right)$ and a message $m \in\{0,1\}^{*}$. Then it proceeds as follows.

1. It first chooses a random value $r \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{p}$, and sets $\left(e_{b}, f_{b}\right):=\left(g^{r}, h^{r}\right)$ and

$$
\mathrm{ch}_{1-b}:=\mathrm{H}\left(m, e_{b}, f_{b}\right)
$$

2. Then it samples a value $\operatorname{resp}_{1-b} \stackrel{₫}{\leftarrow} \mathbb{Z}_{p}$ and computes

$$
e_{1-b}=g^{\mathrm{resp}_{1-b}} u_{1-b}^{\mathrm{ch}_{1-b}} \quad \text { and } \quad f_{1-b}=h^{\mathrm{resp}_{1-b}} v_{1-b}^{\mathrm{ch}_{1-b}} .
$$

3. Finally, it computes

$$
\operatorname{ch}_{b}:=\mathrm{H}\left(m, e_{1-b}, f_{1-b}\right) \quad \text { and } \quad \operatorname{resp}_{b}:=r-\operatorname{ch}_{b} \cdot x_{b}
$$

and outputs the signature $\sigma:=\left(\mathrm{ch}_{0}\right.$, resp $_{0}$, resp $\left._{1}\right) \in \mathbb{Z}_{p}^{3}$.
Verification. The verification algorithm takes as input a public key $p k:=$ $\left(u_{0}, v_{0}, u_{1}, v_{1}\right)$, a message $m \in\{0,1\}^{*}$, and a signature $\sigma=\left(\operatorname{ch}_{0}, \operatorname{resp}_{0}, \operatorname{resp}_{1}\right)$. If first computes

$$
e_{0}=g^{\mathrm{resp}_{0}} u_{0}^{\mathrm{ch}_{0}} \quad \text { and } \quad f_{0}=h^{\mathrm{resp}_{0}} v_{0}^{\mathrm{ch}_{0}}
$$

From $\left(e_{0}, f_{0}\right)$ it is then able to compute

$$
\mathrm{ch}_{1}:=\mathrm{H}\left(m, e_{0}, f_{0}\right)
$$

and then

$$
e_{1}=g^{\text {resp }_{1}} \cdot u_{1}^{\mathrm{ch}_{1}} \quad \text { and } \quad f_{1}=h^{\text {resp }_{1}} \cdot v_{1}^{\mathrm{ch}_{1}} .
$$

Finally, the algorithm outputs 1 if and only if

$$
\mathrm{ch}_{0}=\mathrm{H}\left(m, e_{1}, f_{1}\right) .
$$

Note that public keys are $p k \in \mathbb{G}^{4}$, secret keys are $s k \in\{0,1\} \times \mathbb{Z}_{p}$, and signatures are $\sigma \in \mathbb{Z}_{p}^{3}$.

5.2 Instantiation from the ϕ-Hiding Assumption

Another possible instantiation is based on the Guillou-Quisquater (GQ) identification scheme [25], which proves that an element $U=S^{e} \bmod N$ is an e-th residue (cf. Fig. 2). Abdalla et al. [1] describe a lossy version of the GQ scheme, based on the ϕ-hiding assumption. We observe that we can build a lossy identification scheme on a weaker assumption, which is implied by ϕ-hiding.

In order to achieve tightness in a multi-user setting, we will need a common setup, which is shared across all users. This setup consists of a public tuple (N, e) where $N=p \cdot q$ is the product of two large random primes and e a uniformly random prime of length $\ell_{e} \leq \lambda / 4$ that divides $p-1$. The factors p and q need to remain secret, so we assume that (N, e) either was generated by a trusted party, or by running a secure multi-party computation protocol with multiple parties.

