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Abstract. One can bootstrap LWE-based fully homomorphic encryp-
tion (FHE) schemes in less than one second, but bootstrapping AGCD-
based FHE schemes, also known as FHE over the integers, is still very
slow. In this work we propose a fast bootstrapping method for FHE over
the integers, closing thus this gap between these two types of schemes.
We use a variant of the AGCD problem to construct a new GSW-like
scheme that can natively encrypt polynomials, then, we show how the
single-gate bootstrapping method proposed by Ducas and Micciancio
(EUROCRYPT 2015) can be adapted to FHE over the integers using our
scheme, and we implement a bootstrapping that, using around 400 MB
of key material, runs in less than one second in a common personal
computer.
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1 Introduction

The two main families of fully homomorphic encryption (FHE) schemes are the
ones based on lattices, mainly on the Learning with Errors (LWE) problem,
and the schemes over the integers, based on the Approximate Greatest Common
Divisor (AGCD) problem. Immediately after the first FHE scheme was proposed
by Gentry [Gen09], a scheme over the integers was put forth as a simpler alter-
native [DGHV10]. Thereafter, several techniques were proposed to improve the
efficiency of FHE, and one always found ways to apply those techniques to both
families of homomorphic schemes. For example, a method to reduce the noise by
scaling a ciphertext and switching the modulus of the ciphertext space, known as
modulus switching, was proposed in [BV11] and was soon adapted for schemes
over the integers [CNT12]. A technique known as batching, which consists in
encrypting several messages into a single ciphertext so that each homomorphic
operation acts in parallel on all the encrypted messages, has also been applied
to RLWE schemes [BGV12,GHS12] and to schemes over the integers [CCK+13].
Finally, in 2013, Gentry, Sahai, and Waters introduced a FHE scheme that uses
a decomposition technique to turn the noise growth of homomorphic products
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roughly additive [GSW13], i.e., the homomorphic product of two ciphertexts c
and c′ yields a ciphertext cmult whose noise is approximately the noise of c plus
the noise of c′. Even this technique was adapted to the schemes over the integers
[BBL17].

However, new fast bootstrapping techniques, one of the last great achieve-
ments of FHE, has only been availed for (R)LWE schemes: In [ASP14], it was
proposed to bootstrap a base scheme whose ciphertext space is Zq by using a
GSW-like scheme whose plaintext space contains Zq. Because of the slow noise
growth of GSW-like schemes, the final noise accumulated in the refreshed cipher-
text is only polynomial in the security parameter λ, therefore, it is not necessary
to set large parameters for the base scheme as it was done in previous boot-
strapping methods, where the parameters have to allow a scheme to evaluate its
own decryption function. Then, in [DM15], the authors found an efficient way
to represent Zq, removed the expensive final step of the method proposed in
[ASP14], and implemented a boostrapping that runs in less than one second in
a common laptop using a GSW-like scheme based on the RLWE problem. The
running times of [DM15] were further improved in [CGGI16] and a base scheme
based on LWE was bootstrapped in less than 0.1 s also using a RLWE-based
GSW-like scheme. Nevertheless, none of those techniques has been adapted to
FHE over the integers.

The main difficulties one has to deal with when trying to create similar
bootstrapping methods for FHE over the integers are:

1. One needs an efficient GSW-like scheme based on the AGCD problem. For
instance, the GSW-like scheme proposed in [BBL17] is far from practical. The
scheme of [Per20] has better running times and, at first glance, seems to be a
good choice, however, the size of the bootstrapping keys that it produces is
huge.

2. The modulus p is secret: the decryption function of (R)LWE-based schemes
is defined modulo a public integer q, thus, all the homomorphic operations
performed during the bootstrapping can safely disclose q, but for AGCD-
based schemes, we have an integer p which is at the same time the modulus
and the secret key, hence, the bootstrapping must hide p.

3. The modulus p is exponentially large in λ: in (R)LWE-based schemes, one
can set the modulus q to be just polynomially large in the security parameter,
while in FHE over the integers we have p ∈ Ω(2λ), and the fast bootstrap-
ping of [DM15] would require the message space of the GSW-like scheme to
contain polynomials of degree bigger than p. But then, all the homomorphic
operations would take exponential time, since they would be performed by
adding and multiplying polynomials of degree Ω(2λ).

Thus, in this work we address these three issues and propose fast bootstrap-
ping methods for FHE over the integers, aiming then to close the gap between
LWE- and AGCD-based schemes. Namely, we introduce a new hardness problem
that cannot be easier than the AGCD problem, then we use it to construct an
efficient GSW-like scheme that works homomorphically on polynomial rings of
the form Zt[x]/〈f〉. Therewith we show how to perform gate bootstrapping, as
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in [DM15,CGGI16]. We implemented a proof-of-concept in C++ and refreshed
ciphertexts of FHE schemes over the integers in less than one second.

1.1 Overview of Our Techniques and Results

New Underlying Problem and GSW-like Scheme: Our first contribution is to use
the AGCD problem to construct a GSW-like homomorphic encryption scheme
that operates efficiently and natively on polynomial rings. We remark that given
N AGCD instances ci := pqi + ri, one can represent them as a polynomial
c(x) :=

∑N−1
i=0 cix

i, which can then be written as c(x) = pq(x) + r(x). Thus, if
we extend the AGCD problem to sample polynomials q(x) and r(x) and return
pq(x) + r(x), we obtain an equivalent problem. But now, by fixing a polynomial
ring R, for example, R = Z[x]/〈xN + 1〉, and a secret polynomial k(x) ∈ R, we
can obtain randomized samples of the form (pq(x) + r(x))k(x). Because we are
randomizing a problem that is equivalent to the AGCD, we obtain a problem
that cannot be easier than the AGCD problem. We call it Randomized (Polyno-
mial) AGCD (RAGCD) problem. Moreover, as it was noticed in [CP19], solving
randomized versions of the AGCD problem seems to be harder than solving the
original AGCD problem, therefore, we can select smaller parameters. In partic-
ular, each AGCD sample is a γ-bit integer, but in our case each coefficient of
the polynomials will be an integer with bit length around γ/N , where N is the
degree of k(x). Hence, we can use the RAGCD problem to encrypt a degree-
N polynomial m into a degree-N polynomial c whose total bit-length is then
N ·γ/N = γ, while using the AGCD problem would require one γ-bit ciphertext
for each coefficient, resulting in a total of Nγ bits.

Thus, using the RAGCD problem, we propose a GSW-like scheme that can
encrypt a polynomial m ∈ R in two formats:

– Scalar format: (pq + r + αm) · k ∈ R, for some integer α.
– Vector format: (pq+r) ·k +gm ∈ R�, where g = (b0, ..., b�−1) for some b ∈ Z.

Therewith we can define an efficient mixed homomorphic multiplication from
R × R� to R that is akin to the external product used in [CGGI16]. We notice
that the main source of efficiency of the bootstrapping method proposed in
[CGGI16] is the use of this external product, hence, we have the first piece of a
fast bootstrapping for FHE over the integers.

Fast Bootstrapping for FHE over the Integers: Firstly, notice that simply trying
to implement the bootstrapping procedures of [DM15] or [CGGI16] with our
scheme would not work, since it would require us to use N > p ∈ Ω(2λ), which
is not efficient, and it would also leak p. Therefore, to solve these issues related to
the size and the privacy of the modulus used in the decryption of AGCD-based
schemes, we propose to perform a “hidden approximate modulus switching”.
Namely, consider a message m ∈ Zt and a ciphertext c = pq + r + mp/t to
be bootstrapped. Multiplying c by N/p would switch the modulus, resulting
in c′ = Nq + r′ + mN/t, for a potentially small N that could be managed by
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our scheme. Of course, we cannot do it before refreshing because having access
to N/p would leak p. Even if we could perform the modulus switching in a
secure way, without revealing p, as in [CNT12], the resulting ciphertext c′ would
leak the message m, because N is known. Thus, we propose that the product
c · N/p be performed as part of the refreshing procedure, so that the secret key
p is encrypted in the bootstrapping keys and the resulting ciphertext c′ is only
produced in an encrypted form.

Essentially, since y := x2 has order N in R := Z[x]/〈xN + 1〉, we have
ya · yb = ya+b mod N , so we can use our GSW-like scheme, which we name
GAHE, to work homomorphically over ZN . Thus, we would like to define the
bootstrapping keys as encryptions of y2iN/p for 0 ≤ i < γ, and then, to refresh
a γ-bit ciphertext c = pq + r + mp/t of the base scheme, we would decompose
c in base two obtaining the bits (c0, ..., cγ−1) and use the homomorphic mixed
product to multiply the bootstrapping keys and obtain a GAHE ciphertext c̃
encrypting

γ−1∏

i=0

yci2
iN/p mod N = y

∑γ−1
i=0 ci2

iN/p mod N = ycN/p mod N = yr′+mN/t.

After this, we could apply techniques similar to those of [DM15] to transform
c̃ into a base scheme ciphertext encrypting m. The problem now is that 2iN/p

is not integer. Hence, we encrypt y�2iN/p� instead of y2iN/p. By noticing that⌊
2iN/p

⌉
= 2iN/p+εi for some εi ∈ [−1/2, 1/2], we see that computing the same

sequence of homomorphic products yields a GAHE encryption of yr′+mN/t+ε for
some term ε that is not too big. Finally, we propose a functional key-switching to
transform this GAHE ciphertext into a base scheme (AGCD-based) encryption
of m. By choosing the parameters carefully, the noise term of the final ciphertext
is smaller than the initial noise.