The Guillou-Quisquater LID Scheme. We define the lossy identification scheme LID $=$ (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the protocol presented above as follows:

Common setup. The common system parameters are a tuple (N, e) where $N=p \cdot q$ is the product of two distinct primes p, q of length $\lambda / 2$ and e is random prime of length $\ell_{e} \leq \lambda / 4$ such that e divides $p-1$.
Note that the parameters (N, e) are always in "lossy mode", and not switched from an "injective" pair (N, e) where e is coprime to $\phi(N)=(p-1)(q-1)$ to "lossy" in the security proof, as common in other works.
Key generation. The algorithm LID.Gen samples $S \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{N}^{*}$ and computes $U=$ S^{e}. It sets $p k=(N, e, U)$ and $s k=(N, e, S)$, where (N, e) are from the common parameters.
Lossy key generation. The lossy key generation algorithm LID.LossyGen samples U uniformly at random from the e-th non-residues modulo $N .^{3}$

[^3]Proving. The algorithm LID.Prove is split up into the following two algorithms:

1. The algorithm LID. Prove ${ }_{1}$ takes as input a secret key $s k=(N, e, S)$, chooses a random value $r \stackrel{\&}{\leftarrow} \mathbb{Z}_{N}^{*}$, and computes a commitment cmt := $r^{e} \bmod N$. It outputs $(\mathrm{cmt}, \mathrm{st})$ with $\mathrm{st}:=r$.
2. The algorithm LID.Prove ${ }_{2}$ takes as input a secret key $s k=(N, e, S)$, a commitment cmt, a challenge ch $\in\left\{0, \ldots, 2^{\ell_{e}}-1\right\}$, a state st $=r$, and outputs a response resp $:=r \cdot S^{\text {ch }} \bmod N$.
Verification. The verification algorithm LID.Vrfy takes as input a public key $p k=(N, e, U)$, a commitment cmt, a challenge ch, and a response resp. It outputs 1 if and only if resp $\neq 0 \bmod N$ and resp ${ }^{e}=\mathrm{cmt} \cdot U^{\mathrm{ch}}$.
Simulation. The simulation algorithm LID.Sim takes as input a public key $p k=$ (N, e, U), a challenge ch, and a response resp. It outputs a commitment $\mathrm{cmt}=$ resp ${ }^{e} / U^{\text {ch }}$.

$\begin{aligned} & \text { Prover: } s k=(N, e, S) \\ & r \leftarrow \mathbb{Z}_{N}^{*} \end{aligned}$		Verifier: $p k=(N, e, U)$
cmt $:=r^{e} \bmod N$	cmt	
	ch	ch $\uplus^{₫}\left\{0, \ldots, 2^{\ell_{e}}-1\right\}$
resp $:=r \cdot S^{\text {ch }}$	resp	accept if resp $\neq 0 \bmod N$
		and resp ${ }^{e}=\mathrm{cmt} \cdot U^{\text {ch }}$

Fig. 2. The Guillou-Quisquater identification scheme [25].

Theorem 21. The scheme LID defined above is lossy with

$$
\rho=1, \quad \varepsilon_{s}=0, \quad \varepsilon_{\ell} \leq 1 / 2^{\ell_{e}}
$$

and from any efficient adversary \mathcal{A} we can construct an efficient adversary \mathcal{B} such that

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., $\varepsilon_{u}=0$), LID has α-bit min-entropy with $\alpha \geq \lambda-2$, LID is commitment-recoverable, and LID has an injective simulator.

The above theorem has been proven in [1] for most of its statements. What is left is a proof for n-key-indistinguishability, which we provide in Appendix B.

5.3 On Instantiations of Lossy ID Schemes from Other Assumptions

There also exist lossy identification schemes based on the decisional short discrete logarithm problem, the ring LWE problem, and the subset sum problem (all due to Abdalla et al. $[2,3]$). However, they do not directly translate to a tight multiuser signature scheme that is existentially unforgeable with adaptive corruptions.

Our security proof requires tight multi-instance security of the underlying hardness assumption. While, for example, the DDH-based scheme satisfies this via its self-reducibility property, it is not obvious how schemes based on, for example, lattices or subset sum achieve this notion in a tight manner.

A Proof of Theorem 20

Random Self-reducibility of $D D H$. It is well-known that the DDH problem is random self-reducible, which we summarize in the following lemma. See [7, Lemma 5.2] for a proof.

Lemma 22. There exists an efficient algorithm ReRand that takes as input (g, h) and a DDH instance $(u, v) \in \mathbb{G}^{2}$ and an integer N, and outputs N new DDH instances $\left(u^{(i)}, v^{(i)}\right)$ such that

$$
(u, v) \in \operatorname{DDH}(\mathbb{G}, g, h) \Longleftrightarrow\left(u^{(i)}, v^{(i)}\right) \in \operatorname{DDH}(\mathbb{G}, g, h)
$$

for all $i \in[N]$. The running time of this algorithm mainly consists of $\mathcal{O}(N)$ exponentiations in \mathbb{G}.

Proof. To show that LID is lossy, we need to show that it satisfies all properties presented in Definition 4.

Completeness of normal keys. We claim that the above scheme is perfectlycomplete. To prove this, we show that for any honest transcript it holds that LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}, \mathrm{ch}$, resp $)=1$. Let $(p k, s k) \stackrel{\&}{\leftarrow}$ LID.Gen be an (honest) key pair and let (cmt, ch, resp) be an honest transcript, that is, ch $₫$ CSet,
 nition of the scheme, we have $p k=(g, h, u, v)$ with $(u, v) \in \operatorname{DDH}(\mathbb{G}, g, h)$ and $s k=x$ and $\mathrm{cmt}=(e, f)=\left(g^{r}, h^{r}\right)$ and resp $=r-\mathrm{ch} \cdot x$. Further, LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}, \mathrm{ch}$, resp $)=1$ if and only if $e=g^{\text {resp }} \cdot u^{\mathrm{ch}}$ and $f=h^{\text {resp }} \cdot v^{\mathrm{ch}}$. Observe that

$$
g^{\text {resp }} \cdot u^{\mathrm{ch}}=g^{r-\mathrm{ch} \cdot x} \cdot g^{\mathrm{ch} \cdot x}=g^{r}=e .
$$

An analogous equation holds for f if g is replaced by h. Hence, LID.Vrfy outputs 1 for every honest transcript.
Simulatability of transcripts. We claim that the above scheme is perfectly simulatable. To show this, we need to argue that the two distributions

$$
\left\{\begin{array}{ll}
(\mathrm{cmt}, \mathrm{st}) \stackrel{\&}{\leftarrow} \operatorname{LID.Prove}_{1}(s k) \\
(\mathrm{cmt}, \mathrm{ch}, \mathrm{resp}): & \mathrm{ch} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q} \\
& \text { resp }:=\operatorname{LID.Prove}_{2}(s k, \mathrm{ch}, \mathrm{cmt}, \mathrm{st})
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{ll}
& \mathrm{ch} \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{q} \\
(\mathrm{cmt}, \mathrm{ch}, \mathrm{resp}): & \text { resp } \stackrel{\leftrightarrow}{\leftrightarrows} \mathbb{Z}_{q} \\
& \mathrm{cmt}:=\operatorname{LID} \cdot \operatorname{Sim}(p k, \mathrm{ch}, \text { resp })
\end{array}\right\}
$$