Functional Key Switching: We propose a procedure to transform ciphertexts by
switching the secret key under which they are encrypted and also applying some
function to the message that is encrypted. Namely, given a ciphertext c encrypt-
ing a message m under key sk, our functional key-switching procedure produces
a new ciphertext c̄ that encrypts φ(m)·u, where φ(m) is the vector of coefficients
of m and u is an arbitrary vector. Depending on how the parameters are chosen,
this procedure can be used to switch the underlying problem from the RAGCD
to the original AGCD problem and vice versa; or to reduce the noise of a cipher-
text; or to change the message that is encrypted. In our bootstrapping method,
the functional key switching is used as follows: for a value e ∈ Z depending on
the message m, we transform a GAHE encryption of ye into a ciphertext of the
base scheme (the scheme that is being bootstrapped) encrypting m. An overview
of our bootstrapping procedure is illustrated in Fig. 1. Furthermore, when com-
pared to other key- or modulus-switching procedures for AGCD-based schemes,
as the one proposed in [CNT12], our procedure is more general and seems more
straightforward.
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AGCD encryption
of m

Main loop using mixed
homomorphic products

Evaluated with
GAHE

RAGCD encryption
of ye

Functional key switching

Fig. 1. Two steps of our single-bit bootstrapping. Its input is an encryption of m
under the AGCD problem with large noise and the output is an encryption of the same
message with less noise.

Implementation and Practical Results: We implemented our bootstrapping pro-
cedures in C++ and executed experiments similar to [DM15] and [CGGI16].
Although our implementation is not optimized, we obtained running times and
memory consumption similar to [DM15], i.e., we could bootstrap the base scheme
in less than one second. For the best of our knowledge, all the previous bootstrap-
ping methods for FHE over the integers took several seconds (or even minutes).
Our implementation is publicly available. All the details are shown in Sect. 6.

2 Theoretical Background and Related Works

2.1 Notation and Basic Facts

We use R to denote the cyclotomic ring Z[x]/〈xN +1〉, where N is a power of two.
When we refer to an element f of R, we always mean the unique representative
of degree smaller than N , thus, writing f =

∑N−1
i=0 fix

i is unambiguous and
we can define the coefficient vector of f as φ(f) := (f0, ..., fN−1). The anti-
circulant matrix of f is the matrix Φ(f) ∈ Z

N×N such that the i-th row is equal
to φ(xi−1 · f) for 1 ≤ i ≤ N . It is worth noticing that for a, b ∈ Z and f, g ∈ R,
we have φ(af + bg) = aφ(f) + bφ(g) and φ(f)Φ(g) = φ(f · g).

We denote vectors by bold lowercase letters and use the infinity-norm
‖v‖ := ‖v‖∞. For any f ∈ R, we define ‖f‖ = ‖φ(f)‖. Notice that ‖fg‖ ≤
N ‖f‖ ‖g‖. We denote matrices by bold capital letters and use the max-norm
‖A‖ := ‖A‖max = max{|ai,j | : ai,j is an entry of A}. If the entries of both A
and B belong to R, then, ‖A · B‖ ≤ mN ‖A‖ · ‖B‖, where m is the number of
rows of B. If at least one of the matrices is integral, then ‖A · B‖ ≤ m ‖A‖·‖B‖.

Integer intervals are denoted with double brackets, e.g., an integer interval
open on a and closed on b is �a, b� = Z∩ ]a, b]. The notation [x]m means the
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only integer y in [−m/2,m/2[ such that x = y mod m. When applied to vectors
or matrices, [·]m is applied entry-wise, when applied to polynomials, it is applied
to each coefficient. We define the column vector g := (1, b, b2, ..., b�−1)T . For
any a ∈ � − b�, b��, let g−1(a) be the signed base-b decomposition of a such that
the inner product g−1(a)g is equal to a. For a polynomial f with coefficients in
� − b�, b��, we define g−1(f) :=

∑deg(f)
i=0 g−1(fi)xi. Thus, g−1(f)g = f . At some

points, instead of writing r + �p/t� m with r ∈ Z, we can simply write r′ +mp/t.
In such cases, we are supposing that r′ = r − εm ∈ Q, where �p/t� = p/t − ε.

2.2 Approximate-GCD Problem

The Approximate Greatest Common Divisor problem (also known as Approx-
imate Common Divisor problem, ACD) was introduced in [HG01] and since
then it has been used to construct several homomorphic encryption schemes
[DGHV10,CCK+13,CS15]. The best known attacks against it run in exponen-
tial time [GGM16] and it is believed to be quantumly hard [BBL17]. Moreover, a
variant of the problem in which the noise is sampled from a different distribution
is equivalent to the LWE problem [CS15]. Now, we define this problem formally:

Definition 1. Let ρ, η, γ, and p be integers such that γ > η > ρ > 0 and
2η−1 ≤ p ≤ 2η. The distribution Dγ,ρ(p), whose support is �0, 2γ� is defined as

Dγ,ρ(p) := {Sample q ← �0, 2γ/p � and r ← � − 2ρ, 2ρ� : Output x := pq + r}.

Definition 2 (AGCD problem). The (ρ, η, γ)-approximate-GCD problem is
the problem of finding p, given arbitrarily many samples from Dγ,ρ(p).

The (ρ, η, γ)-decisional-approximate-GCD problem is the problem of distin-
guishing between Dγ,ρ(p) and U(�0, 2γ�).

2.3 Related Work

Fast Bootstrapping Using Polynomial Rings. In [DM15], the authors
observed that in the polynomial ring Z[x]/〈xN + 1〉, the element y := x2N/q

has order q. Thus, the multiplicative group G := 〈y〉 is isomorphic to Zq, in
other words, we can map ai ∈ Zq to yai ∈ G and ai + aj mod q corresponds to
yai ·yaj mod xN +1 = yai+aj mod q. Additionally, representing Zq with G is more
efficient than using symmetric groups, as it was proposed in [ASP14], since it
allows us to instantiate a GSW-like scheme with the RLWE instead of the LWE
problem and to evaluate the decryption function of the base scheme by multi-
plying low-dimensional polynomial matrices instead of high-dimensional integral
matrices.

Then, [DM15] proposes a gate bootstrapping, i.e., they propose a simple base
scheme that encrypts one bit and can evaluate one binary gate homomorphically,
then it has to be bootstrapped. Thus, evaluating a binary circuit with this scheme
requires that we perform the refreshing function after each gate. The binary gates
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are very efficient as they require only Θ(n) simple additions modulo q, hence,
refreshing the resulting ciphertext is the expensive part. The base scheme uses
the LWE problem to encrypt a message m as c := (a, b := as+e+mq/t mod q) ∈
Z

n+1
q . The bootstrapping keys are GSW encryptions of the secret key s essentially

as follows: Ki,j = GSW.Enc(y−2i·sj ) for 0 ≤ i ≤ � := �log(q)� and 1 ≤ j ≤ n.
Then, given a ciphertext c = (a, b) to be refreshed, we write a = (a1, ..., an),
decompose each aj in base 2, obtaining (a0,j , ..., a�−1,j), and the first step consists
in using GSW’s homomorphic product to compute b−as = e+mq/t mod q, i.e.:

GSW.Enc(yb)
n∏

j=1

∏

0≤i<�

Ki,j = GSW.Enc(yb−∑n
j=1 ajsj mod q).

The second step consists in transforming a GSW encryption of ye+mq/t in a
base scheme ciphertext encrypting m. Roughly speaking, this is done by taking
the coefficient vector of one specific row of the GSW ciphertext and multiplying
it by a fixed vector, then, applying a modulus- and a key-switching.

In [CGGI16], the authors noticed that instead of simply using the GSW
homomorphic product, which consists in multiplying matrices of polynomials,
we can perform the bootstrapping using a mixed product in which one operand
is an RLWE ciphertext (thus, a vector) and the other one is a GSW ciphertext
(thus, a matrix), resulting then in an RLWE ciphertext (again a vector). The
authors called it an external product. This speeds up the bootstrapping since it
replaces matrix-matrix products by vector-matrix multiplications.

Notice that in the context of AGCD-based schemes, q would be replaced by a
secret p ∈ Ω(2λ) and we would need N ≈ p, thus, the degree of the polynomials
encrypted by the GSW-like scheme would be exponentially large. Moreover, since
N would be public and 2N ∈ pZ, it would be possible to recover p.

GSW-Like Schemes over the Integers. In [BBL17], the authors use the
AGCD problem to construct a GSW-like leveled homomorphic encryption
scheme that encrypts a single bit m into a vector c := pq + r + mg ∈ Z

γ

where pq+r ← (Dγ,ρ(p))γ and g = (20, 21, . . . , 2γ−1). To perform homomorphic
products, they define the operator G−1(c) ∈ {0, 1}γ×γ as a matrix such that
each column j is g−1(cj), that is, the binary decomposition of the j-th entry
of c. Notice that gG−1(c) = c, thus, two ciphertexts ci := pqi + ri + mig (for
i = 1, 2) are multiplied homomorphically as

cmult := c1G−1(c2)

= pq1G−1(c2) + r1G−1(c2) + m1gG−1(c2)

= p (q1G−1(c2) + m1q2)
︸ ︷︷ ︸

qmult

+ (r1G−1(c2) + m1r2)
︸ ︷︷ ︸

rmult

+m1m2g.

We see that the noise growth due to the homomorphic product is approxi-
mately additive, i.e., ‖rmult‖ ≤ ∥

∥r1G−1(c2)
∥
∥ + m1 ‖r2‖ ≤ γ ‖r1‖ + ‖r2‖. How-

ever, this scheme is not practical. Their authors report that performing one single
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multiplication takes several seconds in a modern CPU. The main reason for this
inefficiency is the huge ciphertext expansion, as it encrypts one bit into γ2 bits
and, typically, γ is much bigger than λ.