are identical. Recall that we have $p k=(g, h, u, v)$ with $(u, v) \in \operatorname{DDH}(\mathbb{G}, g, h)$, $s k=x, \mathrm{cmt}=(e, f)=\left(g^{r}, h^{r}\right)$ with st $=r \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$, and resp $=r-\mathrm{ch} \cdot x$ for an honest transcript (i.e., in the former distribution). Thus, we have that $\mathrm{cmt}=(e, f)$ is uniformly distributed over \mathbb{G}^{2}. Consequently, since $r \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$ and ch $\leftarrow \mathbb{Z}_{q}$, we also have that the response resp is distributed uniformly and independently (of cmt and ch) over \mathbb{Z}_{q}.
We will now take a look at the later distribution. Note that ch and resp are both uniformly random elements over \mathbb{Z}_{p}. It remains to show that cmt in the simulated transcript is distributed uniformly over \mathbb{G}^{2}.
Recall that $\mathrm{cmt}:=\operatorname{LID} \cdot \operatorname{Sim}(p k, \mathrm{ch}$, resp $)$ is defined as $\mathrm{cmt}:=(e, f)=\left(g^{\text {resp }}\right.$. $\left.u^{\text {ch }}, h^{\text {resp }} \cdot v^{\text {ch }}\right)$. Observe that $\log _{g}(e)=$ resp + ch $\cdot x$ and $\log _{g}(f)=\log _{g}(h)$. (resp + ch $\cdot x$). Since ch $\stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$ and resp $\stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$, we have that both $\log _{g}(e)$ and $\log _{g}(f)$ are distributed uniformly and independently (of ch and resp) over \mathbb{Z}_{q} and thus (e, f) is distributed uniformly over \mathbb{G}^{2}. Note that e, f are not distributed independently of each other (as it is the case in the honest transcript).
Indistinguishability of keys. As already remarked above, honest keys contain a DDH tuple, whereas lossy keys contain a non-DDH tuple. Therefore, we claim that for every adversary \mathcal{A} trying to distinguish honest from lossy keys of LID, we can construct an adversary \mathcal{B} such that

$$
\operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}, \mathrm{IND-KEY}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathbb{G}, g}^{\mathrm{DDH}}(\mathcal{B})
$$

To prove this claim, we give a construction of \mathcal{B} running \mathcal{A} as a subroutine. The adversary \mathcal{B} receives a tuple (g, h, u, v) such that (u, v) either is a DDH tuple (i.e., $(u, v) \in \mathrm{DDH}(\mathbb{G}, g, h))$ or not. Then, it uses the algorithm of Lemma 22 to re-randomize (u, v) into N tuples $\left(u^{(i)}, v^{(i)}\right)_{i \in[N]} \stackrel{\oplus}{\leftarrow}$ $\operatorname{ReRand}(g, h, u, v, N)$ such that

$$
(u, v) \in \operatorname{DDH}(\mathbb{G}, g, h) \Longleftrightarrow \forall i \in[N]:\left(u^{(i)}, v^{(i)}\right) \in \operatorname{DDH}(\mathbb{G}, g, h)
$$

and hands $\left(p k_{i}=\left(g, h, u^{(i)}, v^{(i)}\right)\right)_{i \in[N]}$ to \mathcal{A} as input. When \mathcal{A} halts and outputs a bit b, \mathcal{B} halts and outputs b as well.
Observe that by Lemma 22, we have

$$
\operatorname{Pr}[\mathcal{B}(g, h, u, v)=1] \geq \operatorname{Pr}\left[\mathcal{A}\left(p k^{(1)}, \ldots, p k^{(N)}\right)\right]
$$

with $(u, v) \stackrel{\Phi}{\leftarrow} \operatorname{DDH}(\mathbb{G}, g, h),\left(u^{(i)}, v^{(i)}\right)_{i \in[N]} \stackrel{\&}{\leftarrow} \operatorname{ReRand}(g, h, u, v, N)$, and $p k^{(i)}:=\left(g, h, u^{(i)}, v^{(i)}\right)$. Further, we have

$$
\operatorname{Pr}[\mathcal{B}(g, h, \bar{u}, \bar{v})=1] \geq \operatorname{Pr}\left[\mathcal{A}\left(p k^{\prime(1)}, \ldots, p k^{\prime(N)}\right)\right]
$$

with $(\bar{u}, \bar{v}) \stackrel{\oiint}{\leftrightarrows} \overline{\operatorname{DDH}(\mathbb{G}, g, h)},\left(\bar{u}^{(i)}, \bar{v}^{(i)}\right) \stackrel{\oiint}{\leftrightarrows} \operatorname{ReRand}(g, h, \bar{u}, \bar{v})$ for every $i \in[N]$, and $p k^{\prime(i)}:=\left(g, h, \bar{u}^{(i)}, \bar{v}^{(i)}\right)$. In conclusion, we have

$$
\operatorname{Adv}_{\mathrm{LID}, N}^{\mathrm{MU}-\mathrm{IND}-\mathrm{KEY}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathbb{G}, g}^{\mathrm{DDH}}(\mathcal{B})
$$