Trying to amend this issue, in [Per20] it is proposed to expand the message
space of [BBL17] so that instead of encrypting only bits, it is possible to encrypt
vectors and matrices with non-binary entries. Furthermore, the ciphertexts are
randomized with a hidden matrix K, since, as it was observed in [CP19], all
the attacks against the AGCD problem become much more expensive when the
AGCD samples are multiplied by a random matrix and, thus, one can choose
smaller parameters, in particular, one can decrease the size of γ and have better
ciphertext expansion. The resulting scheme is a GSW-like leveled homomorphic
scheme that can perform operations with matrices and vectors, in particular,
it is possible to do homomorphic vector-matrix products. Notice that by using
coefficient vectors and circulant matrices to represent elements of R, we can
use this scheme to operate homomorphically over R. In particular, we could, in
principle, use it in a bootstrapping procedure à la [DM15]. However, by doing so,
we would encrypt a degree-N polynomial into a matrix ciphertext of dimension
N� × N , with � = Θ(γ), which would yield very large bootstrapping keys.

Hence, we go one step further and propose to randomize the AGCD problem
with a random polynomial k(x) instead of a random matrix. Thereby we can
encrypt a polynomial of degree N into an �-dimensional vector whose each entry
is a degree-N polynomial, gaining thus a factor N . We also define two types
of ciphertexts and we provide an efficient homomorphic product between them.
This corresponds to the vector-matrix product of [Per20] and to the external
product of [CGGI16].

3 Randomized (Polynomial) AGCD Problem

We start by extending the AGCD problem to a problem that is strictly equiva-
lent, but that works on polynomials. Then, we propose to randomize this problem
with a hidden polynomial k(x), obtaining thus the underlying problem that will
be used in our scheme.

Definition 3 (Underlying distribution of PAGCD). Let N, ρ, η, γ, and p
be integers such that γ > η > ρ > 0 and p is an η-bit integer. The distribution
PN,γ,ρ(p), whose support is �0, 2γ − 1�N , is defined as

PN,γ,ρ(p) :=

{

Sample c0, ..., cN−1 ← Dγ,ρ(p) : Output c :=
N−1∑

i=0

cix
i

}

.

Definition 4 (PAGCD). The (N, ρ, η, γ)-polynomial-approximate-GCD prob-
lem is the problem of finding p, given many samples from PN,γ,ρ(p).

The (N, ρ, η, γ)-decisional-PAGCD problem is the problem of distinguishing
between PN,γ,ρ(p) and U(�0, 2γ�N ).
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Because each coefficient of each polynomial output by PN,γ,ρ(p) is an inde-
pendent sample of Dγ,ρ(p), having N samples of the AGCD problem is the same
as having one sample of the PAGCD problem, hence, it is clear that the PAGCD
and the original AGCD problem are equivalent.

Now, aiming to choose smaller parameters and following the ideas of [CP19]
and [Per20], we propose a randomized version of this problem, but instead of
randomizing a vector of AGCD samples with a hidden matrix K, we randomize
a sample of PN,γ,ρ(p) with a hidden polynomial k, performing the operations in
the ring R := Z[x]/〈f〉, for some f of degree N .

Definition 5 (Underlying distribution of RAGCD). Let N, ρ, η, γ, and
p be integers such that γ > η > ρ > 0 and p has η bits. Let f be a degree-N
integral polynomial, R := Z[x]/〈f〉, x0 be a sample from Dγ,ρ(p), and k be an
random invertible polynomial of R/x0R. The distribution RN,γ,ρ,x0(p, k), whose
support is R/x0R is defined as

RN,γ,ρ,x0(p, k) := {Sample c ← PN,γ,ρ(p) : Output c̃ := c · k ∈ R/x0R} .

Definition 6 (RAGCD). The (x0, N, ρ, η, γ)-RAGCD problem is the problem
of finding p and k, given arbitrarily many samples from RN,γ,ρ,x0(p, k).

The (x0, N, ρ, η, γ)-decisional-RAGCD problem is the problem of distinguish-
ing between RN,γ,ρ,x0(p, k) and U(R/x0R).

We can instantiate this problem using any polynomial ring Z[x]/〈f〉, however,
one has to carefully choose the polynomial used as the modulus, in particular, if
f is not irreducible in Z[x], then its factors can lead to attacks on easier instances
of the RAGCD problem. In Sect. 6.1, a detailed discussion about the choice of f
is presented. For our bootstrapping procedure, we use f = xN + 1 with N being
a power of two.

Notice that given many instances of PAGCD problem, we can select one
coefficient of any polynomial to be the scalar x0, then sample a random invertible
k, and multiply each PAGCD instance by k in R/x0R, obtaining thus valid
instances of the RAGCD problem. Thus, this problem cannot be easier than
the PAGCD problem. Therefore, because the PAGCD and the original AGCD
problem are equivalent, the RAGCD problem is not easier than the AGCD
problem.

However, for the decisional version of the problems, this argument is not
valid, since we would still have to prove that the distribution U(�0, 2γ�N ) from
the decisional-PAGCD problem is mapped to the corresponding distribution
U(R/x0R) of the decisional-RAGCD. So, in the next lemma, we prove that if we
fix x0 ≥ 2γ−1 and restrict the distribution RN,γ,ρ,x0(p, k) so that it only random-
izes polynomials with coefficients smaller than x0, then we obtain a distribution
that is indistinguishable from U(R/x0R) under the hardness of the decisional
AGCD problem. In other words, under the decisional-AGCD assumption, this
“restricted version” of the decisional-RAGCD assumption holds.

Lemma 1. Let x0 be a sample of Dγ,ρ(p) such that x0 ≥ 2γ−1. Let D<x0 be
the distribution obtained by rejecting samples of Dγ,ρ(p) that are bigger than or
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equal to x0. Let R<x0 be defined as RN,γ,ρ,x0(p, k), but randomizing polynomials
with coefficients smaller than x0, that is:

R<x0 :=

{

Sample c ←
N−1∑

i=0

xi · D<x0 : Output c̃ := c · k ∈ R/x0R

}

.

Then, distinguishing between R<x0 and U(R/x0R) is computationally hard under
the decisional-AGCD assumption.

Proof. Let x0 ≥ 2γ−1 be an AGCD sample and A be a PPT adversary with
non-negligible advantage Adv(A) in distinguishing R<x0 and U(R/x0R). We will
show that A can be used to distinguish between U(Zx0) and D<x0 .

Given samples x1, ..., xM from U(Zx0) or D<x0 , we can sample a polynomial k
invertible on R/x0R, group the samples N by N , represent them as polynomials
c1, ..., c�M/N� ∈ R and multiply by k on R/x0R, obtaining c̃i := ci · k ∈ R/x0R.
At last, we output A(c̃1, ..., c̃�M/N�).

It is clear that if the samples xi’s follow U(Zx0), then, each ci is uniform
distributed on R/x0R. Moreover, because k is invertible modulo x0, multiplying
by it does not change the uniform distribution, thus, c̃i follows U(R/x0R) as
well. On the other hand, if the xi’s are sampled from D<x0 , then c̃i’s follow
R<x0 by the definition of R<x0 .

Therefore, A receives inputs following valid distributions and the advantage
we have in distinguishing U(Zx0) from D<x0 is also Adv(A).

However, because x0 ≥ 2γ−1, from Lemma 3 of (the full version of) [Per20],
we know that the distributions D<x0 and U(Zx0) are indistinguishable under the
decisional-AGCD assumption, hence, such A cannot exist. ��

4 GSW-Like AGCD-Based Homomorphic Encryption

In this section, we present the GSW-like AGCD-based Homomorphic Encryption
(GAHE) scheme that will be used to perform the bootstrapping. First of all, let
N be a power of two and R := Z[x]/〈xN + 1〉. We start with a basic scheme
that can encrypt a polynomial m ∈ R into a vector c ∈ R�. Then, by assuming
circular security, we extend the definition of the scheme so that we also have
scalar ciphertexts. Finally, we define a functional key-switching. For brevity and
because in our main applications, the fast bootstrapping procedure, we only use
the mixed homomorphic product, we omit the other homomorphic operations,
like additions and “vector-vector” product, presenting them only in AppendixA.
Furthermore, to ease the presentation, specially the noise-growth analysis, we
keep the modulus x0 private. Hence, the homomorphic operations are performed
on R instead of R/x0R, which means that the bit length of the ciphertext grows.
However, in our bootstrapping procedure, this growth is small and independent
of the multiplicative depth of the homomorphic evaluation.

– GAHE.KeyGen(1λ, N, t, b): Choose the parameters η, ρ, and γ. Sample an
η-bit random prime p. Sample x0 from p · U(�1, 2γ/p �), until x0 ≥ 2γ−1.



Bootstrapping FHE over the Integers in Less Than One Second 341

Then, sample k uniformly from R/x0R until k−1 exists over R/x0R. Define
�0 := �logb(2γ)� and � := ��0 + logb(N) + 1 + logb(�0 + logb(N) + 1)�1. The
public parameters are params := {N, t, �, b, η, γ, ρ} and secret key is sk :=
(p, k, x0).

– GAHE.EncVec(sk,m): Given a polynomial m ∈ R/tR, construct a vector x :=
(pq+r)k ∈ R� by sampling each entry xi independently from RN,γ,ρ,x0(p, k),
then output the following vector c:

c := [x + g · m]x0
∈ R�.

– GAHE.DecVec(sk, c): Let α := �p/t�. Compute c := 〈g−1([αk]x0), c〉 over
R/x0R. Then do c′ := c · k−1 ∈ R/x0R and output

⌊
t · [c′]p

p

⌉

mod t.

4.1 Assuming Circular Security to Extend the Scheme

In this section we show that, by assuming circular security, we can encrypt an
element of R/tR into a single element of R instead of into a vector. We call a
ciphertext produced by this new encryption method a scalar ciphertext and the
ones produced by the encryption function defined before are vector ciphertexts.
Moreover, we define the mixed homomorphic product between a vector and a
scalar ciphertext. It is worth noticing that circular security is regarded as a
weak assumption and has been used extensively in all types of homomorphic
encryption schemes.

Thus, notice that by assuming circular security, we can use GAHE.EncVec to
encrypt m · k · �p/t�, obtaining c = (pq + r)k + (m · k · �p/t�)g = (pq + r + m ·
�p/t� ·g)k. But then, because the first entry of g is 1, we see that the first entry
of c has the following format: c1 = (pq1 + r1 + m · �p/t�)k ∈ R. Thus, we can
extend our scheme with the following procedures:

– GAHE.EncScalar(sk,m): Given a polynomial m ∈ R/tR, let α := �p/t�, sample
x := (pq + r)k ← RN,γ,ρ,x0(p, k) and output

c := [x + m · α · k]x0
∈ R.

– GAHE.DecScalar(sk, c): Output
⌊

t·[c′]p
p

⌉
mod t where c′ := c · k−1 ∈ R/x0R.

– GAHE.MultMix(c, c): to perform a homomorphic mixed product, we decom-
pose and multiply the scalar ciphertext c by the vector ciphertext c, out-
putting the following inner product over R: cmult := g−1(c) · c ∈ R.

1 If we were publishing x0, then the homomorphic operations could be done modulo
x0 and we could set � = �0, without adding these extra logarithmic terms.
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4.2 Correctness of Decryption

In this section we define the noise of a ciphertext and show the necessary condi-
tions for the decryption functions to work.

Definition 7 (Noise of scalar ciphertext). Let c = (pq + r + �p/t� m)k be
a scalar ciphertext encrypting a message m ∈ R/tR. We define the noise of c as
err(c) := [(c·k−1−�p/t� m) mod x0]p. Notice that err(c) is exactly r if ‖r‖ < p/2.

Definition 8 (Noise of vector ciphertext). Let c = (pq + r)k + gm be a
vector encryption of m ∈ R/tR. We define the noise of c as err(c) := [(c−gm) ·
k−1 mod x0)]p. Notice that err(c) is r if ‖r‖ < p/2.

Lemma 2 (Upper bound on the noises). Let c = (pq + r + αm1)k ∈ R
be a scalar ciphertext and c = (pq + r)k + gm2 ∈ R� be a vector ciphertext.
Assuming that ‖err(c)‖ and ‖err(c)‖ are both smaller than p/2, it holds that
‖err(c)‖ = ‖r‖ and ‖err(c)‖ = ‖r‖. In particular, if c and c are fresh ciphertexts,
then ‖err(c)‖ < 2ρ and ‖err(c)‖ < 2ρ.

Let’s first analyze GAHE.DecScalar. Then, the correctness of GAHE.DecVec
follows basically by the same argument.

Lemma 3 (Correctness of scalar decryption). Let c be a scalar encryption
of m ∈ R/tR. If ‖err(c)‖ < p

3t , then GAHE.DecScalar(sk, c) outputs m.

Proof. Let c = (pq+r+�p/t� m)k. Consider the polynomial c′ = c·k−1 ∈ R/x0R
defined in GAHE.DecScalar. We can write it as c′ = pq′ + r + �p/t� m ∈ R.
Then, when we perform the reduction modulo p, we obtain c̄ = [r + �p/t� m]p =
[err(c) + �p/t� m]p = err(c) + ε + mp/t − pu for some ε, u ∈ R with ‖ε‖ ≤ 1/2.

Thus, in the next step of the decryption function, we have

tc̄

p
=

t(err(c) + ε)
p

+ m − ut.

But because ‖err(c)‖ < p
3t , we have ‖t(err(c) + ε)/p‖ < 1/3 + ‖tε/p‖ < 1/2.

Hence, since m − ut has integer coefficients, the rounding function outputs
⌊

tc̄

p

⌉

=
⌊

t(err(c) + ε)
p

⌉

+ m − ut = m − ut.

Therefore, the reduction modulo t indeed gives us m. ��
Lemma 4 (Sufficient conditions for correctness of vector decryption).
Let c be a vector encryption of m ∈ R/tR. If ‖err(c)‖ < p

3N�bt , then
GAHE.DecVec(sk, c) outputs m.

Proof. Let α := �p/t�. Notice that GAHE.DecVec(sk, c) can be rewritten as

1. Compute a scalar encryption of the same message m, i.e., c := g−1([αk]x0) ·c.
2. Output GAHE.DecScalar(sk, c).
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But by Definitions 7 and 8, we have

err(c) = [(c · k−1 − αm mod x0)]p = [g−1([αk]x0) · err(c)]p.

But
∥
∥g−1([αk]x0) · err(c)

∥
∥ ≤ N�b ‖err(c)‖ < p/(3t). Therefore, the output of

GAHE.DecScalar(sk, c) is m by Lemma 3. ��

4.3 Analysis of Mixed Homomorphic Product

L c be a vector encryption of v and c be a scalar encryption of s. Also, let
y := g−1(c) ∈ R�. In the definition of GAHE.MultMix(c, c) we have cmult := y ·c,
thus, the following holds:

cmult = (pyq + yr)k + ygv (By definition of c)
= (pyq + yr)k + cv (Because yg = c)
= (p (yq + qv)

︸ ︷︷ ︸
qmult

+ (yr + rv)
︸ ︷︷ ︸

rmult

+ �p/t� sv)k (By definition of c)

Therefore, the mixed homomorphic product takes encryptions of s and v
and produces cmult = (pqmult + rmult + �p/t� sv)k ∈ R, which is a valid scalar
encryption of the product of the messages, as expected.

As for the noise growth, we now show that a sequence of n mixed homomor-
phic products increases the noise just linearly in n.

Lemma 5 (Noise growth of mixed products). Let n ∈ N
∗. For all i ∈

�1, n�, let ci be a vector encryption of mi. Let also c0 be a scalar encryption of
m0. Assume that B is an upper bound to the norm of the products of plaintexts,
i.e.,

∥
∥
∥
∏n

i=j mi

∥
∥
∥ ≤ B for 0 ≤ j ≤ n. Finally, for 1 ≤ i ≤ n, define ci :=

GAHE.MultMix(ci−1, ci) ∈ R (notice that ci is a scalar encryption of
∏i

j=0 mj).
Then,

‖err(cn)‖ < NB ‖err(c0)‖ +
n∑

i=1

N2B�b ‖err(ci)‖ . (1)

In particular, if c0 and all the ci’s are fresh ciphertexts, then

‖err(cn)‖ < 2N2B�bn2ρ. (2)

Proof. By the analysis done above, we know that the term ri of ci is g−1(ci−1)ri+
ri−1mi. Hence, the term rn after n homomorphic products is

rn = r0

n∏

i=1

mi +
n∑

i=1

g−1(ci−1)ri

⎛

⎝
n∏

j=i+1

mj

⎞

⎠ ∈ R.
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Thus,

‖rn‖ ≤ N ‖r0‖
∥
∥
∥
∥
∥

n∏

i=1

mi

∥
∥
∥
∥
∥

+
n∑

i=1

N�
∥
∥g−1(ci)

∥
∥

∥
∥
∥
∥
∥
∥
ri

⎛

⎝
n∏

j=i+1

mj

⎞

⎠

∥
∥
∥
∥
∥
∥

≤ NB ‖r0‖ +
n∑

i=1

N2�bB ‖ri‖ .

Therefore, Inequality 1 holds. By Lemma 2, if all the operands are fresh
ciphertexts, then, ‖r0‖ < 2ρ and ‖ri‖ < 2ρ, and the particular case also holds. ��

4.4 Functional Key-Switching

In this section we define a procedure that will play a main role in our bootstrap-
ping, namely, a functional key-switching. Therewith we can change the keys and
the dimension of the polynomial ring of a ciphertext and at the same time apply
some function to the plaintext. That is to say, given two integers N1 and N2,
we define two polynomial rings Ri := Z[x]/〈xNi + 1〉. Then, we can transform
a scalar ciphertext c1 ∈ R1 that encrypts a message m ∈ R1/tR1 under key
(p1, k1) into a ciphertext c2 encrypting φ(m) · u under another key (p2, k2) for
any u ∈ RN1

2 , where φ(m) ∈ Z
N1 is the coefficient vector of m.

Like the key-switching procedures of LWE-based schemes, our functional key-
switching consists in two parts: firstly, we need both private keys to generate a
functional key-switching key; then, using this key, we can publicly perform the
transformation.

– FuncKeySwtGen(sk1, sk2, params,u): given params = (N1, N2, b̃, �̃, γ̃, ρ̃), secret
keys ski = (pi, ki) ∈ Z × Ri, and a vector u ∈ RN1

2 , proceed as follows:
1. Define gb̃ := (b̃0, ..., b̃�̃−1) ∈ Z

�̃×1 and G = IN1 ⊗ gb̃ ∈ Z
N1 �̃×N1 .

2. Let v :=
⌊

p2
p1

GΦ(k−1
1 )u

⌉
∈ RN1�̃

2 , where p2/p1 must be interpreted as a
fraction in Q and the inverse of k1 is computed on R1/p1R1.

3. Sample M from p2 · U([0, 2γ̃/p2]).
4. Sample y from (PN2,γ̃,ρ̃(p2))

N1�̃.
5. Output swk := [(y + v) · k2]M . Notice that the output is of the form

(

p2q + r +
⌊

p2
p1

GΦ(k−1
1 )u

⌉)

· k2 ∈ RN1�̃
2 .

– FuncKeySwt(c1, swk): Given a scalar ciphertext c1 ∈ R1 and a functional
key-switching key swk ∈ RN1�̃

2 , define z := φ(c1) ∈ Z
N1 , decompose each

entry of z in base b̃ as w := (g−1(z1), ..., g−1(zN1)) ∈ Z
N1�̃, and output

c2 := w · swk ∈ R2.