Lossiness. We claim that the above scheme LID is $1 / q$-lossy. To show this, we first recall a classical result showing the soundness of the protocol to "prove DDH tuples" by Chaum et al. presented above. Namely, we claim that if $\log _{g}(u) \neq \log _{h}(v)$ holds for the public key $p k=(g, h, u, v)$ (i.e., $p k$ is a lossy key and $(u, v) \notin \operatorname{DDH}(\mathbb{G}, g, h))$, for any commitment cmt there can only be at most one challenge ch such that the transcript is valid. We prove this statement by contradiction.
Let \mathcal{A} be an unbounded adversary that on input of a lossy public key $p k \stackrel{\leftrightarrow}{\leftarrow}$ LID.LossyGen, outputs commitment $\mathrm{cmt}=(e, f)$. We now show that \mathcal{A} can only output a correct resp for one ch such that LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp})=1$. Suppose that \mathcal{A} was able to come up with two responses resp ${ }_{1}$ and resp ${ }_{2}$ for two different challenge $\mathrm{ch}_{1} \neq \mathrm{ch}_{2}$ such that $\operatorname{LID} . \operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}_{1}\right.$, resp $\left._{1}\right)=1$ and LID. $\operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}_{2}, \mathrm{resp}_{2}\right)=1$ holds. This implies by the definition of LID.Vrfy that

$$
e=g^{\mathrm{resp}_{1}} u^{\mathrm{ch}_{1}}=g^{\mathrm{resp}_{2}} u^{\mathrm{ch}_{2}} \quad \text { and } \quad f=h^{\mathrm{resp}_{1}} v^{\mathrm{ch}_{1}}=h^{\mathrm{resp}_{2}} v^{\mathrm{ch}_{2}} .
$$

Equivalently, we get by using the assumption that $\mathrm{ch}_{1} \neq \mathrm{ch}_{2}$:

$$
\log _{g}(u)=\frac{\left(\operatorname{resp}_{1}-\operatorname{resp}_{2}\right)}{\mathrm{ch}_{2}-\mathrm{ch}_{1}} \quad \text { and } \quad \log _{h}(v)=\frac{\left(\operatorname{resp}_{1}-\mathrm{resp}_{2}\right)}{\mathrm{ch}_{2}-\mathrm{ch}_{1}}
$$

However, this is a contraction to the assumption that $\log _{g}(u) \neq \log _{h}(v)$. Thus, $p k$ must be a lossy key.
Using this, we have that for every commitment \mathcal{A} outputs, there can only be at most one challenge ch such that the adversary generated a valid transcript. Note that we have an unbounded adversary and based on cmt and ch it can compute a response. As there is only one challenge for cmt output by \mathcal{A} and the challenge is chosen uniformly at random, the adversary can only win with a probability of at most $1 / q$.
Uniqueness with respect to lossy keys. Let $p k=(g, h, u, v)$ with $(u, v) \notin$ $\operatorname{DDH}(\mathbb{G}, g, h)$ and (cmt, ch, resp) with LID. $\operatorname{Vrfy}(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp})=1$. Suppose that there is a resp ${ }^{\prime} \neq$ resp such that $\operatorname{LID} . \operatorname{Vrfy}\left(p k, \mathrm{cmt}, \mathrm{ch}, \mathrm{resp}^{\prime}\right)=1$. In this case, we have for $\mathrm{cmt}=(e, f)$ that

$$
e=g^{\text {resp }} u^{\text {ch }}=g^{\text {resp }} u^{\text {ch }} \quad \text { and } \quad f=h^{\text {resp }} v^{\text {ch }}=h^{\text {resp }} v^{\text {ch }} .
$$

However, this implies that

$$
g^{\text {resp }}=g^{\text {resp }} \quad \quad \text { and } \quad h^{\text {resp }}=h^{\text {resp }},
$$

which implies that resp $=$ resp $^{\prime}$, contradicting the initial assumption.

Min-entropy. For any secret key $s k$, the commitment cmt $\stackrel{\&}{\leftarrow} \operatorname{LID.Prove}_{1}(s k)$ equals $\left(g^{r}, h^{r}\right)$ for $r \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{q}$, which is independent of $s k$. So the min-entropy of cmt is $\alpha=\log _{2}(q)$.
Commitment-recoverable. The verification algorithm of LID first recovers a commitment using the simulator and then compares the result with the commitment in the transcript. So LID is commitment-recoverable.
Injective simulator. For any normal public key $p k=(g, h, u, v)$, any response resp and any challenge $\mathrm{ch} \neq \mathrm{ch}^{\prime}$, we have that

$$
\begin{aligned}
\text { LID. } \operatorname{Sim}(p k, \mathrm{ch}, \text { resp }) & =\left(g^{\text {resp }} u^{\mathrm{ch}}, h^{\text {resp }} v^{\mathrm{ch}}\right) \\
\operatorname{LID} \cdot \operatorname{Sim}\left(p k, \mathrm{ch}^{\prime}, \text { resp }\right) & =\left(g^{\text {resp }} u^{\mathrm{ch}}, h^{\text {resp }} v^{\mathrm{ch}^{\prime}}\right)
\end{aligned}
$$

Thus, if the above two pairs are equal, we must have that $\left(u^{\mathrm{ch}}, v^{\mathrm{ch}}\right)=$ $\left(u^{\mathrm{ch}^{\prime}}, v^{\mathrm{ch}}\right)$. That implies $\mathrm{ch}=\mathrm{ch}^{\prime}$.

B Proof of Theorem 21

The following definition is from [1].
Definition 23 (RSA modulus generation algorithm). Let ℓ_{N} be a positive integer and let $\mathrm{RSA}_{\ell_{N}}$ be the set of all tuples $\left(N, p_{1}, p_{2}\right)$ such that $N=p_{1} p_{2}$ is a ℓ_{N}-bit number and p_{1}, p_{2} are two distinct primes in the set of $\ell_{N} / 2$-bit primes $\mathbb{P}_{\ell_{N} / 2}$. Let R be any relation on p_{1} and p_{2}, define $\operatorname{RSA}_{\ell_{N}}[R]:=\left\{\left(N, p_{1}, p_{2}\right) \in\right.$ $\left.\mathrm{RSA}_{\ell_{N}} \mid R\left(p_{1}, p_{2}\right)=1\right\}$.

We can use it to define the n-fold higher residuosity assumption as well as the ϕ-hiding assumption $[1,9,31]$.

Definition 24 (n-fold higher residuosity assumption). Let e be a random prime of length $\ell_{e} \leq \ell_{N} / 4$ and

$$
\left(N, p_{1}, p_{2}\right) \stackrel{\&}{\mathrm{RSA}_{\ell_{N}}\left[p_{1}=1 \bmod e\right]}
$$

and let $\operatorname{HR}_{N}[e]:=\left\{g^{e} \bmod N \mid g \in \mathbb{Z}_{N}^{*}\right\}$ be the set of e-th residues modulo N. We define the advantage of any \mathcal{A} in solving the higher residuosity problem as

$$
\operatorname{Adv}^{n-\operatorname{HR}}(\mathcal{A}):=\left|\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}, \ldots, y_{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right|
$$

where $y_{1}, \ldots, y_{n} \leftarrow \mathrm{HR}_{N}[e]$ and $y_{1}^{\prime}, \ldots, y_{n}^{\prime} \leftarrow \mathbb{Z}_{N}^{*} \backslash \mathrm{HR}_{N}[e]$. The e-residuosity problem is (t, ε)-hard if for any \mathcal{A} with running time at most $t, \operatorname{Adv}^{n-\operatorname{HR}}(\mathcal{A})$ is at most ε.