Lemma 6 (Correctness of functional key switching). Let u ∈ RN1
2 ,

ski := (pi, ki) ∈ Z × Ri, and params := (N1, N2, b̃, �̃, γ̃, ρ̃). Let also



Bootstrapping FHE over the Integers in Less Than One Second 345

swk := FuncKeySwtGen(sk1, sk2, params,u). Then, for any c1 ∈ R1 encrypting
m ∈ R1/tR1 under key sk1, it holds that c2 := FuncKeySwt(c1, swk) is a valid
encryption of φ(m) · u ∈ R2 under key sk2, if ‖c1‖ < b̃�̃. Moreover, the noise
term of c2 is bounded as follows:

‖err(c2)‖ ≤ �̃N1b̃2ρ̃ + 2η2−η1+2N1 ‖u‖ ‖err(c1)‖

where ηi is the bit length of pi.

Proof. Let c1 = (p1q1 + r1 + α1m)k1 ∈ R1, where α1 := �p1/t�. Notice that
w defined in FuncKeySwt satisfies wG = φ(c1) because ‖c1‖ < b̃�̃. Moreover,
φ(c1)Φ(k−1

1 ) = p1q1 + φ(r1) + α1φ(m). Therefore, the output of FuncKeySwt is

c2 = (p2wq+wr+wε +
p2

p1
wGΦ(k−1

1 )u) · k2 (For some ‖ε‖ ≤ 1/2)

= (p2wq+w(r+ ε) +
p2

p1
(p1q1 + φ(r1) + α1φ(m))u)k2

= (p2q2 +w(r+ ε) +
p2

p1
(φ(r1) + α1φ(m))u) · k2 (For q2 := wq+ q1u)

= (p2q2 +w(r+ ε) +
p2

p1
(φ(r1) + εφ(m))u+

p2

t
φ(m)u) · k2 (For some ε ∈ R2)

Therefore, c2 is indeed an encryption of φ(m)u with respect to the key sk2,
that is, c2 = (pq2 + r2 + p2φ(m)u/t)k2 ∈ R2 with err(c2) = r2 = w(r + ε) +
p2
p1

(φ(r1) + εφ(m))u. Furthermore,

‖err(c2)‖ ≤ ‖wr‖ + ‖wε‖ +
∥
∥
∥
∥

p2
p1

(φ(r1) + εφ(m))u
∥
∥
∥
∥

≤ �̃N1b̃ ‖r‖ + �̃N1b̃/2 + 2η2−η1+1N1 ‖u‖ (‖err(c1)‖ + t/2)

≤ �̃N1b̃2ρ̃ + 2η2−η1+2N1 ‖u‖ ‖err(c1)‖ . �

It turns out that this procedure is very general. For example, if we set
u = (1, x, ..., xN1), then, φ(m)u =

∑N1
i=0 mix

i = m, therefore, by using such
u, our functional key-switching works as an ordinary key-switching, outputting
an encryption of the same message m but in the ring R2 and under the key
sk2. By setting u = (1, z, ..., zN1) for any z ∈ Z, we obtain an encryption of
φ(m)u = m(z), i.e., the evaluation of m at the point z. Also notice that when
Ni = 1, we have Ri � Z, thus, not only our procedure is well defined for Ni = 1,
but it also switches the underlying problem from the AGCD to the RAGCD
problem or vice versa. In Table 1, all the possible ways of using our functional
key switching are shown. The third column shows the underlying problems used
to encrypt the input and the output message depending on whether each Ni is
bigger than one or not. For instance, if N1 = 1 and N2 > 1, then the vector
u ∈ RN1

2 collapses to a scalar, that is, a polynomial of R2, thus we are taking
a message m ∈ Z encrypted using the AGCD problem and we are producing a
ciphertext that encrypts the polynomial m · u using the RAGCD problem.
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Table 1. Possible usages of the functional key-switching procedure.

N1 N2 Underlying problems Encrypted message

> 1 > 1 RAGCD −→ RAGCD
∑N1−1

i=0 mix
i �→ ∑N1−1

i=0 mi · ui with ui ∈ R2

> 1 = 1 RAGCD −→ AGCD
∑N1−1

i=0 mix
i �→ ∑N1−1

i=0 mi · ui with ui ∈ Z

= 1 > 1 AGCD −→ RAGCD m ∈ Z �→ m · u with u ∈ R2

= 1 = 1 AGCD −→ AGCD m ∈ Z �→ m · u with u ∈ Z

4.5 Semantic Security

The function GAHE.EncVec encrypts a message m ∈ R into a vector whose each
entry is of the form xi +bi ·m mod x0 for a value xi sampled from RN,γ,ρ,x0(p, k)
and a fixed b ∈ N. Thus, if we assume that it is hard to distinguish between
U(R/x0R) and RN,γ,ρ,x0(p, k), we can use a hybrid argument to firstly replace
xi by ui ← U(R/x0R), then argue that ui + bi · m mod x0 also follows a uni-
form distribution, thus, can be replaced in another hybrid by u′

i ← U(R/x0R).
Because the final hybrid does not depend on m the advantage of an attacker
in distinguishing vector encryptions of a pair of messages m0 and m1 is negligi-
ble. Moreover, our scalar encryption can be viewed as a particular case of vector
encryption if we assume circular security. Therefore, we have the following result.

Lemma 7. Under the decisional-RAGCD assumption and the circular-security
assumption, encryptions of any pair of polynomials are computationally indis-
tinguishable.

Alternatively, it is possible to prove the security relying solely on the
decisional-AGCD problem. For this, we have to replace the distribution
RN,γ,ρ,x0(p, k) by R<x0 in GAHE.EncVec and GAHE.EncScalar, then use Lemma 1
to argue that R<x0 is computationally indistinguishable from U(R/x0R), and
finally use the same hybrid argument as in Lemma 7.

Lemma 8. Replace the distribution RN,γ,ρ,x0(p, k) by R<x0 in the encryp-
tion functions. Then, under the decisional-AGCD assumption and the circular-
security assumption, encryptions of any pair of polynomials are computationally
indistinguishable.

5 Single-Gate Bootstrapping

In this section, we show how to use our scheme to bootstrap a simple AGCD-
based “single-gate” homomorphic encryption scheme as it was done in the
RLWE-based fast bootstrapping methods of [DM15,CGGI16].
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5.1 Base Scheme

Consider the following simple AGCD-based scheme that will be used as the
base scheme, that is, as the scheme that will be bootstrapped. As it is done in
[DM15,CGGI16], this base scheme is a leveled scheme with two levels only, thus,
fresh ciphertexts are at level-1, we can evaluate one homomorphic binary gate
by performing some simple additions, obtaining a ciphertext at level-2, and then
we have to refresh the ciphertext to reduce the noise and to go back to level 1.
Since all the binary gates can be written as compositions of logical NAND gates,
to keep the presentation simple, we just present this binary gate. Furthermore,
to avoid confusion, we represent the parameters of the base scheme with an
overscore. For instance, the secret key of the base scheme is a prime p̄ of bit
length η̄, while GAHE’s secret key has an η-bit prime p.

– HE.ParamGen(λ): Choose ρ̄ = λ, η̄ = ρ̄ + β for some small constant β, and
γ̄ = Ω(β2λ/ log(λ)). Output params := (γ̄, η̄, ρ̄, λ).

– HE.KeyGen(params): Sample a random prime p̄ from �2η̄−1, 2η̄� and p̄qek +
rek ← Dγ̄,ρ̄(p̄). Define the evaluation key as ēk := p̄qek + rek + �5p̄/8� and the
secret key as s̄k := p̄.

– HE.Enc(s̄k,m,L): To encrypt a bit m, sample p̄q + r ← Dγ̄,ρ̄(p̄) and output
the level-L ciphertext c = p̄q + r + �Lp̄/4� m.

– HE.Dec(s̄k, c): To decrypt a level-1 c, compute c′ := [c]p̄, then output
[⌊

4c′
p̄

⌉]

2
.

– HE.Nand(c1, c2, ēk): Let c0 and c1 be level-1 ciphertexts encrypting m1 and
m2, respectively. Output c := ēk − c1 − c2.

The function HE.ParamGen chooses the parameters in a way that guarantees
the correctness of HE.Dec. Namely, because |r| < 2ρ̄, we have |r+�p̄/4� m| < p̄/2,
therefore, c′ = [c]p̄ = r + �p̄/4� m in Z. And since �p̄/4� > 2ρ̄+1 > 2|r|, we have
�4r/p̄� = 0, then, the output is �4c′/p̄� = �4r/p̄� + m = m.

Our NAND gate is the same of [DM15,CGGI16], thus it outputs

c = p̄ (qek − q1 − q2)
︸ ︷︷ ︸

qnand

+ rek − r1 − r2 ± p̄

8︸ ︷︷ ︸
rnand

+ �p̄/2� (1 − m1m2)

which is a level-2 encryption of NAND(m1,m2) with noise |rnand| < 3 ·2ρ̄ + p̄/8.
By standard techniques [DGHV10,CS15,BBL17] one can prove that this base

scheme is CPA-secure if the AGCD problem is computationally hard. Moreover,
the parameters chosen in HE.ParamGen provide security of λ bits.