We prove the following lemma.
Lemma 25. For any adversary \mathcal{A} with running time $t_{\mathcal{A}}$ against the n-keyindistinguishability of LID in Fig. 2, we can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\operatorname{Adv}_{\mathrm{LID}, n}^{\mathrm{MU}-\mathrm{IND}-\mathrm{KEY}}(\mathcal{A}) \leq \operatorname{Adv}^{n-\mathrm{HR}}(\mathcal{B})
$$

Proof. The proof is a straightforward reduction. \mathcal{B} receives $\left(N, e, y_{1}, \ldots, y_{n}\right)$ as input and defines the common parameters as (N, e) and

$$
\left(p k^{(1)}, \cdots, p k^{(n)}\right)=\left(y_{1}, \ldots, y_{n}\right) .
$$

Note that this defines real keys if the y_{i} are e-th residues, and lossy keys if the y_{i} are e-th non-residues.

Finally, we can show that the n-fold higher residuosity assumption is tightly implied by the ϕ-hiding assumption, for any polynomially-bounded n.

Definition 26 (ϕ-hiding assumption [1,9,31]). Let $c \leq 1 / 4$ be a constant. For any adversary \mathcal{A}, define the advantage of \mathcal{A} in solving the ϕ-hiding problem to be

$$
\operatorname{Adv}^{\phi H}(\mathcal{A}):=\left|\operatorname{Pr}[\mathcal{A}(N, e)=1]-\operatorname{Pr}\left[\mathcal{A}\left(N^{\prime}, e\right)=1\right]\right|
$$

 $\mathrm{RSA}_{\ell_{N}}\left[p_{1}^{\prime}=1 \bmod e\right]$. The ϕ-hiding problem is (t, ε)-hard if for any \mathcal{A} with running time at most $t, \operatorname{Adv}^{\phi H}(\mathcal{A})$ is at most ε.

Lemma 27. For any adversary \mathcal{A} with running time $t_{\mathcal{A}}$ we can construct an adversary \mathcal{B} with running time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ such that

$$
\operatorname{Adv}^{n-\operatorname{HR}}(\mathcal{A}) \leq 2 \cdot \operatorname{Adv}^{\phi H}(\mathcal{B})
$$

Proof. First, we have that

$$
\begin{aligned}
\operatorname{Adv}^{n-\mathrm{HR}}(\mathcal{A})= & \left|\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}, \ldots, y_{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right| \\
\leq & \left|\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}, \ldots, y_{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N^{\prime}, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right| \\
& +\left|\operatorname{Pr}\left[\mathcal{A}\left(N^{\prime}, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right|,
\end{aligned}
$$

where $\left(N, p_{1}, p_{2}\right) \stackrel{\oplus}{\leftarrow} \mathrm{RSA}_{\ell_{N}}[\operatorname{gcd}(e, \phi(N))=1]$ and $\left(N^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}\right) \stackrel{\oplus}{\leftarrow} \mathrm{RSA}_{\ell_{N}}\left[p_{1}^{\prime}=\right.$ $1 \bmod e]$. We can prove the following claim.

Claim. $\left|\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}, \ldots, y_{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N^{\prime}, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right| \leq \operatorname{Adv}^{\phi \mathrm{H}}(\mathcal{B})$.
The proof is again a very straightforward reduction. \mathcal{B} receives as input (N, e). It samples $x_{1}, \ldots, x_{n} \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{N}$ uniformly random and then defines $y_{i}:=$ $x_{i}^{e} \bmod N$ for $i \in\{1, \ldots, n\}$. Then it runs \mathcal{A} on input $\left(N, e, y_{1}, \ldots, y_{n}\right)$ and returns whatever \mathcal{A} returns.

Note that if (N, e) is a "lossy" key, so that $e \mid \phi(N)$, then the y_{i} are random e-th residues. However, if $\operatorname{gcd}(e, \phi(N))=1$, then all y_{i} are random e-th nonresidues, since the map $x \mapsto x^{e} \bmod N$ is a permutation.

Using a similar idea, we can prove that
Claim. $\left|\operatorname{Pr}\left[\mathcal{A}\left(N^{\prime}, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(N, e, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=1\right]\right| \leq \operatorname{Adv}^{\phi \mathrm{H}}(\mathcal{B})$.
Putting the two claims together, we have that $\operatorname{Adv}^{n-\operatorname{HR}}(\mathcal{A}) \leq 2 \operatorname{Adv}^{\phi \mathrm{H}}(\mathcal{B})$ and Lemma 27 follows.

References

1. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forwardsecure signature schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 292-311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_19
2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572-590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34
3. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signatures from lossy identification schemes. J. Cryptol. 29(3), 597-631 (2016)
4. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415-432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26
5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629-658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26
6. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 273-304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_10
7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259-274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18
8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21
9. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402-414. Springer, Heidelberg (1999). https://doi.org/10. 1007/3-540-48910-X_28
10. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453-474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28
11. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127-141. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_13
12. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11694, pp. 767-797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_25
13. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174-187. Springer, Heidelberg (1994). https://doi.org/10.1007/ 3-540-48658-5_19
14. Davis, H., Günther, F.: Tighter proofs for the sigma and TLS 1.3 key exchange protocols. Cryptology ePrint Archive, Report 2020/1029 (2020). https://eprint. iacr.org/2020/1029
15. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound cryptographic parameters for real-world deployments. Cryptology ePrint Archive, Report 2020/726; to appear in the Journal of Cryptology (2020). https://eprint.iacr.org/ 2020/726
16. Digital Signature Standard (DSS). National Institute of Standards and Technology (NIST), FIPS PUB 186-3, U.S. Department of Commerce (2009). http://csrc.nist. gov/publications/fips/fips186-3/fips_186-3.pdf
17. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signatures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S (eds.) ACM CCS 2016, pp. 1651-1662. ACM Press, October 2016
18. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 212-244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_8
19. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303-320. Springer, Heidelberg (2010). https://doi.org/10. 1007/978-3-642-17373-8_18
20. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 512-531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_27
21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signatures. J. Cryptol. 32(2), 566-599 (2019)
22. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93-107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_6
23. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95-125. Springer, Cham (2018). https://doi.org/10.1007/ 978-3-319-96881-0_4
24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281-308 (1988)
25. Guillou, L.C., Quisquater, J.-J.: A "paradoxical" indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216-231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16
26. Hasegawa, S., Isobe, S.: Lossy identification schemes from decisional RSA. In: International Symposium on Information Theory and its Applications, ISITA 2014, Melbourne, Australia, 26-29 October 2014, pp. 143-147. IEEE (2014)
27. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590-607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
28. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. Cryptology ePrint Archive, Report 2020/1279 (2020). https:// eprint.iacr.org/2020/1279
29. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp. 155-164. ACM Press, October 2003
30. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 33-61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2
31. Kiltz, E., O'Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosenplaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295-313. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_16
32. Krawczyk, H.: SIGMA: the "SIGn-and-MAc" approach to authenticated DiffieHellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400-425. Springer, Heidelberg (2003). https://doi.org/10. 1007/978-3-540-45146-4_24
33. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343-1360. ACM Press, October/November 2017
34. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785-814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_27
35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1-20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_1
36. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239-252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
37. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554-571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_33

[^0]: Supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement 802823.

[^1]: ${ }^{1}$ One can always prove tight MU-EUF-CMA ${ }^{\text {corr }}$ security under the interactive assumption that the scheme is MU-EUF-CMA ${ }^{\text {corr }}$ secure.

[^2]: ${ }^{2}$ All known instantiations of lossy identification schemes have a deterministic LID.Prove ${ }_{2}$ algorithm. However, if a new instantiation requires randomness, then it can be "forwarded" from LID.Prove ${ }_{1}$ in the state variable st. Therefore the requirement that LID. Prove $_{2}$ is deterministic is without loss of generality, and only made to simplify our security analysis.

[^3]: ${ }^{3}$ This is indeed efficiently possible as $U \leftrightarrow \mathbb{Z}_{N}^{*}$ is a not an e-th residue with probability $1-1 / e$ and we can efficiently check whether a given U is an e-th residue when the factorization of N is known [1].