5.2 Generating the Bootstrapping Keys

To generate the key material used to bootstrap, we need to fix a base B ≥ 2 in
which we decompose the ciphertexts of the base scheme when they are refreshed.
Then, we define L := �logB(2γ̄)�, which is the number of words needed to decom-
pose the given ciphertexts. Moreover, the number of homomorphic mixed prod-
ucts that we perform during the refresh procedure is Θ(L), thus, there is a
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Algorithm 1: GenBootstrapKeys

Input: Decomposition base B, secret key p̄ of the base scheme
Output: Bootstrapping key bk

1 y ← x2

2 L ← �γ̄ · logB(2)�
3 for s = 1 until B − 1 do
4 for i = 0 until L − 1 do

5 Ks,i ← GAHE.EncVec
(
y�sBiN/p̄�)

6 εs,i ← sBiN/p̄ − ⌊
sBiN/p̄

⌉

7 Choose Δ ∈ N such that | ∑L−1
i=0 εsi,i| < Δ for any (s0, ..., sL−1), e.g., Δ = L/2

8 δ ← ⌈
Δ + (3 · 2ρ̄ + p̄/8)N/p̄

⌉

9 Kδ ← GAHE.EncScalar(yδ) using α := �p/8�
10 γek ← �γ̄ − log(�Nb)	 and ρek ← �ρ̄ − log(�Nb) − 2	
11 params ← (N, 1, b, �, γek, ρek)

12 u ← (1, 1, ..., 1) ∈ Z
N

13 ek ← FuncKeySwtGen(sk := (p, k), s̄k := (p̄, 1), params,u) ∈ Z
N�

14 K8 ← Dγ̄,ρ̄−1(p̄) + �p̄/8�
15 return bk :=

(

ek,Kδ,K8, {Ks,i}1≤s<B
0≤i<L

)

time-memory tradeoff, as the amount of memory increases in general when we
increase B, but at the same time, L decreases.

The bootstrapping procedure consists in two main steps: in the first one,
we use the GAHE scheme to homomorphically multiply a given ciphertext c̄ by
N/p̄, obtaining a GAHE’s scalar ciphertext c; in the second step, we transform
c in a valid base scheme ciphertext c′. To perform the first step, we would
like to encrypt values of the form ysBiN/p̄, where y := x2, but the exponent
would not be integer, thus, we encrypt y�sBiN/p̄�, that is, we define Ks,i :=

GAHE.EncVec
(
y�sBiN/p̄�) for 1 ≤ s < B and 0 ≤ i < L. In addition, we also

encrypt an integer δ that is added to the result obtained in the first step, so
that the final result is contained in the interval �0, N − 1�. Thus, we define
Kδ := GAHE.EncScalar(yδ) ∈ R.

Notice that Kδ is a scalar ciphertext, while Ks,i’s are vector ciphertexts.
During the refresh procedure, we use the mixed homomorphic product to mul-
tiply them. Hence, at the end of the first step, we have a scalar ciphertext
c = (pq + r + αye)k for some e ∈ �0, N − 1� whose value depends on the mes-
sage m. Then, to extract m, we define a test vector u ∈ {0, 1}N , such that
φ(ye) · u = 1 − 2m and use our functional key-switching to transform c into a
ciphertext that encrypts φ(ye) · u under the base scheme key s̄k. Thus, we also
append the following key to the bootstrapping keys:

ek := FuncKeySwtGen(sk := (p, k), s̄k := (p̄, 1),u).
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In Algorithm 1 we present in detail the procedure to generate the bootstrap-
ping key bk.

5.3 Refreshing a Ciphertext

The goal of the bootstrapping is to take a level-2 ciphertext c = p̄q + r +
�p̄/2� m ∈ Z whose noise term satisfies |r| < 3 · 2ρ̄ + p̄/8 and to output a level-1
ciphertext c′ = p̄q′ + r′ + �p̄/4� m with |r′| < 2ρ̄. The refreshing procedure is
shown thoroughly in Algorithm2 and it consists in two main steps: in the first
one, we decompose c in the base B obtaining (c0, c1, ..., cL−1), then we use the
bootstrapping key and GAHE’s mixed homomorphic multiplication to obtain a
scalar encryption of ye, where y := x2 and

ye = yδ ·
�−1∏

i=0

y�cib
iN/p̄� = yδ+cN/p̄+ε mod N = yδ+rN/p̄+mN/2+ε

for some small value ε.

Algorithm 2: Refresh

Input: Level-2 ciphertext c of the base scheme, bootstrapping key bk
Output: Level-1 ciphertext c of the base scheme

1 Let (c0, c1, ..., cL−1) be a decomposition of c in base B.
2 z ← Kδ

3 for i = 0 until L − 1 do
4 if ci > 0 then
5 z ← GAHE.MultMix(z,Kci,i)

	 Second step: extract the message.

6 c̃ ← FuncKeySwt(z, ek)
7 c′ ← K8 − c̃
8 return c′

Then, notice that φ(ye) = φ(x2e), thus, if 0 ≤ e < N/2, then, the only
non-zero entry of φ(ye) is 1, otherwise, it is −1. But as we show in Lemma 9,
we have 0 ≤ e < N/2 if m = 0 and N/2 ≤ e ≤ N − 1 if m = 1, therefore,
the vector u := (1, ..., 1) ∈ Z

N satisfies φ(ye) · u = 1 − 2m. Thus, because we
used u to generate ek, when we apply the functional key-switching in the second
step of Algorithm 2, we switch from GAHE to the base scheme and we obtain an
encryption of φ(xe) ·u = 1−2m, that is, we obtain c̃ = p̄q̃ + r̃ +(1−2m) · �p/8�.
Therefore, subtracting c̃ from K8 yields a valid level-one base scheme encryption
of m, that is, c′ := K8 − c̃ = p̄q′ + r′ + m �p/4�.

In which follows, we prove the correctness of the refreshing procedure.

Lemma 9. Let c be a level-2 encryption of m ∈ {0, 1} with noise bounded by
3 · 2ρ̄ + p̄/8. Let N ≥ 4δ where δ is the integer defined in Algorithm1. Then,
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the ciphertext z ∈ R obtained at the end of the main loop of Algorithm2 is an
encryption of x2e where e ∈ �0, N − 1�. Moreover, m = 0 ⇐⇒ 0 ≤ e < N/2
and m = 1 ⇐⇒ N/2 ≤ e < N .

Proof. Let y := x2. We initialize z with a scalar encryption of yδ and at
each iteration i, we add

⌊
cib

iN/p̄
⌉

to the exponent, thus, because y has
order N in R, it is clear that at the end of the loop z encrypts ye where
e = δ +

∑L−1
i=0

⌊
ciB

iN/p̄
⌉

mod N .
Now, let εi :=

⌊
ciB

iN/p̄
⌉ − ciB

iN/p̄ and ε :=
∑L−1

i=0 εi. Then,

e = δ + ε + (N/p̄) ·
L−1∑

i=0

ciB
i = δ + ε + cN/p̄ = δ + ε + rN/p̄ + mN/2 mod N

Notice that |ε + rN/p̄| < Δ + (3 · 2ρ̄ + p̄/8)N/p̄ ≤ δ. Also, because N ≥ 4δ
by hypothesis, we have 2δ ≤ N/2. Thus, we can see that

δ + ε + rN/p̄ + mN/2 < 2δ +
N

2
≤ N.

Similarly, δ + ε+rN/p̄+mN/2 ≥ δ −Δ− (3·2ρ̄+p̄/8)N
p̄ ≥ δ −δ = 0. Therefore,

we conclude that 0 ≤ e < N . But because e is integer, we have 0 ≤ e ≤ N − 1,
as expected.

Thereby, e = δ + ε+ rN/p̄+mN/2 over Z, without the reduction modulo N .
Thus,

{
m = 0 =⇒ e = δ + ε + rN/p̄ < 2δ ≤ N/2
m = 1 =⇒ e = δ + ε + rN/p̄ + N/2 ≥ N/2 �

Lemma 10. Let m ∈ {0, 1} and δ ∈ N
∗ as defined in Algorithm1. Let e ∈

�0, N − 1� such that m = 0 ⇐⇒ 0 ≤ e < N/2. Let z be a scalar encryption of
x2e with α = �p/8� and noise bounded by some value Bz. Then, when given z as
input, the second step of Algorithm2 outputs a base scheme level-1 encryption
of m with noise bounded by 2ρ̄−1 + NBz2η̄−η+2.

Proof. We know that z = (pqz + rz + �p/8� x2e)k and that ek is a functional
switching key from sk = (p, k) to s̄k = (p̄, 1) with respect to u = (1, ..., 1). Then,
by Lemma 6, the output of FuncKeySwt(z, ek) is

c̃ = p̄q̃ + r̃ +
⌊ p̄

8

⌉
φ(x2e)u ∈ Z,

where |err(c̃)| ≤ 2ρ̄−2 + NBz2η̄−η+2 and φ(x2e)u = 1 − 2m.
Notice that �p/8� − (1 − 2m) �p/8� = 2m �p/8� = m �p/4� + ε, therefore,

the output c′ := K8 − c̃ is indeed of the form p̄q′ + r′ + m �p/4�, which a valid
base scheme level-1 encryption of m. Moreover, err(c′) ≤ err(K8) + err(c̃) ≤
2ρ̄−1 + NBz2η̄−η+2 ��
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Theorem 1 (Correctness of bootstrapping). Let c be a level-2 encryption
of m ∈ {0, 1} with noise bounded by 3 · 2ρ̄ + p̄/8. Let N ≥ 4δ where δ is the
integer defined in Algorithm1. Let ρ̄ ≥ ρ + η̄ − η + log(N3�bL) + 4. Then, the
refresh procedure, Algorithm2, outputs a valid base scheme level-1 encryption of
m with noise smaller than 2ρ̄.

Proof. By Lemma 9, we know that the ciphertext z produced at the end of the
first step of Refresh is of the form (pqz +rz +�p/8� x2e)k for some e ∈ �0, N −1�
such that m = 0 ⇐⇒ 0 ≤ e < N/2. Therefore, by Lemma 10, the output
of Refresh is a base scheme level-1 ciphertext c′ = p̄q′ + r′ + �p̄/4� m with
|r′| < 2ρ̄−1 + N · ‖err(z)‖ · 2η̄−η+2. But because z is computed with a sequence
of L mixed homomorphic products, by Lemma5, we have ‖err(z)‖ < 2N2�bL2ρ,
therefore, |r′| < 2ρ̄−1 + 2ρ+η̄−η+log(N3�bL)+3 ≤ 2ρ̄−1 + 2ρ̄−1 = 2ρ̄. ��

5.4 Truncating Ciphertexts to Speed up Refreshing

When we encrypt a message m with the base scheme, we multiply it by a constant
α that is bigger than the noise. This has the effect of shifting the message
so that it is encrypted “between” the noise and the key. It has already been
noticed [Bra12,CS15] that when we use noisy encryption schemes that encrypt
messages in this way, we can discard the least significant bits of the ciphertexts,
at the expend of increasing the noise, to use less memory to represent encrypted
messages. But in our case, because the main loop of Algorithm 2 ignores bits
equal to zero, we can also save some homomorphic multiplications and speed
up the bootstrapping. Moreover, we do not need to generate bootstrapping keys
Ks,i’s for these truncated bits.

In detail, given a base scheme ciphertext c = p̄q + r + ᾱm, we can set the
first μ bits to zero, for example, by subtracting s := c mod 2μ from c. Notice
that we obtain then c′ := c − s = p̄q + (r − s) + ᾱm, that is a valid encryption
m, but with a new noise term potentially bigger, satisfying err(c′) ≤ err(c) + 2μ.
Then, when we decompose c′ in base B in the refreshing procedure, the first
μB := �μ · logB(2)� words are ignored and the keys Ks,i for 0 ≤ i < μB are never
used. Thus, we reduce the number of mixed homomorphic products from L to
L − μB and the number of keys from (B − 1)L to (B − 1)(L − μB).

6 Practical Results

In this section we show how to choose the parameters for our scheme, we present
the running times and memory usage of our bootstrapping procedure, and we
compare our results with previous works. Our proof-of-concept was implemented
in C++ using the Number Theory Library2 (NTL) and the source code is pub-
licly available3. We ran the experiments on a single core of a processor Intel
Core i5-8600K 3.60 GHz, of a machine with 32 GB of RAM memory. We stress
2 https://www.shoup.net/ntl/.
3 https://github.com/hilder-vitor/FHEZ/.

https://www.shoup.net/ntl/
https://github.com/hilder-vitor/FHEZ/
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that our implementation is not optimized and the running times that we present
below, although being enough to show that our techniques are practical, can
certainly be improved.

6.1 Cryptanalysis and Parameter Selection

Firstly we recall the definitions of the parameters used in our GAHE scheme:

– N : we work over the cyclotomic ring R := Z[x]/〈xN + 1〉;
– η: we sample the secret prime p uniformly from �2η−1, 2η�;
– ρ: during encryption, we sample the noise terms uniformly from � − 2ρ, 2ρ�;
– γ: the private modulus x0 satisfies 2γ−1 ≤ x0 < 2γ

– t: the message space is R/tR = Zt[x]/〈xN + 1〉;
– b: base in which we perform the decomposition g−1;
– �: number of words used in g−1. Vector ciphertexts belong to R�.

In [CP19] and [Per20], the authors analyzed a randomized version of the
AGCD problem in which the AGCD samples are arranged as vectors and mul-
tiplied by a hidden random matrix K ∈ Z

N×N . Namely, for fixed p and K, an
attacker has access to many vectors ṽi = viK ∈ Z

N , where vi = pqi + ri ∈ Z
N .

In our case, an attacker has access to polynomials c̃i := ci · k = (pqi + ri)k ∈ R
output from RN,γ,ρ,x0(p, k). But, denoting by K ∈ Z

N×N the anti-circulant
matrix of k, we can write φ(c̃i) = φ(ci)K = (pφ(qi) + φ(ri))K ∈ Z

N which
can be viewed as the randomized AGCD problem of [CP19,Per20], but with a
structured matrix K instead of a completely random. Hence, we use the crypt-
analysis done in [CP19,Per20] without taking advantage of the structure of the
circulant matrix of k. The parallel with the RLWE problem is worthy of note:
the attacks against the RLWE problem are adapted from the cryptanalysis of
the LWE problem, since the RLWE can be seen as a structured version of the
LWE. Also, in practice, such structure is ignored because there is no known way
of exploiting it.

Thus, to guarantee the security, we must set γ ∈ Ω
(

λ(η−ρ)2

N log λ

)
to rule out

orthogonal lattice attacks and ρ ∈ Ω(λ/N) to avoid GCD attacks [CP19,Per20].
A simple choice for the modulus polynomial f when instantiating the RAGCD
problem is f = xN + 1 with N being a power of two, because in this case, f is a
cyclotomic polynomial, therefore, irreducible on Z[x]. However, other choices of
f are possible, but we suggest that f must be irreducible, since using a reducible
polynomial f makes other attacks possible, as we discuss now.

Polynomial Evaluation: Consider that we define the ring R as Z[x]/〈f〉 for
some degree-N polynomial f . Given an instance RAGCD c := (pq + r)k ∈ R,
there is a polynomial u such that the following holds over Z[x]: c = (pq+r)k−uf .
Therefore, when we evaluate c at some integer z, we obtain c(z) = (pq(z) +
r(z))k(z) − u(z)f(z) ∈ Z. Now, if z is a root of f , we have c(z) = (pq(z) +
r(z))k(z), which can be viewed as an instance of the original AGCD problem,
but masked by an integer k(z). Even for small values of N , we expect r(z) to
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be bigger than p in general. For instance, setting λ = η = 100 and N = 32, the
power zN−1 alone would already be bigger than p for any z such that |z| > 10,
thus, it is very likely that |r(z)| = |∑N−1

i=0 ri · zi| is also bigger than p. In this
case, c(z) is an ill formed AGCD sample and we can not recover p from it.

However, if r(z) happens to be small, then c(z) is an AGCD sample with
noise term r(z) and we could use the attacks against the original AGCD prob-
lem instead of the attacks against the vector AGCD problem. This could be
problematic because we would be attacking an AGCD instance with parameters
much smaller than what it is needed to guarantee the security, since parameters
of the vector AGCD problem (and thus, the ones of the RAGCD problem) are
usually equal to the parameters of the AGCD problem divided by the dimension
of the vectors, in this case, the value N .

As a concrete example, consider that one tries to instantiate the RAGCD
problem using the ring R = Z[x]/〈xN − 1〉. To achieve security of λ bits, one
could set, say, ρ = λ/N . But then, the noise term r =

∑N−1
i=0 ri · xi ∈ Z[x]

satisfies |ri| < 2λ/N . Now, the problem is that xN − 1 has a very small root,
namely, the value 1, thus, it holds that c(1) = (pq(1) + r(1))k(1), and |r(1)| ≤
∑N−1

i=0 |ri| ≤ N · 2λ/N . In other words, evaluating any RAGCD instance c at 1
produces a “masked” AGCD instance with small noise term, around N · 2λ/N .
One could, for instance, run Lee-Seo’s GCD attack [LS14], which would recover
the secret p in time and memory Õ(2λ/N ), that is, in much less time than the
Ω(2λ) that the chosen security level is supposed to guarantee.

Dimension Reduction: Actually, evaluating a polynomial c at a point z is
equivalent to reducing c modulo (x − z). And assuming that z is an integer
and a root of f is the same as assuming that x − z is a factor of f . Thus, we
can generalize the previous attack as follows: Consider that one instantiates the
RAGCD problem using the ring Z[x]/〈f〉 for a polynomial f that has a non-
trivial factor g, that is, the degree of g is at least one and g divides f on Z[x].

Then, because an RAGCD instance c can be written as c = (pq+r)k−uf , for
some u ∈ Z[x], we can reduce c modulo g obtaining c′ = (p[q]g + [r]g) · [k]g − vg,
for some v ∈ Z[x]. But this c′ is a new RAGCD instance over the “smaller”
ring Z[x]/〈g〉, because the degree of g is less than the degree of f . For some
polynomials g, the norm of [r]g will be bigger than p and c′ will be an ill defined
RAGCD instance from which we cannot recover p. However, depending on the
degree and on the coefficients of g, the infinity norm of [r]g can be just slightly
larger than the norm of r, which means that c′ can be effectively used in an
attack in lower dimension (thus, in an easier RAGCD instance).

For example, let N be even and consider that the g(x) = xN/2+1 is a factor of
f . Then, reducing c modulo g yields c′ = (p[q]g+[r]g)·[k]g−vg, for some v ∈ Z[x],
where c′ is a polynomial with half the degree of the original c. Moreover, by
defining r :=

∑N−1
i=0 ri·xi, we have [r]g =

∑N/2−1
i=0 (ri+ri+N/2)·xi, hence, ‖[r]g‖ ≤

2 ‖r‖. The same holds for q, i.e., ‖[q]g‖ ≤ 2 ‖q‖. Thus, we essentially reduce an
RAGCD instance with parameters N , γ, η, and ρ, to a much easier RAGCD
instance with parameters N/2, γ + 1, η, and ρ + 1. To illustrate that: the time
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complexity of the GCD attacks would decrease from Õ(2Nρ) to Õ(2N(ρ+1)/2)
and orthogonal lattice attacks would have their costs reduced from 2Ω(γN/(η−ρ)2)

to 2Ω(N
2 ·(γ+1)/(η−ρ−1)2), thus, attacking this new RAGCD instance would take

roughly the square root of the time needed to attack the original instance.

Parameters for Security: To guarantee the security level of λ bits, we must
set γ ∈ Ω

(
λ(η−ρ)2

N log λ

)
to rule out orthogonal lattice attacks and ρ ∈ Ω(λ/N)

to avoid GCD attacks (where N = 1 for the AGCD problem and N > 1 for
the RAGCD problem). More concretely, the number of integer operations of
the GCD attacks is bigger than (Nρ)2 · 2Nρ [Per20], thus, we set ρ ≥ λ/N , to
guarantee that this type of attack takes more than 2λ CPU clock cycles.

Considering several different cryptanalysis [DGHV10,CS15,GGM16,CP19],
we see that lattice attacks on the AGCD problem and its variants boil down
to running a lattice-basis reduction algorithm on a lattice of dimension d and
rank d − N , where d that can be chosen by the attacker, N = 1 for the original
AGCD problem and N > 1 for the randomized versions. The goal is then to
find short enough d-dimensional vectors vi’s that are orthogonal to vectors ri’s
whose components are ρ-bit noise terms. We basically need ‖vi‖2 · ‖ri‖2 < p.
Considering that ‖ri‖2 ≈ 2ρ, we obtain then ‖vi‖2 < 2η−ρ. Taking into account
the root-Hermite factor ζ of the lattice-basis reduction algorithm and the deter-
minant of the lattice, we can estimate ‖vi‖2 as ζd · (2γN )1/d, thus, we end up
with the necessary condition

d log(ζ) + γN/d < η − ρ.

This inequality is equivalent to log(ζ)d2 − (η − ρ)d + γN < 0 and it has no
solution if its discriminant is negative, i.e., if (η − ρ)2 − 4 log(ζ)γN < 0. Hence,
we obtain the following concrete restriction on γ:

γ >
(η − ρ)2

4N log(ζ)
. (3)

Therefore, to guarantee a security level of λ bits, we just have to choose a
small enough ζ such that any lattice-basis reduction achieving such root-Hermite
factor costs more than 2λ operations, then fix γ =

⌈
(η−ρ)2

4N log(ζ)

⌉
, where N = 1 for

the AGCD problem.

Parameters for Correctness: If we let L be the maximum multiplicative
depth to be evaluated, then, the correctness of the decryption functions imposes
the following constraint: By Lemmas 3 and 4, decryption works if the final noise
is smaller than p/(3t). Thus, we can use 2η/(6t) < p/(3t) as an acceptable bound
to the noise. By Lemma 5, the final noise is upper bounded by 2N2BL�b2ρ, thus,
we need 2N2BL�b2ρ ≤ 2η/(6t), or, equivalently,

η ≥ ρ + log(tN2BL�b) + log(12).

In Sect. 6.2 we propose concrete parameters sufficient to evaluate our boot-
strapping method.
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6.2 Running Times and Memory Requirements of Our
Bootstrapping

In this section we present our practical results for the bootstrapping procedure
described in Sect. 5. Our experiment consisted in encrypting two random bits
m1 and m2 into c1 and c2, computing c := HE.Nand(c1, c2), then refreshing
c. Because the homomorphic nand gate is performed with three simple integer
additions, its running time is negligible and we only measured the refreshing step.
To show the time-memory trade-off explicitly, we used several values for the base
B. All the parameters were chosen to guarantee a security level of more than
100 bits. For this, we used the root-Hermite factor ζ = 1.0064 in Inequality 3,
which is the same value used in [DM15]. Notice that the BKZ algorithm requires
a block size greater than 190 and much more than 2100 CPU clock cycles to
achieve such root-Hermite factor [CN11,DM15].

Thus, for the base scheme, we proceed as described in Sect. 5.1 by fixing
β = 5, η̄ = 105, ρ̄ = 100, and γ̄ =

⌈
(η̄−ρ̄)2

4 log(ζ)

⌉
=

⌈
25

4 log(1.0064)

⌉
= 680. We also

truncated μ = ρ̄ − 5 bits of the ciphertexts, as explained in Sect. 5.4. We recall
that when we generate bk, we must choose an upper-bound Δ for the sum of
the rounding errors εs,i’s. Because |εs,i| ≤ 1/2, it is clear that we can choose
Δ = L/2, however, this bound is not realistic and we can use much smaller
values of Δ in practice, thus, we used Δ ≈ (L − λ logB(2))/6. Hence, for each
B, we defined L and Δ, then N was set as the smallest power of two larger than
16 · Δ. GAHE’s parameters are presented in Table 2.

Table 2. We show the practical results of our bootstrapping for three sets of parame-
ters. The two last rows show [DM15] and [CGGI16], which used only one fixed set of
parameters. We show the running times they reported on a 3.0 GHz processor and also
these timings multiplied by 3

3.6
to make the comparison with our results more senseful.

The security level is λ = 100 for the three schemes and we always used η = 100 and
γ ≥ ⌈

(η − ρ)2/(4N log(1.0064))
⌉

for our GAHE scheme.

B Δ L N γ ρ log b � Size bk Refreshing

Ours 26 16 114 256 206 56 24 10 412 MB 0.94 s

27 14 98 256 206 56 24 10 712 MB 0.81 s

28 8 86 128 204 69 11 21 1.3 GB 0.48 s

[DM15] - 1.3 GB 0.69 s (× 3
3.6

= 0.57 s)

[CGGI16] - 52 MB 0.05 s (× 3
3.6

= 0.04 s)

Our running times are comparable with those of [DM15] and around 10
times larger than those of [CGGI16]. A full comparison is presented in Table 2.
We stress that this comparison is to be taken with care, because we used a
3.6 GHz processor while they used a 3.0 GHz one. On the other hand, while we
used our own (very simple) implementation of the Fast Fourier Transform (FFT)
to perform polynomial multiplication, they used very optimized FFT libraries



356 H. V. L. Pereira

(they work with polynomials whose coefficients are small, thus, they can use
well-known FFT libraries implemented with floating-point numbers). Therefore,
our running times can surely be improved.

Appendix

A Other Homomorphic Operations

– GAHE.AddVec(c1, c2): to homomorphically add two ciphertexts, just add
them entry-wise: cadd := c1 + c2 ∈ R�.

– GAHE.MultVec(c1, c2): to perform a homomorphic product, apply g−1 to
each entry of c1 obtaining a � × � matrix of polynomials, i.e., A :=(
g−1(c1,1) . . . g−1(c1,�)

)
, then perform a vector-matrix product over R:

cmult := c2 · A ∈ R�.
– GAHE.AddScalar(c1, c2): to perform a homomorphic addition, just add the

ciphertexts: cadd := c1 + c2 ∈ R.
– GAHE.AddPlaintext(c1, h) and GAHE.MultPlaintext(c1, h): to add a plaintext

h, output c1 + g · h. To multiply, simply multiply each entry of c1 by h in R,
i.e., output h · c1 ∈ R�.

A.1 Correctness of Homomorphic Operations

The mixed homomorphic product was analyzed in Sect. 4.3. We now show that
the other homomorphic operations are also correct. For i ∈ {1, 2}, let ci a
be vector encryption of vi and ci be a scalar encryption of si. Thus, we have
ci = (pqi + ri)k + gvi and ci = (pqi + ri + αsi)k.

Hence, it is easy to see that the homomorphic additions produce valid cipher-
texts, i.e.,

– c1 + c2 = (p(q1 + q2) + (r1 + r2) + α(s1 + s2))k ∈ R.
– c1 + c2 = (p(q1 + q2) + (r1 + r2))k + g(v1 + v2) ∈ R�.

To see that the homomorphic product of two vector ciphertexts is cor-
rect, notice that we decompose one of the operands, say, c1, as A =(
g−1(c1,1) . . . g−1(c1,�)

) ∈ R�×�, and when we multiply A by g, we obtain again
c1, i.e., g · A = c1. Hence, we have the following:

cmult = c2 · A
= (pq2A + r2A)k + gAv2

= (pq2A + r2A)k + ((pq1 + r1)k + gv1)v2
= (p (q2A + q1v2)

︸ ︷︷ ︸
qmult

+ (r2A + r1v2)
︸ ︷︷ ︸

rmult

)k + gv1v2

Therefore, the homomorphic multiplication yields a valid encryption of the prod-
uct of the messages.
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A.2 Noise Growth of Homomorphic Operations

In this section we show that the noise in the ciphertexts grows basically addi-
tively when we perform any homomorphic operation, including products. Using
the analysis done in Sect. 4.3, it is easy to derive upper bounds to the noise
accumulated by the homomorphic operations.

Lemma 11 (Noise of homomorphic additions). Let n be an integer bigger
than or equal to 2. For i ∈ �1, n�, let ci be a scalar encryption of si and ci be a
vector encryption of vi. Compute the homomorphic sum of these ciphertexts as
follows: c :=

∑n
i=1 ci ∈ R and c :=

∑n
i=1 ci ∈ R�. Then, err(c) =

∑n
i=1 err(ci)

and err(c) =
∑n

i=1 err(ci). In particular, if all ci’s and ci’s are fresh ciphertexts,
we have

‖err(c)‖ < n2ρ and ‖err(c)‖ < n2ρ.

Proof. Because each ci is of the form (pqi + ri + �p/t� si)k, it is clear that
err(c) =

∑n
i=1 ri =

∑n
i=1 err(ci). By Lemma 2, if all ci’s are fresh ciphertexts, we

have ‖err(c)‖ ≤ ∑n
i=1 ‖err(ci)‖ < n2ρ and the particular case holds.

Basically the same argument holds for vector ciphertexts. ��
The noise growth of a sequence of homomorphic products involving only

vector ciphertexts is essentially equal to the one of mixed products.

Lemma 12 (Noise growth of products of vector ciphertexts). Let n be
an integer bigger than or equal to 1. For i ∈ �0, n�, let ci be an encryption of mi.
Let also c′

0 := c0 and c′
i := GAHE.MultVec(c′

i−1, ci) for i > 0. (Notice that c′
i is

an encryption of
∏i

j=0 mj). Assume that B is an upper bound to the product of

the plaintexts, i.e.,
∥
∥
∥
∏n

i=j mi

∥
∥
∥ ≤ B for 0 ≤ j ≤ n. Then,

‖err(c′
n)‖ < NB ‖err(c0)‖ +

n∑

i=1

N2B�b ‖err(ci)‖ .

In particular, if all the products only involve fresh ciphertexts, then

‖err(c′
n)‖ < 2N2B�bn2ρ.

Proof. This proof is basically equal to the one of Lemma5, hence, we omit it. ��
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